Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa

Urs A. Ochsner, Zaiga Johnson and Michael L. Vasil

A gene cluster similar to haem iron uptake loci of bacterial pathogens was identified in Pseudomonas aeruginosa. This phu locus (’Pseudomonas haem uptake’) consisted of the phuR receptor gene and the phuSTUVW operon encoding a typical ABC transporter. Expression of phuR and phuSTUVW from mapped transcriptional-start sites occurred under iron-restricted growth conditions and was directly controlled by the Fur protein. Binding of Fur was demonstrated by DNase footprinting of two adjacent ‘Fur boxes’ that overlapped both the phuR and phuSTUVW promoters. Two tandem repeats of 154 bp were identified downstream of the phuSTUVW operon, each of which contained a strong Fur-dependent promoter driving expression of iron-regulated RNAs antisense to phuSTUVW. Mutant strains with deletions in phuR and phuSTUV showed greatly reduced growth with either haem or haemoglobin as the only iron source: the defects were complemented by plasmids harbouring the phuR or the phuSTUV genes, respectively. Deletions of phuW or of the tandem repeats had only minor effects on haem utilization. The remaining haem and haemoglobin uptake still observed in the ΔphuR or ΔphuSTUV deletion mutants was due to a second haem-acquisition system, has, which was also under the direct control of Fur. This second haem-receptor gene, hasR, was identified upstream of and in an operon with hasA, encoding a haem-binding extracellular protein. A ΔhasR mutant also exhibited decreased utilization of haem and haemoglobin, and a ΔphuR ΔhasR double mutant was virtually unable to take up either compound. Both the PhuR and HasR proteins were detected in the outer-membrane fraction of P. aeruginosa grown in low-iron media. Taken together, the evidence suggests that the phu and has loci encode two distinct systems required for the acquisition of haem and haemoglobin in P. aeruginosa.

Keywords: Pseudomonas, iron transport, haem receptor, ferric uptake regulator

INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen and has the potential to severely infect injured or immunocompromised hosts such as patients with cystic fibrosis, emphysema, cancer or serious burns (Woods & Vasil, 1994). A large variety of potential virulence factors play a role in colonization, survival, tissue invasion and in the ultimate damage of the host (Nicas & Iglewski, 1985). P. aeruginosa prefers an aerobic metabolism, requiring respiratory enzymes that need iron for their function. Extremely low concentrations of free iron are encountered during growth in a human host because virtually all host iron is bound to haemoglobin, transferrin and lactoferrin (Crosa, 1997; Payne, 1993; Litwin & Calderwood, 1993). Iron restriction plays a central role in the stress response in P. aeruginosa, which has thus evolved numerous iron-acquisition systems. These include the release of siderophores, production of extracellular proteases, secretion of cytotoxic exotoxin

Abbreviations: ABC, ATP-binding cassette; EDDHA, ethylenediamine d(o-hydroxyphenylacetic acid).
The GenBank accession numbers for the sequences reported in this paper are AF055999, AF127222, and AF127223.
A, and, as described in this report, the capacity to utilize haem and haemoglobin from exogenous sources. Typically, the factors relevant for these iron-uptake mechanisms are tightly regulated and only expressed during iron-limited growth. The ‘ferric uptake regulator’ protein (Fur) plays the central role in this iron-starvation response. Fur is a dimeric DNA-binding repressor which employs Fe(II) as a co-repressor and binds to a so-called ‘Fur box’ in the promoter regions of iron-regulated genes (Ochsner et al., 1995; Prince et al., 1993). Upon iron limitation, the Fur–Fe(II) complex dissociates and is displaced from the DNA, thereby allowing transcription of iron-regulated genes. A large number of Fur-regulated genes have been identified in _P. aeruginosa_ and their role in iron acquisition has been characterized (Ochsner & Vasil, 1996). In this report, we present the isolation and characterization of the _phu_ (‘*Pseudomonas* haem uptake’) gene cluster encoding an outer-membrane receptor and a specific ABC (ATP-binding cassette) transporter required for haem and haemoglobin uptake. The ability to use free haem or haem complexed to haemoglobin is characteristic for a growing number of pathogens, including *Vibrio cholerae* (Henderson & Payne, 1994), *Shigella dysenteriae* (Mills & Payne, 1997), *enterohaemorrhagic Escherichia coli* O157:H7 (Torres & Payne, 1997), *Yersinia enterocolitica* (Stojilkovic & Hanke, 1992), *Yersinia pestis* (Hornung et al., 1996), *Neisseria* spp. (Stojilkovic et al., 1996), *Haemophilus influenzae* (Cope et al., 1995; Maciver et al., 1996; Hanson et al., 1992) and *Serratia marcescens* (Ghigo et al., 1997).

These known haem-acquisition systems can be separated into three categories, based on the factors they involve. The largest category, into which the _P. aeruginosa phu_ system falls, comprises uptake systems similar to those for the uptake of ferrisiderophores, colicins and vitamin B12 (Braun & Hanke, 1991). They involve a specific TonB-dependent receptor at the cell surface and a periplasmic binding-protein-dependent transport machinery (PBT) required for the passage through the cytoplasmic membrane. The PBT system belongs to the larger family of so-called ABC transporters and typically consists of a periplasmic substrate-binding protein, one or two hydrophobic integral membrane-spanning proteins, and one or two hydrophilic proteins with ATPase activity (Ames et al., 1990; Higgins, 1990; Linton & Higgins, 1998). The best studied haem-uptake systems in this category include the *hemR-hemSTUV* system of _Y. enterocolitica_ (Stojilkovic & Hanke, 1992) and the _hmuRSTUV_ system of _Y. pestis_ (Hornung et al., 1996).

The haem-uptake systems in the second category consist of an outer-membrane receptor, an extracellular haem-binding protein and a type I secretion apparatus, referred to as an ABC export system. The ABC protein-mediated exporters are an inner-membrane ATPase, an inner-membrane fusion protein, and an outer-membrane component (Pugsley, 1993; Linton & Higgins, 1998). Such a haem-acquisition system has been demonstrated for *Ser. marcescens* (Binet & Wandersman, 1996; Ghigo et al., 1997) and was also postulated for _P. aeruginosa_ after the isolation and characterization of an extracellular haem-binding protein, HasA, from this organism (Létotfi et al., 1998). HasA is an iron-regulated protein required for the utilization of haemoglobin in _P. aeruginosa_. In this paper, we provide further evidence for such a system in _P. aeruginosa_ through the genetic and biochemical characterization of the corresponding outer-membrane receptor, HasR.

The third category of haem-uptake systems involves a haem-binding outer-membrane lipoprotein. The best studied species containing such a lipoprotein are _H. influenzae_ and _H. influenzae_ Rd (Reidl & Mekalanos, 1996).

Haem from intracellular host haemoglobin becomes available as an iron source after lysis of erythrocytes, and it is thus not surprising that several haem-utilizing pathogens have been shown to produce efficient haemolysins. Well-studied examples include _V. cholerae_ El-Tor, which produces a cytotoxic haemolysin (HlyA) under iron deprivation (Stoebner & Payne, 1988; Menzl et al., 1996). Similarly, iron starvation triggers the secretion of ShlA haemolysin in _Ser. marcescens_ (Poole & Braun, 1988). Besides lysing erythrocytes, purified ShlA haemolysin was also shown to cause lysis of human epithelial cells at nanomolar concentrations (Hertle et al., 1999). _P. aeruginosa_ secretes several factors that have the potential to facilitate the acquisition of haem from exogenous sources. A heat-labile haemolysin, phospholipase C, was purified from _P. aeruginosa_ culture supernatants (Berka & Vasil, 1982) and the corresponding gene, _plcH_, was subsequently cloned (Pritchard & Vasil, 1986). In addition, _P. aeruginosa_ secretes a heat-stable glycolipid haemolysin composed of rhamnose and β-hydroxydecanoate; the genes required for the production of these rhamnolipids are regulated by quorum sensing and iron starvation (Ochsner et al., 1994; Ochsner & Reiser, 1995). Furthermore, iron depletion activates the production of exotoxin A, which has a broad cytotoxic activity toward eukaryotic cells (Vasil et al., 1977). Lysis of host cells makes wide sources of haem and free iron accessible for _P. aeruginosa_, especially in concert with extracellular proteases that degrade the host haem-containing proteins and siderophores that immediately scavenge free iron (Wolz et al., 1994).

METHODS

Strains, media and growth conditions. The strains and plasmids used in this study are shown in Table 1. Luria broth was used for strain maintenance. The low-iron medium was tryptic soy broth treated with Chelex 100 Resin (Bio-Rad), dialysed, and supplemented with 1% (w/v) glycero and 50 mM glutamate; 50 µg FeCl₃ ml⁻¹ was also added for high-iron medium (Prince et al., 1993). For growth-stimulation experiments, _P. aeruginosa_ wild-type and mutant strains were grown for 8 h at 37°C in Chelex-treated M9 medium containing 0.2% glucose and 0.1 mM dipyridyl (Sigma) as a non-metabolizable iron chelator. The cultures were diluted to 10⁻⁵–10⁻⁶ cells ml⁻¹, and 100 µl of the diluted cells were mixed with 3 ml Chelex-treated M9 medium, 0.2% glucose, 0.8%
Table 1. Strains and plasmids

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Relevant characteristics</th>
<th>Source/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAO1 (ATCC 15692)</td>
<td>Prototroph</td>
<td>Holloway et al. (1979)</td>
</tr>
<tr>
<td>ΔphuR</td>
<td>PAO1 with 0–4 kb of phuR replaced by Gm<sup>R</sup> cassette</td>
<td>This study</td>
</tr>
<tr>
<td>ΔphuSTUV</td>
<td>PAO1 with 2–4 kb of the phuSTUV operon replaced by Gm<sup>R</sup> cassette</td>
<td>This study</td>
</tr>
<tr>
<td>ΔphuW</td>
<td>PAO1 with a 0–2 kb of phuW replaced by Gm<sup>R</sup> cassette</td>
<td>This study</td>
</tr>
<tr>
<td>Δphu-R1R2</td>
<td>PAO1 with 0–3 kb of R1/R2 replaced by Gm<sup>R</sup> cassette</td>
<td>This study</td>
</tr>
<tr>
<td>ΔhasR</td>
<td>PAO1 with 1–5 kb of hasR replaced by Tc<sup>R</sup> cassette</td>
<td>This study</td>
</tr>
<tr>
<td>ΔphuR ΔhasR</td>
<td>PAO1 with 0–4 kb of phuR replaced by Gm<sup>R</sup> cassette and 1–5 kb of hasR replaced by Tc<sup>R</sup> cassette</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>bsd<sup>R</sup> recA lacZYA Δ80 lacZΔM15</td>
<td>Boyer & Roulland-Dussoix (1969)</td>
</tr>
<tr>
<td>HB101</td>
<td>bsd<sup>R</sup> recA proA lacY</td>
<td>Novagen</td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>High-stringency T7 expression host, bsd<sup>R</sup> DE3</td>
<td>Novagen</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBluescript SK/KS</td>
<td>Amp<sup>R</sup>, lac<sup>Z</sup>, T<sup>7</sup>; cloning vector</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pCRII-2.1</td>
<td>Amp<sup>R</sup> Km<sup>R</sup>; PCR cloning vector</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pETW999</td>
<td>pET23a containing phuW under P<sub>E</sub> control</td>
<td>This work</td>
</tr>
<tr>
<td>pHAS1</td>
<td>Translational hasR:lacZ fusion</td>
<td>This work</td>
</tr>
<tr>
<td>pHAS2</td>
<td>Translational hasA:lacZ fusion</td>
<td>This work</td>
</tr>
<tr>
<td>pHAS3</td>
<td>Translational hasR:hasA*:lacZ fusion</td>
<td>This work</td>
</tr>
<tr>
<td>pHAS3051</td>
<td>pUCP19 containing hasR as a 3–05 kb PCR fragment under P<sub>lac</sub> control</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU1</td>
<td>pUCP19 containing phuR as a 6 kb EcoRV fragment under P<sub>lac</sub> control</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU2</td>
<td>pUCP19 containing phuSTUV as a 5–5 kb SphI fragment under P<sub>lac</sub> control</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU3</td>
<td>pUCP19 containing phuW as a 1–3 kb Stud fragment under P<sub>lac</sub> control</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU359−</td>
<td>pBluescript SK containing a 359 bp Xhol–Stud phuV fragment in the Xhol/EcoRV sites</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU359+</td>
<td>pBluescript KS containing a 359 bp Xhol–Stud phuV fragment in the Xhol/EcoRV sites</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU-R1</td>
<td>pCRII-2.1 containing a 346 bp R1 fragment</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU699-R</td>
<td>pBluescript SK + containing a 699 bp HincII–EcoRV fragment of phuR/phuS in anti-phuR orientation relative to the T7 promoter</td>
<td>This work</td>
</tr>
<tr>
<td>pPHU699-S</td>
<td>pBluescript SK + containing a 699 bp HincII–EcoRV fragment of phuR/phuS in anti-phuS orientation relative to the T7 promoter</td>
<td>This work</td>
</tr>
<tr>
<td>pPZ20</td>
<td>Amp<sup>R</sup>, ‘lac<sup>Z</sup>’-based promoter probe vector</td>
<td>Schweizer (1991a)</td>
</tr>
<tr>
<td>pRK2013</td>
<td>Km<sup>R</sup> conjugation helper plasmid</td>
<td>Figurski & Helinski (1979)</td>
</tr>
<tr>
<td>pSUP203</td>
<td>Amp<sup>R</sup> Tc<sup>R</sup> Cm<sup>R</sup> mob, suicide vector</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>pUCP19</td>
<td>Amp<sup>R</sup> P<sub>lac</sub> broad-host-range cloning and expression vector</td>
<td>Schweizer (1991b)</td>
</tr>
</tbody>
</table>

Gm^R, gentamicin resistance; Tc^R, tetracycline resistance; Amp^R, ampicillin resistance; Km^R, kanamycin resistance; Cm^R, chloramphenicol resistance.

Low-melting-point agarose (Sigma) at 37 °C and poured onto Chelex-treated M9 medium, 0.2% glucose, 1.5% agarose plates containing 100 μg EDDHA [ethylenediamine di(o-hydroxyphenylacetic acid)] ml^{−1} (Sigma) as an iron chelator.

Sterile filter disks were placed on top of the plates and spotted with 15 μl 5 mg ml^{−1} solutions of bovine haemin chloride in 10 mM NaOH, bovine haemoglobin in PBS, bovine lactoferrin in PBS or holo-transferrin in PBS; all these compounds were...
from Sigma. Antibiotics were used at the following concentrations: for *E. coli*, 100 µg ampicillin ml⁻¹, 15 µg gentamicin ml⁻¹, 100 µg kanamycin ml⁻¹ and 15 µg tetracycline ml⁻¹ were used; for *P. aeruginosa*, 750 µg carbenicillin ml⁻¹, 75 µg gentamicin ml⁻¹ and 150 µg tetracycline ml⁻¹ were used.

General genetic methods. PCR was performed using *Taq* polymerase (BRL) and appropriate custom-made primers (BRL) in a Perkin Elmer Cetus thermal cycler, with 30 cycles of denaturing (1 min, 94 °C), annealing (1 min, 54 °C) and extending (1 min, 72 °C). The PCR products were purified in preparative agarose gels and cloned into pCRII-2.1 (Invitrogen). DNA sequencing of the *phu* genes and of all cloned PCR products was performed with Sequenase 2.0 (United States Biochemical) and M13 primers or custom-made 18-mer oligonucleotides. Published procedures were followed for Southern blot analysis (Sambrook *et al.*., 1989) and colony hybridization (Forster *et al.*, 1990).

RNase protection analyses were performed using the Riboprobe system (Promega). Radiolabelled riboprobes from suitable cloned DNA fragments were generated by run-off transcription from the T7 promoter of linearized plasmids using T7 RNA polymerase and [α-³²P]CTP as described in detail elsewhere (Barton *et al.*, 1996). A 699 bp EcoRV–HincII fragment containing the *phuR–phuS* divergent promoters with the first 195 bp of the *phuR* coding region and the first 314 bp of the *phuS* coding region was cloned in either orientation into the EcoRV site of pBluescript SK+, resulting in plasmids pPHU699-R and pPHU699-S, which served to generate riboprobes antisense to *phuR* and to *phuS*, respectively. Plasmid pPHU-R1 contained a 346 bp PCR fragment obtained with primers 5'–GATCGAGCGATGACCCG-3' and 5'–GACAA-GCGGGTTCTCATTC-3' and was used to generate a riboprobe to detect T1 and T2 transcripts. pPHU359 and pPHU359+ were constructed by cloning an internal XhoI–SphI fragment into pBluescript SK (XhoI–EcoRV) and into pBluescript KS (XhoI–EcoRV), and served to generate riboprobes for the detection of sense and antisense *phu* transcripts.

Isolation of the *phu* and *has* loci. The repeats R1 and R2 that were originally isolated in a cycle-selection procedure for Fur targets (Ochsner & Vasil, 1996) were used as probes to obtain overlapping larger DNA clones by Southern blot analysis followed by colony hybridization. First, a 0.85 kb Ddel fragment containing the 3' end of repeat R2 was cloned and used as a probe to isolate a 1.3 kb SmaI fragment containing the *phuW* gene, which was cloned behind the lac promoter in pUCP19, resulting in pPHU3. Using pPHU as a probe, a 5.5 kb *Spb1* fragment harbouring the *phuv*, *phuU*, *phuT* and *phuS* genes, and the 5' portion of *phuR* was isolated and cloned into pUCP19, yielding pPHU2. Subsequently, a 6 kb EcoRV fragment containing the entire *phuR* gene was cloned into pUCP19, yielding pPHU1. The DNA sequence of a total 7.7 kb portion of the *phu* locus was determined. The DNA sequence of the *hasR* gene was pulled out from the unfinished *P. aeruginosa* genome project (Pathogenesis Corporation) using a tblastn search with the *Ser. marcescens* HasR amino acid sequence. The *P. aeruginosa* HasR homologue was subsequently isolated by PCR using the primers 5'–CTTGGATGTG-CAGGCGATAGA-3' and 5'–aagcCCTGCTGACAAACTCCAA-3' (lower-case letters indicate a non-complementary HindIII site). The 3.05 kb PCR product was cloned into pCRII-2.1, partially sequenced and directionally cloned as an EcoRI–HindIII fragment into pUCP19, yielding pHAS3051. Plasmid pETW999 contained a 999 bp PCR fragment of the *phuv* gene and was generated with the primers 5'–GCATGCGATTGGCGCTG-3' (lower-case letters indicate a non-complementary Ndel site) and 5'–AGATTATCTTCT-CATCGAGCT–3'. The *phuv* gene was then directionally cloned as an Ndel–HindIII fragment from pCRII-2.1 into pET23a. In the resulting plasmid, pETW999, *phuv* was under T7 promoter control and also translational initiation signals were plasmid derived.

Generation of mutant strains affected in the *phu* and *has* loci. Specific deletion mutants were obtained by replacing portions of the relevant genes with a gentamicin-resistance (Gm⁸) or a tetracycline-resistance (Tc⁸) cassette. The mobilizable suicide plasmid pSUP203 (Simon *et al.*, 1983) containing the selection marker with suitable cloned DNA flanking regions served as the donor plasmid and *E. coli* HB101/pRK2013 (Figurski & Helinski, 1979) served as the helper strain in triparental matings using *P. aeruginosa* PAO1 as the recipient, as described in detail elsewhere (Ochsner *et al.*, 1996). The successful gene replacement in the transconjugants was verified by Southern blot analysis. In brief, the deletion mutants created for this study had the following genotypes. In the Δ*phaR* mutant, an internal 0.4 kb HincII fragment of the 5' part of the *phaR* gene was replaced with a Gm⁸ cassette. Similarly, the Δ*phaSTUV* mutant had a replacement of a 2.4 kb SphI fragment covering the 3' end of *phaS*, the entire coding regions of *phaT* and *phaU* and the 5' half of *phaU* with a Gm⁸ cassette. The Δ*phaW* mutant harboured a 0.22 kb Msil–Spb1 deletion in the 3' portion of the *phaW* gene and carried a Gm⁸ cassette in that location. Mutant Δ*phaR* R1R2 had a 0.3 kb *Nhel–DdeI* fragment replaced with a Gm⁸ cassette, thereby deleting the entire R1 repeat and the 5' portion of the R2 repeat, including the promoter located within R2. In the Δ*hasR* mutant, two adjacent internal *Smal* fragments of 0.45 kb and 1.05 kb of the *hasR* gene were deleted and replaced with a Tc⁸ cassette. The double mutant Δ*phaR* Δ*hasR* was obtained by deleting the *hasR* gene in the Δ*phaR* background using the same donor plasmid constructs as for the generation of the single mutants.

Translational fusions to the lacZ reporter gene. pHAS1, pHAS2 and pHAS3, containing translational fusions to the *lacZ* reporter gene, were constructed as follows. A 0.32 kb PCR product was generated using the primers 5'–CTTGGATGTG-CAGGCGATAGA-3' and 5'–aagcCCTGCTGACAAACTCCAA-3' (lower-case letters indicate a non-complementary HindIII site), cloned into pCRII-2.1, sequenced and directionally cloned as an EcoRI–HindIII fragment into pPY220 (Schweizer, 1991a), resulting in pHAS1 harbouring a *hasR::lacZ* fusion. Similarly, a 0.23 kb PCR product was generated with the primers 5'–TGAGGCTGTAACCTGA-CCTGC-3' and 5'–aagcCCTGCTGACAAACTCCAA-3' (includes HindIII site), and yielded pHAS2 harbouring a *hasA::lacZ* fusion. A 0.29 kb PCR fragment comprising the *hasR* promoter without the *hasR* translational signals was obtained with the primers 5'–CTTGGATGTG-CAGGCGATAGA-TCAGC-3' and 5'–aagcCCTGCTGACAAACTCCAA-3' (includes HindIII site) and cloned into the EcoRI site of pHAS2. In the resulting plasmid, pHAS3, the *hasR* promoter fragment was upstream of the *hasA* promoter and had the same orientation.

Biochemical procedures. Outer-membrane proteins were isolated by EDTA/lysozyme treatment of osmotically stabilized cells followed by differential centrifugation, as published elsewhere (Ochsner *et al.*, 1999). The proteins in the crude outer-membrane preparation were separated on an 8 % SDS-polyacrylamide gel and stained with Coomassie blue. High-molecular-mass proteins and the Benchmark ladder (BRL) were used as size standards. The Bradford assay (Bio-Rad)
was used to measure protein concentrations. β-Galactosidase activities were determined spectrophotometrically using ONPG (Sigma) as the substrate with 1 U corresponding to a substrate conversion of 1 µmol min⁻¹. The β-galactosidase activities given as U mg⁻¹ were normalized to the amount of soluble protein.

RESULTS
Isolation of the *P. aeruginosa* haem uptake (phu) locus
A large number of *P. aeruginosa* iron-regulated genes (pigs) have been previously identified in a cycle-selection procedure based on the binding of the Fur protein to DNA sequences containing a ‘Fur box’ (Ochsner & Vasil, 1996). Two isolates, *pig9* and *pig20*, mapped to the same region at 0–9–6 ± 6 min on the *P. aeruginosa* chromosome by PFGE and resulted in identical Southern hybridization patterns (data not shown). Further DNA sequence analysis indicated that *pig9* and *pig20* were located adjacent to each other and contained 154 bp repeat sequences (R1 and R2) with 99% nucleotide sequence identity which were spaced 58 bp apart (Fig. 1a). Both repeat elements contained a strong Fur box matching 15 of the 19 residues of the conserved GATAATGATAATCATTATC Fur-binding consensus sequence (Fig. 1a), which resulted in DNaseI footprints that covered an area of 30 bp each (data not shown). Putative –35 and –10 promoter elements overlapping these Fur boxes correlated well with the mapped RNA
Table 2. Characterization of the predicted proteins encoded in the *P. aeruginosa* haem-uptake (*phu*) locus

<table>
<thead>
<tr>
<th>Protein</th>
<th>Cellular location*</th>
<th>Molecular mass (Da)</th>
<th>pI</th>
<th>Homologues (% identity)</th>
<th>Putative function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhuR</td>
<td>Outer membrane</td>
<td>84600</td>
<td>5.7</td>
<td>Y. enterocolitica HemR (24)</td>
<td>Haemin receptor</td>
</tr>
<tr>
<td>PhuS</td>
<td>Periplasm</td>
<td>39000</td>
<td>5.4</td>
<td>Y. enterocolitica HemS (39)</td>
<td>Haemin degradation</td>
</tr>
<tr>
<td>PhuT</td>
<td>Periplasm</td>
<td>31100</td>
<td>7.7</td>
<td>Y. enterocolitica HemT (31)</td>
<td>Haemin binding</td>
</tr>
<tr>
<td>PhuU</td>
<td>Inner membrane</td>
<td>33600</td>
<td>9.7</td>
<td>Y. enterocolitica HemU (48)</td>
<td>Haemin permease</td>
</tr>
<tr>
<td>PhuV</td>
<td>Inner membrane</td>
<td>27500</td>
<td>6.2</td>
<td>Y. enterocolitica HemV (45)</td>
<td>ATPase component</td>
</tr>
<tr>
<td>PhuW</td>
<td>Inner membrane</td>
<td>32900</td>
<td>7.3</td>
<td>C. jejuni orfW product (27)</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

*While the cellular location was determined experimentally for PhuR, the typical location of bacterial homologues of the ABC transport components is indicated.

start sites of strong iron-regulated transcripts originating within R1 and R2 (Fig. 1a). Possible roles of the R1 and R2 repeats are discussed below. The end of an iron-regulated transcript in the opposite direction was detected immediately downstream of repeat R2 (Fig. 1a). A 5.5 kb *SphI* DNA fragment containing this region and an overlapping 6 kb *EcoRV* DNA fragment extending even further downstream were cloned into pUCP19, yielding pPHU2 and pPHU1, respectively (Fig. 1a). The DNA sequence of pPHU2 and of parts of pPHU1 was determined and a 7072 bp portion has been deposited in GenBank (accession no. AF055999).

Characterization of the PhuR and HasR outer-membrane receptors and of an ABC transporter encoded by *phuSTUVW*

The *phu* locus consisted of six ORFs, as depicted in Fig. 1(a). The characterization of the encoded proteins, such as biochemical properties, presumed cellular locations and homologues to other bacterial proteins, is summarized in Table 2. The *phuR* gene encoded an 846 kDa protein with a 25 aa signal sequence typical for exported proteins; the predicted size of the mature PhuR protein was 82 kDa (Table 2). The amino acid sequence of the PhuR protein had a high degree of overall identity to the family of outer-membrane receptors for haemin and haemoglobin, such as *V. cholerae* HutA (28%) (Henderson & Payne, 1994), enterohaemorrhagic *E. coli* O157:H7 ChuA (25%) (Torres & Payne, 1997), *Shi. dysenteriae* ShuA (25%) (Mills & Payne, 1997; Wyckoff et al., 1998), *Y. enterocolitica* HemR (24%) (Stojilovic & Hantke, 1992) and *Y. pestis* HmuR (24%) (Hornung et al., 1996). The latter two are encoded in an operon with the small *hemP* and *hmuP* genes, respectively; however, the phu locus lacked an ORF encoding a homologue of these hypothetical factors. PhHR was isolated from *P. fluorescens* and had 64% amino acid sequence identity with *P. aeruginosa* PhuR. These proteins appear to form a subfamily of haem receptors and have less homology to the members of the second subfamily which contains the *Ser. marcescens* HasR receptor (Ghigo et al., 1997). A HasR homologue was isolated from *P. aeruginosa* using the DNA sequence information of the unfinished *P. aeruginosa* genome project (Pathogenesis Corporation) and exhibited 58% amino acid sequence identity to *Ser. marcescens* HasR.

A phylogenetic tree of selected receptors with the relative evolutionary distances given as percentages is shown in Fig. 1(b).

The PhuR protein contained the amino acid sequence motifs conserved among TonB-dependent receptors, previously designated regions I, II and III (Bitter et al., 1991). Region I is the ‘TonB box’ with the consensus sequence (D/E/T) .. V.A(A/S) and is typically located near the N terminus of the protein (Ankenbauer & Quan, 1994; Bitter et al., 1991). A somewhat weak ‘TonB box’-like motif, STVSVQTR, was located at amino acid positions 25–32 of the mature PhuR protein. Region II has the consensus sequence (F/I/L/M/V) ... (I/L/V) . NL. (D/N)(K/R). Y and is typically located in the C-terminal portion of the receptor protein. In PhuR, the motif LNAGLYLTDKKY, completely matching this consensus, was detected at positions 686–698 of the mature PhuR sequence. Region III, typically located at a distance of roughly 100 aa from region I, is characterized by the consensus sequence R.(V/I)/(D/E)/(I/V)/(I/V/L).-(K/R)../G.(S/A)//G...G.(G/A). (V/I) and the matching pattern RVEILRGPASALYGSNAAGAV was found 110 aa C-terminal from region I. The finding of these three characteristic elements and the presence of an N-terminal signal sequence suggested that the PhuR protein was an outer-membrane receptor. Outer-membrane-protein profiles from iron-starved PAO1 wild-type and from ΔphuR or ΔhasR mutant strains were compared (Fig. 2a). SDS-PAGE analysis revealed the lack of a roughly 80 kDa protein in the ΔphuR mutant, which was in good agreement with the predicted size of 82 kDa for the mature PhuR receptor. A prominent protein band at that position was detected upon genetic complementation of the ΔphuR mutant with pPHU1, which contains a constitutively expressed functional copy of the *phuR* gene. Similarly, the second *P. aeruginosa* haem receptor, HasR, was detected by SDS-PAGE analysis of outer-membrane-protein preparations. In PAO1 wild-type extracts, a faint protein band was present at roughly 94 kDa, which was the...
labelling of PhuW in *E. coli* using plasmid pETW999 resulted in the detection of putative PhuW protein. A double band at roughly 34 and 32 kDa was present, which corresponded very well to the size of the unprocessed and processed forms of PhuW, respectively (Fig. 2b).

Utilization of haem and haemoglobin by *P. aeruginosa* wild-type and by mutants affected in the *phu* and *hasR* loci

The proteins encoded by the *phu* genes exhibited a high degree of identity to the factors involved in haem uptake in other micro-organisms. However, their role in iron acquisition from haem-containing compounds remained to be formally demonstrated, since different iron-uptake systems were often found to share a similar genetic organization and had substantial homologies among different systems. In particular, the known outer-membrane receptors for iron chelates such as haem, haemoglobin, transferrin, lactoferrin, ferrisiderophores and ferric citrate appear to be highly conserved among Gram-negative bacteria in spite of their distinct specificities.

The *phu* locus was not essential for *P. aeruginosa* and separate deletions in the *phuR* gene, in the *phuSTUV* operon, in the *phuW* gene and in the repeat elements *phu-R1R2* were constructed (Fig. 1a). Growth curves and pigmentation of these mutant strains were indistinguishable from PAO1 wild-type cells in low-iron tryptic soy broth or M9 medium. Iron-starved wild-type and mutant cells were placed on iron-restricted M9 agar and scored for growth stimulation around filter disks onto which various iron-containing compounds have been spotted. In this assay, 10^4–10^5 c.f.u. were mixed with top agarose and pored onto the iron-restricted agar plates. This method allowed qualitative growth monitoring by colony counting and discriminating between slow-growing small colonies still embedded in the top agarose and faster-growing colonies that had reached the plate surface. While all strains grew equally well with exogenously supplied transferrin or lactoferrin (data not shown), significant growth stimulation differences were observed when haemin or haemoglobin was used as the sole iron source (Fig. 3). Both a ΔphuR and a ΔphuSTUV mutant were markedly impaired for utilization of either haem or haemoglobin and formed only very few small colonies around the disks. Growth of these mutants was partially restored by supplying functional copies of the *phuR* gene or the *phuSTUV* operon in *trans* on the plasmids pPHU1 and pPHU2, respectively (Fig. 3). A ΔphuW mutant also exhibited reduced growth zones, although the effect was less dramatic. The Δphu-R1R2 mutant strain lacking the tandem repeats downstream of the *phuW* gene was only mildly affected.

The faint yet detectable growth of the ΔphuR and the ΔphuSTUV mutants with haemin or haemoglobin as the sole iron source suggested the existence of a backup
system for the acquisition of iron from these compounds. In fact, the extracellular haem-binding protein HasA, a so-called haemophore, has been recently described in *P. aeruginosa*, suggesting the presence of a haem-acquisition system analogous to the *Ser. marcescens* system (Letoffé *et al.*, 1998, 1999). Immediately upstream of, and contained in, an operon with the hasA gene, we identified the hasR gene, which encoded a second putative haem receptor. Downstream of hasA was a three-gene operon (data not shown) encoding factors with high homology to the *Ser. marcescens* HasD, HasE and HasF ABC-exporter proteins required for HasA secretion in *S. marcescens* (Binet & Wandersman, 1996; Ghigo *et al.*, 1997). A ΔhasR mutant was affected in the utilization of haemin and haemoglobin as severely as the ΔphuR mutant and a ΔphuR ΔhasR double mutant did not grow significantly under these conditions (Fig. 3). Attempts to complement the ΔhasR mutant with pHAS3051, containing a functional hasR gene, failed, presumably due to polar effects on the downstream genes as discussed below.

Fur-mediated iron regulation of the phuR gene and of the phuSTUVW operon

Expression of *phuR* and *phuS*, as measured with translational fusions to the *lacZ* reporter gene, occurred preferentially under iron-limiting conditions and was repressed 12-fold and 25-fold, respectively, in high-iron media (data not shown). Two tandem Fur boxes spaced 5 bp apart were detected in the intergenic region between the divergently transcribed *phuR* and *phuS* genes (Fig. 4a). Fur box 1 had the sequence GATAATTATTTG-CATTAGC, which matched the Fur-binding consensus sequence in 15 of 19 residues. Fur box 2 was less obvious and its sequence CAAAACGCATATCTGAATC...
Haem uptake in *Pseudomonas aeruginosa*

Fig. 4. Coregulation of *phuR* and *phuS* by Fur. (a) Map of a 0.7 kb EcoRV–HincII DNA fragment containing the *phuR–phuS* intergenic region. The 5’ portions of the *phuR* and *phuS* genes, their promoters, Fur boxes and transcriptional- and translational-start sites are shown. Riboprobes to detect *phuR* and *phuS* transcripts were generated from plasmids pPHU699-R and pPHU699-S, respectively, as indicated by dashed arrows. Also shown is the DNA sequence between the divergent *phuR* and *phuS* start codons. The location of the two adjacent Fur boxes is indicated by the boxed sequences, and the areas protected by Fur in DNase I footprint analyses are emphasized with asterisks (primary Fur binding site) and primes (secondary Fur binding site). (b) RNase protection of *phuR* and *phuS* transcripts. RNA was isolated from PAO1 grown under low (−) or high (+) iron conditions for 12 h at 37°C. Normalized samples (20 µg) were hybridized with excess anti-*phuR* riboprobe generated from pPHU699-R or anti-*phuS* riboprobe made from pPHU699-S. The sizes of the protected portions of *phuR* and *phuS* probes were estimated by comparison with the bands of radiolabelled RNA ladder on a 5% polyacrylamide/8 M urea gel, to allow the rough mapping of the corresponding transcriptional-start sites.

matched the consensus in only 11 of 19 residues. DNase I footprint reactions were carried out to verify the binding of purified Fur to the *phuR–phuS* intergenic region (data not shown). A Fur concentration of 30 nM resulted in a primary footprint of 34 bp which covered the stronger Fur box 1. At Fur concentrations of 100 nM or higher, an additional 17 bp were protected; this extended footprint also covered the weaker Fur box 2 (Fig. 4a). The transcriptional-start sites for *phuR* and *phuS* were roughly mapped by RNase-protection analysis. Plasmids pPHU699-R and pPHU699-S containing a 699 bp *EcoRV–HincII* *phuS–phuR* DNA fragment cloned in either direction with respect to the T7 promoter served to generate riboprobes specific for *phuR* and *phuS* (Fig. 4a). Transcripts of both *phuR* and *phuS* were detected in RNA isolated from cells grown to stationary phase in low-iron media, while transcripts were absent in RNA from cells cultivated under high-iron conditions (Fig. 4b). The *phuR*-specific riboprobe protected a 245 ± 5 nt portion of *phuR* mRNA, and the *phuS*-specific riboprobe protected a 380 ± 10 nt portion of the *phuS* transcript (Fig. 4b). These experimentally determined transcriptional-start sites correlated very well with the hypothetical start sites obtained through a promoter-prediction program and are indicated in Fig. 4(a). The *phuR* and *phuS* transcription-initiation sites were located 50 and 54 nt upstream of the *phuR* and *phuS* translation-initiation sites. Potential −35 promoter elements in the proper distance of the mRNA start sites were located within Fur box 1, leaving only 3 bp between the −35(*phuS*) and −35(*phuR*) elements (Fig. 4a). Additional riboprobes specific for *phuV* and *phuW* transcripts resulted in hybridization patterns identical to the pattern obtained with the *phuS*-specific probe as far as growth phase and iron-dependent expression were concerned (data not shown). This finding, together with the tight spacing of the genes in the *phuSTUVW* operon and the lack of any potential promoter besides the *phuS* operon.
promoter, strongly suggested that these five genes were indeed organized in an operon. Taken together, it was evident that the phuR gene and the phuSTUVW operon were co-regulated by Fur through binding to the strong Fur box 1 that overlapped their promoters.

Mapping of Fur-regulated transcripts antisense to phuSTUVW

The tandem repeats R1 and R2 located downstream of the phuSTUVW operon were 154 bp long and 58 bp apart. Each repeat contained a strong Fur-regulated promoter at its 5' end, and a stem–loop structure of a calculated $\Delta G = -20$ kcal mol$^{-1}$ near its 3' end (Fig. 5a). The transcripts T1 and T2 driven from the promoters P1 and P2 were detected by RNase protection analysis using a 346 nt riboprobe spanning R1, generated by pPHU-R1 (Fig. 5a). The most prominent band of a protected RNA species was at 111 ± 3 nt, followed by a weaker signal at 184 ± 5 nt: both protected fragments were highly iron regulated (Fig. 5b, lanes 1 and 2). The protected 111 nt fragment corresponded to the expected sizes of T1 and T2 from their transcriptional-start site to the stem–loop structure (Fig. 5a), indicating that the stem–loop within the repeats R1 and R2 acted as transcriptional terminator. The protected 184 nt fragment corresponded to the expected size of a longer T1 transcript from its start site to the start of the riboprobe (Fig. 5a), providing evidence that transcriptional termination at the stem–loop was only partial and that a substantial amount of T1 transcript extended beyond that site. A riboprobe from pPHU359+ consisting of the plus-strand of a 359 bp internal phuV fragment was completely protected, indicating that the T1 and/or T2 transcripts extended at least 1-6 kb further: that is, through the phuW and phuV genes (Fig. 5b, lanes 3 and 4). However, that protection pattern did not show any level of iron regulation. In contrast, the phuV message detected with the minus-strand of phuV as a riboprobe from pPHU359− showed iron repression as expected (Fig. 5b, lanes 5 and 6). Clearly, the T1 and/or T2 transcripts were antisense relative to the phuSTUVW polycistronic mRNA. However, the T1 or T2 transcripts lacked translational-initiation signals and did not encode any detectable protein when the relevant DNA portion was subjected to a T7 expression and labelling system in E. coli (data not shown). A possible regulatory role of the T1 and T2

Fig. 5. Characterization of anti-phuSTUVW transcripts. (a) Map of the relevant portion of the phu locus. The two 154 bp repeats R1 and R2 (black boxes) each contained a Fur-binding site (white boxes) and a stem–loop structure (hairpin). Transcripts T1 and T2 were antisense to the phuSTUVW mRNA and partially terminated at the stem–loop structures (thick arrows), but a fraction of T1 and T2 transcripts extended beyond these sites, representing anti-phuSTUVW RNAs (thin arrows). The R1 riboprobe (dashed arrow) detected the indicated two major protected fragments of 111 nt and 184 nt, respectively. (b) RNase protection analysis. RNA was isolated from PAO1 grown under low (–Fe) or high (+Fe) iron conditions as indicated in lanes 1–6, or in low-iron medium containing 25 µg haemin ml$^{-1}$ (+haem) as indicated in lanes 7–10. The arrows point to the signals of the relevant transcripts. Lanes 1 and 2, T1 and T2 RNA; lanes 3 and 4, anti-phuV RNA (T1 and T2 extended transcripts); lanes 5 and 6, phuV mRNA; lanes 7 and 8, T1 and T2 RNA; lanes 9 and 10, phuS mRNA.
transcripts in response to haem was explored, following a model in which expression of T1 and T2 RNAs would be haem repressible through Fur, possibly resulting in increased phuSTUVW translation in the presence of haem. RNA from PAO1 grown in the absence or presence of haem was analysed with riboprobes to detect T1 and T2 RNA and phuS mRNA. Interestingly, the signal at 184 nt representing the longer T1 transcript was greatly reduced in the presence of haem (Fig. 5b, lanes 7 and 8). However, also the phuS mRNA signal was weaker when haem was present (Fig. 5b, lanes 9 and 10). PhuS–lacZ activity was also reduced several-fold (data not shown), suggesting that haem was partially relieving the iron starvation.

Fur-mediated iron regulation of the hasR gene encoding a second haem receptor

Upstream of the hasA gene encoding an extracellular haemophore (Létoffé et al., 1998) we identified the hasR gene which encoded a second haem repressor of *P. aeruginosa*. The 85 bp region between the stop codon of the hasR gene and the start codon of the hasA gene had a lower G+C content, indicating a potential promoter, although any obvious strong promoter characteristics were undetectable. Also, the hasR–hasA intergenic region contained a stem–loop structure (−25 kcal mol−1) as a potential transcriptional terminator for hasR. To address the question whether hasR and hasA form an operon, translational fusions of the putative hasA promoter in the absence or in the presence of the upstream hasR promoter to the lacZ reporter gene were constructed, along with a hasR–lacZ fusion (Fig. 6a). The expression of hasR was found to be strongly iron regulated, and hasA gene expression followed that pattern when the upstream hasR promoter and the intergenic stem–loop motif were present, suggesting that hasR and hasA were co-transcribed. In the absence of the hasR promoter, hasA expression was low and constitutive, indicating a separate but very weak promoter for hasA (Fig. 6b). A putative Fur box that matched the Fur-binding consensus sequence in 13 of 19 bp was detected in the hasR promoter region, and a DNase I footprint of 29 bp covering that Fur box was obtained (data not shown).

DISCUSSION

Two distinct haem- and haemoglobin-uptake systems in *P. aeruginosa*

Haem and haemoglobin acquisition has been described for a growing number of Gram-negative microorganisms. Here we present evidence that *P. aeruginosa* has two distinct haem-uptake systems which enable this opportunistic pathogen to utilize iron from these sources very efficiently. An extracellular protein, HasA, which acts as a haemophore, has recently been isolated from *P. aeruginosa* through immuno-cross-reaction with polyclonal antibodies against HasA from *Ser. marcescens* (Létoffé et al., 1998). In that study, the addition of anti-HasA antibodies inhibited the use of haemoglobin iron at concentrations lower than 10−6 M. However, *P. aeruginosa* could use free haem iron at a higher concentration (10−3 M) and growth inhibition by the specific anti-HasA serum was only partial. These data suggested that the haemophore-dependent haem-uptake system was the unique *P. aeruginosa* high-affinity transport system for haemoglobin-bound haem and that a separate lower-affinity haem-acquistion system existed. The phu locus described here is unrelated to the has locus and encodes an alternative haem-uptake pathway. The six factors encoded by the phu genes show high similarity to the haem-uptake components of *Y. enterocolitica* and *Y. pestis* in terms of genetic organization and protein identities, while the factors encoded by the has system are more closely related to the homologous system in *Ser. marcescens*. To our knowledge, *P. aeruginosa* is now the second micro-organism besides *H. influenzae* type b (Cope et al., 1995; Hanson et al., 1992) known to have two distinct haem-acquisition systems. This finding further stresses the
importance of iron for the preferred aerobic growth of *P. aeruginosa* and may indicate the importance of iron and haem in pathogenesis.

Factors encoded in the phu and has loci

Most of the systems involved in the uptake of iron chelates consist of an outer-membrane receptor and an ABC transport system. In *P. aeruginosa* the phu-encoded ABC transport system consisted of five proteins, while only four proteins are involved in the homologous haem-uptake systems *hem* of *Y. enterocolitica* (Stojilkovic & Hantke, 1994), *hmU* of *Y. pestis* (Hornung et al., 1996) and in the *fec* ferric dicitrate uptake machinery of *E. coli* (Staudenmaier et al., 1989). In contrast, the *Shi. dysenteriae shu* haem-transport locus consists of seven genes, one of which is a pseudogene and two others do not have any known function (Wyckoff et al., 1998). The cellular locations and functions of the components have been studied in some of these systems. The receptors, including PhuR, contain a typical signal sequence, a TonB box, and are found in the outer membrane. The PhuS component of the uptake system exhibited striking homology to the HemS, HmuS, FecB and ShuS components of the ABC transporters mentioned above, for one of which (FecB) a periplasmic location has been demonstrated (Staudenmaier et al., 1989). HemS has been suggested to have haemin-binding activity and to prevent the accumulation of haem to toxic levels in the cell (Stojilkovic & Hantke, 1994). However, its homologue in *Shi. dysenteriae*, ShuS, was not required for protection against haem toxicity (Wyckoff et al., 1998). PhuT and the homologues HemT, HmuT and ShuT are assumed to be localized in the periplasm, although this has not been directly demonstrated. The similarities of PhuU and PhuV to HemU and HemV suggest that they represent the permease and ATPase required for the haem transport across the inner membrane. Interestingly, an additional factor, the putative inner-membrane-bound PhuW protein encoded by the last gene of the *phuSTUVW* operon, was necessary for optimal efficiency of haem and haemoglobin utilization.

Mutations in the phu or has loci affect haem and haemoglobin utilization

The feeding of various iron-containing compounds to iron-starved *phu* mutant cells clearly indicated that the *phu* locus was required for haem and haemoglobin uptake, whereas the utilization of other iron chelates such as transferrin or lactoferrin was not affected. While the haem-uptake defect was very pronounced in the *ΔphuR* and *ΔphuSTUV* mutants, the *ΔphuW* mutant was still capable of growing quite well compared to the *ΔphuR* and *ΔphuSTUV* mutants with haem as the sole iron source. In agreement with this was the finding that plasmid-borne copies of just the *phuSTUV* genes restored haem utilization to near wild-type levels in the *ΔphuSTUV* mutant in which expression of *phuW* was absent due to a polar effect of the deletion.

Surprisingly, a mutant strain affected in the second haem-receptor gene, *hasR*, did not grow efficiently with either haem or haemoglobin as the iron source in spite of a functional *phu* locus. Haem utilization of the *ΔhasR* mutant was not restored with plasmid-borne copies of the *hasR* gene. As demonstrated by using translational *lacZ* fusions, *hasR* appeared to be the first gene in a Fur-regulated operon with *hasA*. Only low and constitutive expression of the *hasA* gene was detected from a weak *hasA* promoter. This was in good agreement with an earlier observation that the HasA protein accumulated in culture supernatants preferably under iron-limiting conditions (Letoffe et al., 1998). The insertion of a gentamicin-resistance cartridge into the *hasR* gene had thus a predicted negative polar effect on *hasA*, resulting in very low production of HasA protein from its own promoter. Most likely, these low levels of HasA protein impaired efficient haem uptake even in the presence of a functional *phu* locus such as in the *ΔhasR* mutant. Also, the extent of incapacity to grow on haem of the *ΔphuR* and *ΔphuSTUV* mutants was somewhat surprising, since these mutants still harbour a functional *has* locus. It is intriguing to discuss the possibility that the *phu* and the *has* systems may be interdependent and to entertain a model in which the HasA haemophore may use either the PhuR or the HasR receptor for haem delivery to the cell. Although there is no direct experimental evidence for this model at this point, the phenotypes of the mutant strains studied support the hypothesis of such a cross-talk between the two systems. A *ΔphuR ΔhasR* double mutant grew very poorly with haem-containing compounds as the sole iron source, although some small colonies were formed around a disk containing haemoglobin. This remaining growth may be due to the combined action of extracellular proteases and siderophores as an indirect mechanism to acquire haemoglobin.

Regulation of the phu and has systems by Fur

Haem- and haemoglobin-acquisition systems in many bacterial species are directly regulated by Fur. Strong Fur boxes are present in the promoter regions of the *Y. enterocolitica hemRSTUV* operon (14 of 19 matches to the Fur consensus), of the *Y. pestis hmuRSTUV* operon (14 of 19), of the *Ser. marcescens hasR* gene (15 of 19) and of the *Shi. dysenteriae shuA* gene (17 of 19). The *phuR* gene and the *phuSTUV* operon were found to be co-regulated by Fur. Two tandem Fur boxes matching the consensus Fur-binding sequence in 15 of 19 and in 11 of 19 bp were detected and their significance was demonstrated in DNase footprints. The presence of two tandem Fur boxes has been associated with very tight repression of the affected genes. The *P. aeruginosa pvdS* gene encoding a Fur-regulated alternative sigma factor (Ochsner et al., 1996) also harbours two adjacent Fur boxes, resulting in a complete repression of *pvdS* in the presence of iron (H. Barton, unpublished results). The *P. aeruginosa hasR* gene was under direct control of Fur binding to a single weaker Fur box (13 of 19 matches) in the *hasR* promoter region, suggesting that the two
haem-uptake systems of *P. aeruginosa* may be derepressed sequentially upon encountering iron limitation.

The role of the two Fur-regulated antisense *phuSTUVW* RNAs originating at the tandem repeats R1 and R2 downstream of the *phuSTUVW* operon was explored in terms of a regulatory mechanism in response to haem. Since haem binding of Fur has been observed *in vitro* for *E. coli* Fur (Smith et al., 1996), a model was tested in which the transcripts T1 and T2 would be repressed by haem. However, the addition of haem to otherwise iron-depleted medium did not result in a selective repression of T1/T2, but had a non-discriminative negative effect on T1/T2 as well as on *phuS* expression. An alternative role of the tandem repeats could be to function as excision sites for the haem-uptake locus as a mobile element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element. Although there is no direct evidence for such a mechanism, a horizontal gene transfer of the element.

ACKNOWLEDGEMENTS

This work was supported by Grant AI15940 from the National Institute for Health to Michael L. Vasil. We thank Pathogenesis Corporation for the *basR* DNA sequence made available through the unfinished *P. aeruginosa* genome project and Arnoud van Vliet for sharing unpublished DNA sequence information on a *phuW* homologue in *C. jejuni*.

REFERENCES

Menzl, K., Maier, E., Chakraborty, T. & Benz, R. (1996). HlyA hemolysin of *Vibrio cholerae* O1 biotype El Tor: identification of

Received 27 July 1999; revised 26 September 1999; accepted 5 October 1999.