The diacetamidodideoxyuronic-acid-containing glycan chain of \textit{Bacillus stearothermophilus} NRS 2004/3a represents the secondary cell-wall polymer of wild-type \textit{B. stearothermophilus} strains

Christina Schaffer,1 Hanspeter Kahlig,2 Rudolf Christian,3 Gerhard Schulz,4 Sonja Zayni1 and Paul Messner1

Author for correspondence: Paul Messner. Tel: +43 1 476 54 ext. 2202. Fax: +43 1 478 91 12. e-mail: pmessner@edvl.boku.ac.at

The diacetamidodideoxymannuronic-acid-containing glycan of \textit{Bacillus stearothermophilus} NRS 2004/3a with the repeating unit structure \([\rightarrow 4]-\beta-D-ManpA2,3(NAc)\textsubscript{2}(1 \rightarrow 6)-\alpha-D-Glc(1 \rightarrow 4)-\beta-D-ManpA2,3(NAc)\textsubscript{2}(1 \rightarrow 3)-\alpha-D-GlcNAc(1 \rightarrow)]\), was examined to identify its linkage to the bacterial cell wall. In a previous paper it was suggested that this glycan is covalently linked to the surface layer (S-layer) glycoprotein of that organism. By improved chromatographic techniques (gel permeation over Sephacryl S-1000 SF; C4 reversed-phase HPLC) the diacetamidodideoxyuronic-acid-containing material was completely separated from the S-layer glycoprotein. This implicates only low, if any, specific affinity between these cell-wall components. To obtain sufficient amounts for the chemical characterization of its linkage region, the identical diacetamidodideoxyuronic-acid-containing material was isolated from sonicated cells of that organism by a purification procedure different to that for preparation of S-layers. This method allowed collection of the intact molecule including its linkage region. From the combined results of the chemical characterization and 600 MHz NMR spectroscopy it is proposed that the diacetamidodideoxyuronic-acid-containing glycan chain, consisting of approximately six tetrasaccharide repeating units, is directly linked via a pyrophosphate bridge to carbon 6 of muramic acid residues of the peptidoglycan sacculus. About 20-25\% of the muramic acid residues are substituted with these polysaccharide chains. Thus, the diacetamidodideoxyuronic-acid-containing glycan represents a secondary cell-wall polymer of \textit{B. stearothermophilus} NRS 2004/3a.

Keywords: \textit{Bacillus stearothermophilus}, secondary cell-wall polymer, linkage region, peptidoglycan, surface layer (S-layer)

INTRODUCTION

The surface layer (S-layer) of \textit{Bacillus stearothermophilus} NRS 2004/3a is composed of glycoprotein subunits. The repeating unit structure of the glycan chains was determined to be \([\rightarrow 2]-\alpha-L-Rhap(1 \rightarrow 2)-\alpha-L-Rhap(1 \rightarrow 3)-\beta-L-Rhap(1 \rightarrow)\textsubscript{n=50} \text{ (Christian et al., 1986)}. In addition to the N-glycosidically linked S-layer glycoprotein glycans (Messner & Sleytr, 1988a) this organism possesses cell-wall-associated carbohydrate chains. Their repeating unit structure \([\rightarrow 4]-\beta-D-ManpA2,3(NAc)\textsubscript{2}(1 \rightarrow 6)-\alpha-D-Glc(1 \rightarrow 4)-\alpha-\)

Abbreviations: DQF-COSY, double quantum filtered correlation spectroscopy; GARP, globally optimized alternating-phase rectangular pulses; HF-AEC-PEQ, high-performance anion-exchange chromatography with pulsed electrochemical detection; HSQC, heteronuclear single quantum correlation spectroscopy; ManpA2,3(NAc)\textsubscript{2}, 2,3-diacetamido-2,3-dideoxy-\alpha-mannuronic acid; MurNAc, N-acetyl-\alpha-muramic acid; NOESY, nuclear Overhauser effect spectroscopy; RP-HPLC, reversed-phase high-performance liquid chromatography; S-layer, surface layer; TFA, trifluoroacetic acid; TOCSY, total correlated spectroscopy; TPPI, time proportional phase incrementation.
β-d-ManpA2,3(NAc)2(1→3)-α-d-GlcNAc-(1→) was elucidated by 250 MHz NMR spectroscopy (Messner et al., 1987). The perception that more than one different glycan chain may be covalently linked to the S-layer protein had previously led to the assumption that these carbohydrate chains might be covalently linked to the S-layer protein. However, several attempts to identify a putative carbohydrate–protein linkage region were not successful.

In previous work, the S-layer material was isolated by a standard procedure (Messner & Sleytr, 1988b) followed by thorough proteolytic digestion of the purified S-layer glycoprotein with Pronase E. Gel filtration of the degradation products through a Bio-Gel P-30 column had completely separated the rhamnan-containing oligosaccharide fraction from the ManpA2,3(NAc)2-containing glycan chain. Neither in the NMR spectra nor in the corresponding amino acid analyses was there an indication for the presence of a covalent linkage of the ManpA2,3(NAc)2(2,3-diacetamido-2,3-dideoxy-d-mannuronic acid)-containing glycan chain to the S-layer protein (Messner et al., 1987). Only amino acids not involved in conventional N- and O-glycosidic linkages had been identified.

In this present study, we have defined the linkage type of the ManpA2,3(NAc)2-containing glycan to the cell wall of B. stearothermophilus NRS 2004/3a and investigated whether there is affinity between the S-layer glycoprotein and the coeluting ManpA2,3(NAc)2-containing glycan. Since only minor amounts of this material are present in the S-layer preparation, for the structural work on the intact molecule it was isolated from a peptidoglycan preparation of that strain.

METHODS

Growth of the bacteria. B. stearothermophilus NRS 2004/3a (Messner et al., 1984) was grown in continuous culture on modified SVIII medium (0.5% peptone, 0.5% meat extract, 0.5% yeast extract, 0.2% glucose, 0.13% K2HPO4, 0.01% MgSO4, pH 6.9) at 60 °C with an oxygen partial pressure of 10% (v/v) and a dilution rate of 0.2 h−1 in a 15 l Biostat C fermenter (B. Braun). The pH of the culture was kept constant at a value of pH 7.0 ± 0.25 by addition of 2 M sulfuric acid. Cells were separated from culture broth by continuous centrifugation (Separatech 17 RS centrifuge, Heraeus) at 16000 g at 4 °C. The biomass was stored at −20 °C.

Preparation of S-layer glycoprotein. S-layer glycoprotein of B. stearothermophilus NRS 2004/3a was prepared according to the standard protocol (Messner & Sleytr, 1988b). Cells from the mid-exponential phase (wt wt, 100 g) obtained by continuous cultivation of B. stearothermophilus NRS 2004/3a were suspended in 250 ml cold distilled water and broken by ultrasonication using four cycles of 4 min, each at 4 °C. The homogenate was centrifuged at 48400 g for 25 min at 4 °C. The supernatant was discarded and sedimenting broken cells were removed by gentle shaking with 1 M NaCl. The remaining pellet containing whole cells was resuspended in 150 ml cold water and repeatedly sonicated for 4 min. Combined fractions of crude cell walls from the ultrasonication steps were collected and diluted to a total volume of 250 ml with 1 M NaCl and centrifuged at 3020 g for 10 min. Remaining debris was removed and fractions sedimenting between 3020 and 48400 g were collected, suspended in 200 ml distilled water and heated at 100 °C for 20 min. The suspension of crude cell walls was stored frozen at −20 °C.

Degradation of protein. After thawing, the cell-wall suspension was added to 250 ml 2 M sodium acetate buffer, pH 5.9, at room temperature, incubated with 20 mg ribonuclease at 37 °C for 3 h in a rotary shaker (150 r.p.m.). The supernatant was then centrifuged for 1 h at 17700 g (Araki et al., 1972). The pellet was resuspended in 200 ml pre-warmed 50 mM sodium phosphate buffer, pH 7.5, and then digested with 20 mg trypsin for 2 h at 37 °C. The precipitate collected from the trypsin digest by centrifugation at 10000 g for 1 h was treated with 250 ml 0.4% SDS at room temperature for 1 h, washed six times with distilled water (48400 g, 20 min) and lyophilized, giving approximately 1 g of cell walls.

Re-N-acetylation. Since partial de-N-acetylation of N-acetyl amino acid groups might have occurred during the previous preparation steps, re-N-acetylation of cell walls of B. stearothermophilus NRS 2004/3a was achieved by addition of 1 g of the sample in a solution containing 84 g NaHCO3, 5 ml acetic acid anhydride and 100 ml distilled water at 4 °C, overnight. Then the insoluble material was collected by centrifugation (48400 g, 20 min), washed twice with distilled water, and lyophilized.

Lysozyme digestion. Lysozyme sensitivity of B. stearothermophilus NRS 2004/3a was examined by addition of 20 ml enzyme (1 mg ml−1) to 2 ml of a suspension of cells from the mid-exponential phase in 30 mM Tris/HCl buffer, pH 7.2. The degradation of peptidoglycan was measured by the decrease of OD600 of the sample over a time course of 90 min. Re-N-acetylated cell walls (approx. 1.15 g) were degraded at 37 °C for 48 h in a mixture containing 130 mg lysozyme (Sigma), 50 mM Tris/HCl buffer, pH 7.2 and 1% (w/v) sodium azide in a final volume of 400 ml (Amano et al., 1977). The lysozyme digest was concentrated to 50 ml by evaporation at 30 °C, and dialysed (size cut-off of dialysis tubing, 12–16 kDa) against 5 l distilled water. The dialysis was repeated...
five times with a total duration of 36 h. After separation of precipitating material from the non-dialysable fraction by centrifugation, the supernatant was lyophilized giving the crude peptidoglycan preparation.

Isolation of the secondary cell-wall polymer from the peptidoglycan preparation. The lyophilized soluble fraction from the lysozyme digest was dissolved in 5 ml 50 mM NH₄HCO₃ solution and applied to an equilibrated Sephadex G-50 column (26 x 100 cm). The column was eluted with 50 mM NH₄HCO₃ at a flow rate of 2 ml min⁻¹, and the elution pattern was monitored by measurement of refraction index from the lysozyme digest was dissolved in NH₄HCO₃ solution and applied to an equilibrated Sephadex G-50 was further purified by reversed-phase HPLC.

The polysaccharide fraction obtained by chromatography on Sephadex G-50 was further purified by reversed-phase HPLC (RP-HPLC) on a semipreparative RP-18 column (Nucleosil 120-3C18, 8 x 125 mm; Machery & Nagel) equipped with an RP-18 guard column (Nucleosil 120-3C18, 8 x 40 mm; Machery & Nagel). The secondary cell-wall polysaccharide was separated from peptidoglycan and other contaminating proteins by using a CH₃CN/H₂O gradient, containing 0.1% TFA for 0-15% CH₃CN for 0-45 min; 15-100% CH₃CN for 45-47 min; 100% CH₃CN for 47-50 min; 100-0% CH₃CN for 50-55 min; 0% CH₃CN for 55-60 min at a flow rate of 3 ml min⁻¹. For some experiments, addition of TFA to the CH₃CN gradient was omitted. Absorbance was detected at 220 nm and fractions of 3 ml were collected. Fractions were combined according to the UV-elution profile and the qualitatively determined carbohydrate content. The pool containing the peptidoglycan-associated polysaccharide was finally lyophilized, yielding approximately 165 mg of secondary cell-wall polymer.

For the NMR experiments (see Table 1) the following preparations were used: preparation I (9.1 mg per ml D₂O) – secondary cell-wall polymer, purified by RP-HPLC in the presence of TFA in the CH₃CN gradient (retention interval 20-27 min); preparation II (21.0 mg per ml D₂O) – secondary cell-wall polymer, purified by RP-HPLC without addition of TFA to the gradient (retention interval 3-15 min); preparation III (5.0 mg per ml D₂O) – during purification of preparation II the material eluting from the column at 47-49 min was rechromatographed on the same RP-HPLC system using a modified CH₃CN gradient of 0-100% in 95 min. The material eluting at 11-18 min was collected and lyophilized. By amino acid analysis and HPAEC-PED it was demonstrated that it represented the cleaved pure peptidoglycan portion of that complex.

NMR experiments. The ¹³C NMR spectra (100-62 MHz, attached proton test) were recorded on a BRUKER Avance DRX 600 WB NMR spectrometer equipped with a ¹H, ¹³C observe dual probe. All other spectra were recorded with a BRUKER Avance DRX 400 WB NMR spectrometer using either a 5 mm broadband inverse probe with z-gradients or a 5 mm triple probe (¹H, ¹³C, broadband) with x,y,z-gradients at frequencies for ¹H at 600-13 MHz, for ¹³C at 150-90 MHz, and for ³¹P at 242-94 MHz, respectively. A series of the following experiments were performed for the samples in D₂O solution.

Double quantum filtered correlation spectroscopy (DQF-COSY) with gradient coherence selection according to the scheme of Davis et al. (1991) (2048 data points in f₂, 512 data points in f₁, sweep width 3000 Hz, 1 ms sine-shaped gradient pulses with 20% maximum amplitude, absorption mode in f₁ using time proportional phase incrementation (TPPI)); total correlated spectroscopy (TOCSY) with 3-9-19 WATERGATE (Piotto et al., 1992; Sklenar et al., 1993) solvent suppression (2048 data points in f₂, 512 data points in f₁, sweep width 4500 Hz, 120 ms MLEV17 spin lock, 1 ms sine-shaped gradient pulses with 20% maximum amplitude, absorption mode in f₁ using TPPI); nuclear Overhauser effect spectroscopy (NOESY) with 3-9-19 WATERGATE (2048 data points in f₂, 512 data points in f₁, sweep width 4500 Hz, 150-300 ms mixing time, 1 ms sine-shaped gradient pulses with 20% maximum amplitude, absorption mode in f₁ using TPPI); sensitivity enhanced ¹H,¹³C-HSQC with echo/anti-echo selection (Kay et al., 1992; Schleucher et al., 1994) (2048 data points and 3000 Hz sweep width in f₂, 256 data points and 15000 Hz sweep width in f₁, 1 ms sine-shaped gradient pulses with 80% maximum amplitude, globally optimized alternating-phase rectangular pulses (GARP) ¹³C decoupling during acquisition, optimized on CH groups); gradient selected ¹H,¹³C-HMBC (hetero multiple bond correlation spectroscopy) (Hurd & John, 1991) with and without a low-pass J-filter (2048 data points and 3000 Hz sweep width in f₂, 512 data points and 27150 Hz sweep width in f₁, 1 ms sine-shaped gradient pulses with 50% maximum amplitude, long-range coupling 5 or 6 Hz).

In addition for the samples in 90% H₂O/10% D₂O the DQF-COSY and the experiments using the 3-9-19 WATERGATE solvent suppression scheme were recorded applying magic angle gradients (van Zijl et al., 1995) with 1 ms sine-shaped gradients of equal amplitude along every axis and a maximum amplitude of 40% in one direction.

Experiments using ³¹P frequency include direct observed phosphorus NMR spectra with proton decoupling, ¹H NMR spectra with ³¹P GARP decoupling and two-dimensional gradient selected ¹H,³¹P-HMBC spectra (Hurd & John, 1991). All the processing was done off line on Silicon Graphics workstations using the BRUKER software XWIN-NMR 2.0. All two-dimensional spectra were zero filled in f₁ doubling the data points and multiplied in both dimensions with a 90°-shifted square sine window function. The spectra were phase corrected in absorption mode in both dimensions except the HMBC spectra, which were calculated to magnitude mode. In addition to the BRUKER software, for the analysis the programs PRONTO 970306 (provided by M. Kjaer, F. M. Poulsen and the Carlsberg Research Center, Copenhagen, Denmark) and AZARA 2.0 (provided by W. Boucher and the Department of Biochemistry, University of Cambridge, UK) were used also on Silicon Graphics workstations.

RESULTS

Preparation of the S-layer glycoprotein

The S-layer glycoprotein of B. stearothermophilus NRS 2004/3a was prepared by the standard purification procedure (Messner & Sleytr, 1988b) including removal of the cytoplasmic membrane by treatment with Triton X-100 and extraction of the S-layer glycoprotein using 5 M guanidine hydrochloride. Carbohydrate composition of that material, as determined by HPAEC-PED, revealed a total rhamnose content of 185 nmol (mg S-layer glycoprotein)⁻¹ (±5%, w/w), originating from the rhamnase S-layer glycan, and 8 nmol each of GlcNAc and Glc per mg, indicating the presence of trace amounts.
(\sim 0.5\% \text{, w/w}) \text{ of ManpA2,3(NAc)}_2\text{-containing glycan (Messner et al., 1987).}

**Separation of the ManpA2,3(NAc)}_2\text{-containing glycan from S-layer glycoprotein}

To prove that the ManpA2,3(NAc)}_2\text{-containing glycan chains are not covalently linked to the S-layer glycoprotein of } B. \text{ stearothermophilus } NRS \text{ 2004/3a, separation experiments using improved chromatographic techniques were performed. S-layer glycoprotein prepared by the standard purification procedure was subjected to gel filtration on a Sephacryl S-1000 SF column; this resulted, after rechromatography of the appropriate pool, in a complete separation of the intact high-molecular-mass S-layer glycoprotein with the glycosidically bound rhamnan, and a peak of lower column elution.**

Separation of the ManpA2,3(NAc)}_2\text{-containing glycan from the S-layer glycoprotein was also performed by RP-HPLC on an RP4 column with a CH}_3\text{CN-TFA gradient. The ManpA2,3(NAc)}_2\text{-containing glycan eluted at a CH}_3\text{CN concentration of approximately 31\% (v/v), whereas the S-layer glycoprotein was collected in the gradient at 45\% CH}_3\text{CN, demonstrating that there is no covalent linkage of this glycan-containing material to the S-layer glycoprotein. This result supports the observation from the gel-permeation chromatography experiment.}

**Isolation of the ManpA2,3(NAc)}_2\text{-containing glycan from peptidoglycan}

To collect sufficient amounts of ManpA2,3(NAc)}_2\text{-containing glycan for analysis of its linkage region we changed the purification strategy for this polysaccharide fraction. The currently used modified procedure essentially follows the method of Araki et al. (1972). After isolation of the cell walls, to which the ManpA2,3(NAc)}_2\text{-containing glycan is still attached, the preparation was incubated for 48 h at 37^\circ \text{C with lysozyme (Amano et al., 1977) to break down the peptidoglycan sacculus completely. The reaction mixture was subjected to gel filtration on a Sephadex G-50 column and appropriate polysaccharide-containing fractions were collected. Further purification was performed by HPLC using a CH}_3\text{CN gradient, containing 0-1\% (v/v) TFA for improved separation. Omission of TFA in the HPLC gradient gave poorer resolution but higher recovery of the intact cell-wall polymer--peptidoglycan complex (Fig. 1). Appropriate fractions were collected and examined by HPSEC-PED and amino acid analysis. Quantification showed that 20--25\% of the MurNAc residues were randomly substituted with the ManpA2,3(NAc)}_2\text{-containing polysaccharide. These fractions were subjected to NMR analysis (for details see Methods).}

**NMR characterization of the secondary cell-wall polymer

The glycan structure was derived from one- and two-dimensional NMR experiments recorded on a 400 and a 600 MHz spectrometer. The structure of the repeating unit was confirmed to consist of four sugars in the described arrangement (Messner et al., 1987). Since chemical shift values and line width of the observed NMR signals showed a strong pH dependence, the reinvestigation of the glycan was performed at two different pH values. At low pH values (\sim 2-0) the proton signals were sharp and the anomeric region was well resolved. At higher pH values (\sim 3-5), however, the signal half width increased and Glc and GlcNAc anomerically shifted. In addition to the reinvestigated and completed 13C chemical shift data, an assignment of the 1H spin systems was possible by gradient-enhanced (ge) homonuclear and heteronuclear two-dimensional NMR experiments (Table 1). The glycosidic linkages were confirmed from ge-HMBC experiments by means of three-bond correlation of the anomeric protons to the glycosidic bond carbons and vice versa, thus providing a non-empirical verification of the reported sequence.

Starting from the proton chemical shift data (Table 1, Fig. 2) of the anomeric proton from sugar A an additional cross-peak at lower intensity could be identified in the DQF-COSY experiment. Eventually it led to a complete set of 1H and 13C signals belonging to a ManpA2,3(NAc)}_2\text{-residue which showed significant chemical shift differences for the 1H signals in positions 2 to 5 and especially the 13C signal of C-4. The observed upfield shift at the C-4 13C shift value, as well as the H-4 of that ManpA2,3(NAc)}_2\text{ unit A', confirmed this unit as the terminal sugar at the non-reducing end of the polysaccharide chain. Integration of the well-resolved cross-peaks in the HSQC experiment (Fig. 3) for this terminal sugar and comparison with the cross-peak volume of the corresponding signals in the polysaccharide chain showed a ratio of approximately 1:5, indicating a chain length of approximately six repeating units.}

To identify the linkage region between the repeating units and the peptidoglycan present in the sample, proton spectra were recorded with simultaneous 31P decoupling to detect signals of phosphorylated sugars. In the anomeric region at approximately 5-43 p.p.m. a collapse of a doublet splitting (J_H,P \sim 6 \text{ Hz}) could be seen in preparation I (see Methods for the different preparations). In preparation II a significant reduction of the line width for the signal at the same chemical shift was observed. A direct 31P spectrum with proton
Fig. 1. Final purification of the secondary cell-wall polymer from B. stearothermophilus NRS 2004/3a by RP-HPLC on a semipreparative RP-18 column using a CH$_3$CN/H$_2$O gradient without TFA.

decoupling gave two signals, at 1.33 and -0.69 p.p.m., respectively, in agreement for a diphosphate bridge.

Analysis of the whole spin system starting from this phosphorylated anomeric signal at 5.43 p.p.m. showed the unit designated D' to be an αGlcNAc residue which, based on the carbon chemical shifts, was substituted in position 3. Due to the low intensity of the signals for this unit, further investigation was a very tedious task. To resolve the spectral overlap, experiments were performed in 90\% H$_2$O/10\% D$_2$O solution (Fig. 4). As the whole system contained a number of amino sugars, additional information could be gained by NMR experiments in H$_2$O from the slowly exchanging NH signals in a chemical shift region far from the carbohydrate signals. In a NOESY spectrum with suppression of water signal by a 3-9-19 WATERGATE sequence, a cross peak could be identified starting from the NH signal of the phosphorylated GlcNAc to an anomeric proton of another sugar, again implying a 1 \rightarrow 3 linkage. This new sugar was an amino sugar with an NHAc group in position 2. Based on the recorded anomeric one-bond CH coupling constant of 163 Hz and a small <2 Hz $^3J_{HH}$ coupling constant of this sugar, a manno system carrying at least one NHAc group in position 2 can be supposed. Since the whole spin system could not be identified, no linkage information to the polysaccharide chain is available. However, since the chemical shift values observed for this unit designated C' are almost indistinguishable from that of unit C, it is fair to assume that units C' and D' belong to a repeating unit linked via pyrophosphate, thus indicating a blockwise attachment of the polysaccharide chain.

Continuing the NMR analysis from the phosphorylated anomeric signal towards the reducing end, a two-dimensional 1H, ^{31}P HMBC spectrum was recorded showing signals at two different phosphorus frequencies. In addition to the anomeric proton and H-2 from the αGlcpNAc unit D' at δ (^{31}P) = 1.33 p.p.m. a signal set for two protons characteristic for a CH$_2$ group was detected (δ (1H) = 4.073 and 3.994 p.p.m., δ (^{31}P) = -0.69 p.p.m.), implying a linkage to a C-6, most probably of a muramic acid residue. Due to limitations in sensitivity (broad signals and additional 1H, ^{31}P couplings) no direct connection from this H-6 to H-5 or C-5 of α/βMurNAc could be established. However, considering the different shifts of protons 4, 5 and 6 of α/βMurNAc in the intact polysaccharide–peptidoglycan preparation (Table 1, preparation II) to those shifts of the peptidoglycan alone (preparation III) indicates MurNAc to be phosphorylated in position 6 in the intact cell-wall polymer.

The signals belonging to the peptidoglycan moiety were visible in all spectra and were identified by comparison to spectra from the separated peptidoglycan portion alone. A detailed structural analysis of this part of the sample by NMR analysis was impossible due to the inherent heterogeneity of the sample. In about 60\% of the intact cell-wall polymer (preparation II), the oligosaccharide-carrying glycan strands of the peptidoglycan consisted of disaccharide β-GlcNAc-(1 \rightarrow 4)-α/β-MurNAc units. The rest contained larger fragments of the peptidoglycan saccharide strands (multiples of the disaccharide units in a random order; see Fig. 2). No attempts were made to assign every single signal from the peptidoglycan portion. A partial assignment of the peptidoglycan moiety was facilitated by comparison to reported values of synthetic models (Kantoci et al., 1989). Alanine, glutamine and diaminopimelic acid were again assigned using ge-TOCSY, ge-DQF-COSY and ge-HSQC spectra. The peptide sequence of the sample was compatible with that of the $Bacillus$ peptidoglycan chemotype A1y (Schleifer & Kandler, 1972; Archibald, 1989).

DISCUSSION

The walls of Gram-positive bacteria usually contain peptidoglycan and different accessory polymers such as teichoic acids, teichuronic acids, neutral or charged polysaccharides, proteins (e.g. S-layer proteins), and in some cases even covalently bound lipids (for review see Archibald, 1989). Teichoic acid and teichuronic acid are covalently linked to the peptidoglycan throughout the thickness of the wall (Ward, 1981). Teichoic acids contain charged phosphate groups and, often, charged amino acid groups whereas teichuronic acids contain charged carboxyl groups. Although they are often described as accessory or secondary wall polymers, their presence is required for the ordered assembly of wall material and for normal wall function. Due to their functional groups they contribute to the overall surface charge of the cells and also to specific surface properties (for reviews see Ward, 1981; Hancock, 1991).

For several $Bacillus$ strains, secondary cell-wall polymers which contain cores with the structure \mid (3)-β-d-ManpNAc-$\rightarrow(1$ \rightarrow 4)$-$\beta$-$d$-GlcNAc-$\rightarrow(1$ \rightarrow 3), connecting the oligosaccharide chain to the pyrophosphate group, have been described (Kaya et al., 1984; Kojima et al., 1985, 1988; Araki & Ito, 1989). Similar cores were also found in typical ribitol and glycerol teichoic acids of...
For each preparation (I, II, III), the first row shows chemical shift data for 1H relative to external acetone ($\delta = 2.225$ p.p.m.) and the second row shows chemical shift data for 13C relative to external dioxane ($\delta = 67.4$ p.p.m.). All data were acquired at 300 K. Numbers in parentheses represent $^{1}J_{CP}$ coupling constants in Hz. I, preparation I from HPLC separation with 0.1% (v/v) TFA in the CH$_3$CN elution gradient (6.4 mg in 0.7 ml D$_2$O, pH = 2.11); II, preparation II from HPLC separation without TFA (147 mg in 0.7 ml D$_2$O, pH = 3.32); III, preparation III containing only the peptidoglycan portion (3.5 mg in 0.7 ml D$_2$O, pH = 4.10).

Table 1. 1H and 13C NMR chemical shift data (in p.p.m.) of the diacetamidodideoxyuronic-acid-containing glycan chain and the linkage region of *B. stearothermophilus*

<table>
<thead>
<tr>
<th>Carbohydrate signals</th>
<th>2-N-Acetyl</th>
<th>3-O-Acetyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>CH$_3$</td>
<td>NH</td>
</tr>
<tr>
<td>A' - 6'-ManpA2,3(NAc)$_3$</td>
<td>4932</td>
<td>4599</td>
</tr>
<tr>
<td>II</td>
<td>4909</td>
<td>4482</td>
</tr>
<tr>
<td>B'</td>
<td>4929</td>
<td>4403</td>
</tr>
<tr>
<td>II</td>
<td>4900</td>
<td>4460</td>
</tr>
<tr>
<td>C'</td>
<td>5075</td>
<td>3498</td>
</tr>
<tr>
<td>II</td>
<td>4944</td>
<td>3720</td>
</tr>
<tr>
<td>D'</td>
<td>5032</td>
<td>4301</td>
</tr>
</tbody>
</table>

Table 2. Carbohydrate signals (in p.p.m.) of the diacetamidodideoxyuronic-acid-containing glycan chain and the linkage region of *B. stearothermophilus*

<table>
<thead>
<tr>
<th>Carbohydrate signals</th>
<th>2-N-Acetyl</th>
<th>3-O-Acetyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>CH$_3$</td>
<td>NH</td>
</tr>
<tr>
<td>A - 6'-ManpA2,3(NAc)$_3$</td>
<td>5109</td>
<td>3926</td>
</tr>
<tr>
<td>II</td>
<td>5087</td>
<td>3895</td>
</tr>
<tr>
<td>B - 6'-ManpA2,3(NAc)$_3$</td>
<td>5425</td>
<td>4306</td>
</tr>
<tr>
<td>II</td>
<td>4979</td>
<td>3727</td>
</tr>
<tr>
<td>D - 6'-ManpA2,3(NAc)$_3$</td>
<td>5431</td>
<td>4032</td>
</tr>
<tr>
<td>II</td>
<td>4951</td>
<td>3719</td>
</tr>
<tr>
<td>E - GlcpNAc</td>
<td>4138</td>
<td>3740</td>
</tr>
<tr>
<td>II</td>
<td>10139</td>
<td>5675</td>
</tr>
<tr>
<td>F - MurNac</td>
<td>4153</td>
<td>3749</td>
</tr>
<tr>
<td>II</td>
<td>10116</td>
<td>5682</td>
</tr>
</tbody>
</table>

Table 3. Peptide signals (in p.p.m.) of the diacetamidodideoxyuronic-acid-containing glycan chain and the linkage region of *B. stearothermophilus*

<table>
<thead>
<tr>
<th>Peptide signals</th>
<th>CO</th>
<th>CH$_3$</th>
<th>NH</th>
<th>CO</th>
<th>CH$_3$</th>
<th>NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala I</td>
<td>4327</td>
<td>8378</td>
<td>1430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4134</td>
<td>1737</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4134</td>
<td>1737</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala I</td>
<td>4277</td>
<td>8333</td>
<td>1394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>176-16</td>
<td>1699</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>176-16</td>
<td>1699</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu I</td>
<td>4305</td>
<td>8268</td>
<td>2107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4363</td>
<td>8282</td>
<td>2107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4363</td>
<td>8282</td>
<td>2107</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Other sugars

<table>
<thead>
<tr>
<th>Other sugars</th>
<th>CO</th>
<th>CH$_3$</th>
<th>NH</th>
<th>CO</th>
<th>CH$_3$</th>
<th>NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>meso-diaminopimelic acid I</td>
<td>4214</td>
<td>8208</td>
<td>2080</td>
<td>8051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1778</td>
<td>8208</td>
<td>2080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1878</td>
<td>8208</td>
<td>2080</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Assignments interchangeable.
† Preparation II in 0.7 ml 90% (v/v) H$_2$O/10% (v/v) D$_2$O.
‡ Relative to external 80% H$_2$PO$_4$, $\delta = 0$ p.p.m.
§ Connected to a CH$_3$ group ($\delta = 4.073$, 3.994 p.p.m.) by preparation I.
¶ Preparation III in 0.7 ml 90% (v/v) H$_2$O/10% (v/v) D$_2$O.
δ δ values approximately, belonging to more than one residue.

1580
Gram-positive organisms (for reviews see Munson & Glaser, 1981; Archibald, 1989). From the combined data of the structural and chemical characterization of the secondary cell-wall polymer of strain *B. stearothermophilus* NRS 2004/3a it can be concluded that the ManpA2,3(NAc)_2-containing saccharide chains, which on average are composed of approximately six identical repeating units (Messner et al., 1987), are linked via pyrophosphate bridges to about 20–25 % of the muramic acid residues of the peptidoglycan sacculus (Fig. 2). Although during the chemical characterization of the secondary cell-wall polymer of *B. stearothermophilus* NRS 2004/3a, GlcNAc and trace amounts of ManNAc have been determined, the NMR data do not support the presence of a ManNAc → GlcNAc core disaccharide in this organism. On the other hand, its existence cannot
be ruled out completely because the first two components of the repeating unit are GlcNAc and a mannosugar system which would be similar to the signals for the postulated core in the NMR experiments (see Table 1). The existence of a comparable core disaccharide consisting of GlcNAc and ManpA2,3(NAc)_3 residues has been suggested in a preliminary report on an acidic sugar system which would be similar to the signals for the terminal region.

The identified linkage region of the ManpA2,3(NAc)_3-containing glycan, together with the observation that this glycoconjugate can be separated from the S-layer glycoprotein by improved chromatographic techniques, clearly demonstrates that this glycoconjugate is not covalently linked to the S-layer glycoprotein. It shows that there is only low, if any, specific affinity of the secondary cell-wall polymer to the intact S-layer protein. This observation is supported by the previous separation experiments of proteolytically degraded S-layer glycoprotein preparations, which resulted in a complete splitting of both carbohydrate structures (Messner et al., 1987). Thus, our previous assumption of a possible glycoprotein nature of the ManpA2,3(NAc)_3-containing glycoconjugate should be changed.

In conclusion, this glycoconjugate represents a secondary cell-wall polymer of B. stearothermophilus NRS 2004/3a; this has also been observed with other B. stearothermophilus strains (Ries et al., 1997; Egelseer et al., 1998). Possible biological functions of this type of cell-wall constituent in bacilli have been recently discussed in the context of mediating binding of the S-layer to the peptidoglycan sacculus (Egelseer et al., 1998; Sára et al., 1998). Comparable functional analyses have not been performed with the secondary cell-wall polymer of B. stearothermophilus NRS 2004/3a.

ACKNOWLEDGEMENTS

We thank Andrea Schieberl for help with the purification of the specimens. This work was supported by the Austrian Science Fund, project S7201-MOB (to P. M.) and the Federal Ministry of Science and Transportation.

REFERENCES

Received 24 December 1998; revised 8 March 1999; accepted 16 March 1999.