1887

Abstract

A sp. accumulated uranyl ion () via precipitation with phosphate ligand liberated by phosphatase activity. The onset and rate of uranyl phosphate deposition were promoted by , forming NHUOPO, which has a lower solubility product than NaUOPO. This acceleration decoupled the rate-limiting chemical crystallization process from the biochemical phosphate ligand generation. This provided a novel approach to monitor the cell-surface-associated changes using atomic-force microscopy in conjunction with transmission electron microscopy and electron-probe X-ray microanalysis, to visualize deposition of uranyl phosphate at the cell surface. Analysis of extracted surface materials by P NMR spectroscopy showed phosphorus resonances at chemical shifts of 03 and 20 p.p.m., consistent with monophosphate groups of the lipid A backbone of the lipopolysaccharide (LPS). Addition of to the extract gave a yellow precipitate which contained uranyl phosphate, while addition of Cd gave a chemical shift of both resonances to a single new resonance at 3 p.p.m. Acid-phosphatase-mediated crystal growth exocellularly was suggested by the presence of acid phosphatase, localized by immunogold labelling, on the outer membrane and on material exuded from the cells. Metal deposition is proposed to occur via an initial nucleation with phosphate groups localized within the LPS, shown by other workers to be produced exocellularly in association with phosphatase. The crystals are further consolidated with additional, enzymically generated phosphate in close juxtaposition, giving high loads of LPS-bound uranyl phosphate without loss of activity and distinguishing this from simple biosorption, or periplasmic or cellular metal accumulation mechanisms. Accumulation of ‘tethered’ metal phosphate within the LPS is suggested to prevent fouling of the cell surface by the accumulated precipitate and localization of phosphatase exocellularly is consistent with its possible functions in homeostatis and metal resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1855
2000-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461855a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1855&mimeType=html&fmt=ahah

References

  1. Basnakova G., Stephens E. R., Thaller M. C., Rossolini G. M., Macaskie L. E. 1998a; The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl Microbiol Biotechnol 50:266–272 [CrossRef]
    [Google Scholar]
  2. Basnakova G., Spencer A. J., Palsgard E., Grime G. W., Macaskie L. E. 1998b; Identification of the nickel uranyl phosphate deposits on Citrobacter sp. cells by electron microscopy with electron probe X-ray microanalysis and by proton induced X-ray emission analysis. Environ Sci Technol 32:760–765 [CrossRef]
    [Google Scholar]
  3. Batley M., Packer N. H., Redmond J. W. 1985; Analytical studies of lipopolysaccharide and its derivatives from Salmonella minnesota R 595. I. Phosphorus magnetic resonance spectra. Biochim Biophys Acta 821:179–194 [CrossRef]
    [Google Scholar]
  4. Bitton G., Friehofer V. 1978; Influence of extracellular polysaccharides on the toxicity of copper and cadmium towards Klebsiella aerogenes. Microb Ecol 4:119–125
    [Google Scholar]
  5. Bonthrone K. M., Basnakova G., Lin F., Macaskie L. E. 1996; Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat Biotechnol 14:635–638 [CrossRef]
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  7. Breese M. B. H., Grime G. W., Watt F. 1992; The nuclear microprobe. Annu Rev Nucl Part Sci 42:1–38 [CrossRef]
    [Google Scholar]
  8. Burnell E., Alphen L. V., Verkleij A., deKruijff B., Lugtenberg B. 1980; 31P nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. Biochim Biophys Acta 597:518–532 [CrossRef]
    [Google Scholar]
  9. Dassa E., Cahau M., Desjoyau-Cherel B., Boquet P. L. 1982; The acid phosphatase with optimum pH of 2·5 of Escherichia coli: a physiological and biological study. J Biol Chem 257:6669–6676
    [Google Scholar]
  10. Diels L., Dong Q., Van der Lelie D., Baeyens W., Mergeay M. 1995; The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol 14:142–153 [CrossRef]
    [Google Scholar]
  11. Ferris F. G., Beveridge T. J. 1984; Binding of a paramagnetic metal cation to Escherichia coli K-12 outer membrane vesicles. FEMS Microbiol Lett 24:43–46 [CrossRef]
    [Google Scholar]
  12. Ferris F. G., Beveridge T. J. 1986; Site specificity of metallic ion binding in Escherichia coli K-12 lipopolysaccharide. Can J Microbiol 32:52–55 [CrossRef]
    [Google Scholar]
  13. Frolund B., Griebe T., Nelson P. H. 1995; Enzymatic activity in the activated sludge floc matrix. Appl Microbiol Biotechnol 43:755–761 [CrossRef]
    [Google Scholar]
  14. Gadd G. M. 1992; Microbial control of heavy metal pollution. In Microbial Control of PollutionSociety for General Microbiology Symposium vol. 48 pp. 59–88Edited by Fry J. C.others Cambridge: Cambridge University Press;
    [Google Scholar]
  15. Goddard D. T., Steele A., Beech I. B. 1996; Towards in-situ AFM imaging of biofilm growth on stainless steel. Scanning Microsc 10:983–988
    [Google Scholar]
  16. Grime G. W., Watt F. 1990; Nuclear microscopy – elemental mapping using high-energy ion beam techniques. Nucl Instr Methods B50:197–207
    [Google Scholar]
  17. Grime G. W., Dawson M., Marsh M., McArthur I. C., Watt F. 1991; The Oxford submicron nuclear microscopy facility. Nucl Instr Methods B54:52–63
    [Google Scholar]
  18. Groisman E. A., Chiao E., Lipps C. J., Heffron F. 1989; Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci U S A 86:7077–7081 [CrossRef]
    [Google Scholar]
  19. Groisman E. A., Saier M. H. Jr, Ochman H. 1992; Horizontal transfer of a phosphatase gene as evidence for a mosaic structure of the Salmonella genome. EMBO J 11:1309–1316
    [Google Scholar]
  20. Hallett D. S., Clark P., Macaskie L. E. 1991; Phosphatase production by a Citrobacter sp. growing in batch culture retarded by anaerobic or osmotic stress and the effect of the osmoprotectant glycinebetaine. FEMS Microbiol Lett 78:7–10 [CrossRef]
    [Google Scholar]
  21. Hohmann E. L., Miller S. I. 1994; The Salmonella PhoP virulence regulon. In Phosphate in Microorganisms. Cellular and Molecular Biology pp. 120–125Edited by Torriani-Gorini A., Yagil E., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Ingram J. M. K., Cheng K. J., Costerton J. W. 1973; Alkaline phosphatase of Pseudomonas aeruginosa: the mechanism of secretion and release of the enzyme from whole cells. Can J Microbiol 19:1407–1415 [CrossRef]
    [Google Scholar]
  23. Jeong B. C., Macaskie L. E. 1995; PhoN-type acid phosphatases of a heavy metal-accumulating Citrobacter sp.: resistance to heavy metals and affinity towards phosphomonoester substrates. FEMS Microbiol Lett 130:211–214 [CrossRef]
    [Google Scholar]
  24. Jeong B. C., Hawes C., Bonthrone K. M., Macaskie L. E. 1997; Localization of enzymatically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143:2497–2507 [CrossRef]
    [Google Scholar]
  25. Jeong B. C., Poole P. S., Willis A. C., Macaskie L. E. 1998; Purification and chacterization of acid-type phosphatases from a heavy-metal-accumulating Citrobacter sp. Arch Microbiol 169:166–173 [CrossRef]
    [Google Scholar]
  26. Johansson S. A. E., Campbell J. L. 1988 PIXE – a Novel Technique for Elemental Analysis Chichester: Wiley;
    [Google Scholar]
  27. Kadurugamuwa J. L., Beveridge T. J. 1995; Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008
    [Google Scholar]
  28. Kasahara M., Nakata A., Shinagawa H. 1991; Molecular analysis of the Salmonella typhimurium phoN gene which encodes nonspecific acid phosphatase. J Bacteriol 173:6760–6765
    [Google Scholar]
  29. Kasahara M., Nakata A., Shinagawa H. 1992; Molecular analysis of the E. coli phoP–phoQ operon. J Bacteriol 174:492–498
    [Google Scholar]
  30. Kier L. D., Weppelman R., Ames B. N. 1977; Resolution and purification of three periplasmic phosphatases of Salmonella typhimurium. J Bacteriol 130:399–410
    [Google Scholar]
  31. Klapcinska B. 1994; Binding of germanium and lead to Pseudomonas putida lipopolysaccharides. Can J Microbiol 40:686–690 [CrossRef]
    [Google Scholar]
  32. Langley S., Beveridge T. J. 1999; Effect of O-side-chain lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol 65:489–498
    [Google Scholar]
  33. Luderitz O., Westphal O., Staub A. M., Nikaido H. 1971 In Microbial Toxins vol. IV pp. 145–233Edited by Weinbaum G., Kadis S., Ajl S. J. New York: Academic Press;
    [Google Scholar]
  34. Macaskie L. E., Jeong B. C., Tolley M. R. 1994; Enzymically-accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol Rev 14:351–368 [CrossRef]
    [Google Scholar]
  35. Macaskie L. E., Empson R. M., Lin F., Tolley M. R. 1995; Enzymatically-mediated uranium accumulation and uranium recovery using a Citrobacter sp. immobilized as a biofilm within a plug-flow reactor. J Chem Technol Biotechol 63:1–16 [CrossRef]
    [Google Scholar]
  36. Macaskie L. E., Yong P., Doyle T. C., Roig M. G., Diaz M., Manzano T. 1997; Bioremediation of uranium-bearing wastewater: biochemical and chemical factors affecting bioprocess application. Biotechnol Bioeng 53:100–109 [CrossRef]
    [Google Scholar]
  37. Mergeay M., Nies D., Schlegel H. G., Gerits J., Van Gijsegen F. 1985; Alcaligenes eutrophus CH34, a facultative chemolithotroph displaying plasmid bound resistance to heavy metals. J Bacteriol 162:328–334
    [Google Scholar]
  38. Miller S. I., Kukral A. M., Mekalanos J. J. 1989; A two component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054–5058 [CrossRef]
    [Google Scholar]
  39. Morgan J. W., Forster C. F., Evison L. 1990; A comparative study of the nature of biopolymers extracted from anaerobic and aerobic sludges. Water Res 24:743–750 [CrossRef]
    [Google Scholar]
  40. Nesmeyanova M. A., Tsfasman I. M., Karamyshev A. L., Suzina N. E. 1991; Secretion of the overproduced periplasmic PhoA protein into the medium and accumulation of its precursor in phoA-transformed Escherichia coli strains: involvement of outer membrane vesicles. World J Microbiol Biotechnol 7:394–406 [CrossRef]
    [Google Scholar]
  41. Nesmeyanova M. A., Karamyshev A. L., Kalinin A., Tsfasman I. M., Badyakina A., Khmelnitsky M., Shlyapnikov M., Ksenzenko V. 1994; Escherichia coli alkaline phosphatase biosynthesis: influence of overproduction and amino acid substitutions. In Phosphate in Microorganisms. Cellular and Molecular Biology pp. 264–269Edited by Torriani-Gorini A., Yagil E., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Neu H. C., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692
    [Google Scholar]
  43. Nossal N. G., Heppel L. A. 1966; The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 241:3055–3062
    [Google Scholar]
  44. Pierpoint W. S. 1957; The phosphatase and metaphosphatase activities of pea extracts. Biochem J 65:67–76
    [Google Scholar]
  45. Strain S. M., Fesick S. W., Armitage I. M. 1983a; Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by 13C and 31P nuclear magnetic resonance. J Biol Chem 258:13466–13477
    [Google Scholar]
  46. Strain S. M., Fesick S. W., Armitage I. M. 1983b; Characterization of lipopolysaccharide from a heptoseless mutant of Escherichia coli by carbon 13 nuclear magnetic resonance. J Biol Chem 258:2906–2910
    [Google Scholar]
  47. Surman S. B., Walker J. T., Goddard D. T., Morton L. G. H., Keevil C. W., Weaver W., Skinner A., Kurtz J. 1996; Comparison of microscope techniques for the examination of biofilms. J Microbiol Methods 25:57–70 [CrossRef]
    [Google Scholar]
  48. Tamana H., Criddle A., Grime G. W., Vaughn D., Spratt J. 1994; Trace elements in platinum group minerals studied using nuclear microscopy. Nucl Instr Methods B9:213–218
    [Google Scholar]
  49. Thaller M. C., Berlutti F., Schippa S., Iori P., Passariello C., Rossolini G. M. 1995; Heterogenous patterns of acid phosphatase containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol 45:255–261 [CrossRef]
    [Google Scholar]
  50. Torriani A. 1990; From cell membrane to nucleotides: the phosphate regulon in Escherichia coli. Bioessays 12:371–376 [CrossRef]
    [Google Scholar]
  51. Volesky B. 1990 Biosorption of Heavy Metals Boca Raton, FL: CRC Press;
    [Google Scholar]
  52. Watt F., Grime G. W. 1989 Principles and Application of High Energy Ion Microbeams Bristol, UK: Hilger;
    [Google Scholar]
  53. White C., Gadd G. M. 1998; Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415 [CrossRef]
    [Google Scholar]
  54. White C., Sharman A. K., Gadd G. M. 1998; An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575 [CrossRef]
    [Google Scholar]
  55. Yong P. 1996 Investigation of heavy metal accumulation by a Citrobacter sp PhD thesis University of Birmingham; UK:
    [Google Scholar]
  56. Yong P., Macaskie L. E. 1995; Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4. J Chem Technol Biotechnol 63:101–108 [CrossRef]
    [Google Scholar]
  57. Yong P., Macaskie L. E. 1998; Bioaccumulation of lanthanum, uranium and thorium and use of a model system to develop a method for the biologically-mediated removal of plutonium from solution. J Chem Technol Biotechnol 71:15–26 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1855
Loading
/content/journal/micro/10.1099/00221287-146-8-1855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error