A novel tRNA-associated locus (trl) from Helicobacter pylori is co-transcribed with tRNA_{Gly} and reveals genetic diversity

William G. Dundon,† David G. Marshall, Colm A. Ó Moráin and Cyril J. Smyth

Author for correspondence: William G. Dundon. Tel: +39 049 8276056. Fax: +39 049 8276049. e-mail: dundon@civ.hio.unipd.it

To date several genes have been identified in Helicobacter pylori that are expressed in only a proportion of strains, some of which are correlated with the pathogenicity of the bacterium. With this in mind, the present study was undertaken to identify other genes that are not expressed in all clinical isolates of H. pylori. Using arbitrarily primed PCR of RNA, a cDNA fragment of 187 bp (designated trl for transfer RNA-associated locus) was identified that was expressed in only one of two clinical isolates being tested. The fragment was purified, cloned and sequenced. A search of public databases prior to the release of the complete genome sequence of H. pylori strain 26695 showed no similarity with any other known genes or gene products. Inverse PCR was used to obtain further nucleotide sequence information surrounding the trl locus. A DNA probe derived from the trl locus hybridized with 32 (50%) of 64 clinical H. pylori isolates tested. Comparison of the nucleotide sequences of a trl-positive and trl-negative isolate showed that the locus is situated between two tRNA genes, tRNAG_{Gly} and tRNA_{Leu}, in H. pylori. Primer extension analysis showed that the trl locus is co-transcribed with tRNAG_{Gly}. Analysis of the region between tRNAG_{Gly} and tRNA_{Leu} in trl-negative isolates revealed additional genetic diversity among these isolates.

Keywords: arbitrarily primed PCR, diversity, tRNA, horizontal transfer

INTRODUCTION

Helicobacter pylori, which colonizes the gastric mucosa of humans, is now recognized as the major aetiological agent of chronic gastritis and is strongly associated with both gastric and duodenal ulcers (for review see Dunn et al., 1997). Infection with H. pylori has also been linked with an increased risk of adenocarcinoma and lymphoma (O'Connor et al., 1996; Parsonnet et al., 1997). To date several virulence factors have been identified and characterized from this Gram-negative bacterium (Fauchère & Blaser, 1990; Eaton et al., 1991; Leying et al., 1992; Covacci et al., 1993; Tummuru et al., 1993). Among those present in all H. pylori isolates are the urease, the flagella and a number of putative adhesins that ensure tissue-specific colonization. In addition, a subset of strains produce a potent cytotoxin (VacA) and a surface-exposed immunodominant antigen (CagA), which is associated with cytotoxin expression and is part of the cag pathogenicity island (Xiang et al., 1995; Censini et al., 1996).

H. pylori has an extremely plastic and variable genome and extensive allelic diversity exists (for review see Marshall et al., 1998). Correlations between strain variations and clinical outcomes of infection suggest that differences in virulence between isolates of H. pylori may be due to the presence or absence of particular genes or to variations in gene expression. For example, it has been reported that strains that possess the cagA gene are more likely to cause ulcer disease and gastric adenocarcinoma (Covacci et al., 1993; Parsonnet et al., 1997). Peek et al. (1998) have described the identification of a genetic locus (iceA) that was induced by contact of H. pylori with gastric epithelial cells. There are two distinct iceA sub-groups, iceAI and
iceA2. H. pylori strains of the iceA1 genotype have been shown to be strongly associated with duodenal ulcer disease, while iceA2 strains are associated with gastritis (Peek et al., 1998; van Doorn et al., 1998). Recently, Akopyants et al. (1998) identified 18 DNA fragments specific to a monkey-colonizing strain of H. pylori by subtractive hybridization against the unrelated H. pylori strain 26695. A number of these strain-specific DNA fragments revealed nucleotide sequence identity with strain 26695. A number of these strain-specific DNA (Peek et al., 1998; van Doorn et al., 1998). Recently, subtractive hybridization against the unrelated H. pylori that are not expressed in all strains and which may be important for the virulence of the bacterium. To investigate whether such genes could be identified in clinical isolates of H. pylori, a modification of a differential display technique was applied.

Arbitrarily primed PCR of RNA has been used successfully in eukaryotes to identify genes that are differentially expressed under varying environmental conditions (Welsh et al., 1992). The technique has been further developed for the identification of differentially expressed genes in prokaryotes (Wong & McClelland, 1994; Kwaik & Pederson, 1996; Thies et al., 1998; Yuk et al., 1998), including H. pylori (Peek et al., 1998).

Arbitrarily primed PCR of RNA involves the use of random primers in the synthesis of single-stranded cDNA from total RNA isolated from two different sources, i.e. from bacteria subjected to different environmental conditions, or, as in the case of this work, from two separate clinical isolates. Second strand synthesis is then performed on the single-stranded cDNA by PCR with radiolabelled dATP and an arbitrary primer. By using a selection of several different primers on reverse-transcribed mRNA isolated from the two different isolates, it is possible to obtain cDNA fingerprints for each isolate following electrophoresis on polyacrylamide sequencing gels. Comparison of the fingerprint profiles allows the pinpointing of DNA fragment differences which should represent genes that are expressed in one isolate and not the other. These fragments can be readily isolated and purified from the polyacrylamide gels and subsequently cloned for further characterization.

The present study reports the application of arbitrarily primed PCR of RNA in isolating a genetic locus that is only present in 50% of our clinical isolates. It describes the characterization of the locus (designated trt for transfer RNA-associated locus) at the nucleotide level. Additional genetic diversity in the corresponding region among trt-negative strains is also reported.

METHODS

Bacterial strains and culture conditions. Clinical isolates were obtained from antral biopsies of patients undergoing upper gastrointestinal endoscopy at the Meath, Adelaide and St James' hospitals in Dublin, Ireland. After primary culture the isolates were routinely grown under microaerophilic conditions for 3 d on Campylobacter agar base containing 7% (v/v) lysed horse blood (LHB), amphotericin (5 µg ml⁻¹) and vancomycin (10 µg ml⁻¹). Escherichia coli strain ER2267 (New England Biolabs) [ER1821 Δ(argF-lac)U169 recA1/F'proA' proB' lacPΔ(lacZ)M15 czo:: mini-Tn10(Kan')] was used as a host for plasmid cloning experiments.

RNA preparation. Using a sterile swab, cells were harvested from LHB plates and washed in 1 ml TEN (10 mM Tris/HCl, pH 7.5, 1 mM EDTA, 0.1 M NaCl). Total RNA was subsequently isolated using an RNA isolator kit (Genosys Biotechnologies). The RNA concentration was determined by spectrophotometric analysis. One unit of RNase-free DNase I (Promega) was added (µg RNA)⁻¹ to remove any residual DNA contamination.

First strand synthesis of cDNA. First strand synthesis of cDNA was performed on total RNA by reverse transcription. Random hexamers (2 µg) were added to 4 µg total RNA in a final volume of 19 µl and incubated for 10 min at 70 °C. The mixture was allowed to cool to room temperature before adding 50 mM (each) dATP, dCTP, dGTP and dTTP, 10 mM DTT, 3 mM MgCl₂, 75 mM KCl, 50 mM Tris/ HCl (pH 8.3), 1 U rRNAse (Promega) and 200 U M-MLV reverse transcriptase (Promega). The reaction was continued at 37 °C for 1 h and stopped by placing the mixture on ice. The volume was then made up to 100 µl with sterile distilled water. After phenol/chloroform extraction, the cDNA was precipitated with 1 vol. 4 M LiCl in 3 vols ethanol. The cDNA was resuspended in 20 µl sterile distilled water and stored at −70 °C.

Arbitrarily primed PCR. The PCR was carried out in a final volume of 25 µl containing 1 µl cDNA template, 3 mM MgCl₂, 40 pmol primer P1 (Table 1), 2.5 U Taq polymerase (Promega), 80 µM (each) dATP, dCTP, dGTP and dTTP, 1 µCi (37 x 10⁶ Bq) [α-³²P]dATP in 10 mM Tris/HCl (pH 8.3), 50 mM KCl and 0.001% (v/v) gelatin, and overlaid with 50 µl mineral oil. The thermal cycling parameters were as follows: five low-stringency cycles of 94 °C (1 min), 40 °C (1 min), 72 °C (2 min), then 30 high-stringency cycles of 94 °C (1 min), 55 °C (1 min), 72 °C (2 min), and finally 72 °C (10 min). Stop solution (10 µl; 80% formamide with 0.25% bromophenol blue and 0.25% xylene cyanole) was added to the completed PCR reaction. The samples were heated to 65 °C for 10 min and aliquots (4 µl) were loaded onto an 5% (w/v) polyacrylamide sequencing gel and electrophoresed at 35 V cm⁻¹ for 3 h. The gel was dried onto 3 MM paper (Whatman) and the separated PCR fragments were visualized following autoradiography.

Isolation and cloning of arbitrarily primed PCR products. The autoradiogram was aligned with the gel using Glogos (Stratagene) autoradiogram markers and bands were cut from the gel using a razor blade. The gel slice was placed into a dialysis bag and 100 µl 0.1 x TBE (594 mM Trizma, 592 mM boric acid, 16 mM EDTA, pH 8.3) buffer was added. The dialysis bag was placed in a horizontal electrophoresis tank containing 0.1 x TBE. The DNA was electroeluted from the polyacrylamide gel for 2 h at 90 V cm⁻¹. The DNA was then precipitated with 0.1 vol. 4 M LiCl and 3 vols ethanol and resuspended in 10 µl distilled water. The DNA sample (5 µl) was amplified by PCR in a final volume of 25 µl using the same primer and reaction conditions as above. The thermal cycling parameters were as follows: 35 cycles of 94 °C (1 min), 50 °C (1 min), 72 °C (2 min), and then 72 °C (10 min). The PCR fragment was purified from a 2% (w/v) agarose gel in 1 x TAE (40 mM Tris/acetate, 1 mM EDTA, pH 8.0) using the GeneClean II kit (Bio 101), and cloned into the appropriate restriction site of the vector plasmid pUC18.

Confirmation of differential expression by Northern blotting. Northern blot analysis was carried out using the Digoxigenin...
Amplification of the region between tRNA\textsubscript{Gly} and tRNA\textsubscript{LeU} in \textit{trl}-negative isolates. PCR with primers P5 and P6 (Table 1) was performed in order to amplify the region between the tRNA\textsubscript{Gly} and tRNA\textsubscript{LeU} in \textit{trl}-negative isolates. The cycling parameters were as follows: 1 cycle of 94 °C (2 min), followed by 25 cycles of 94 °C (1 min), 55 °C (1 min) and 72 °C (2 min), with a final elongation step of 72 °C (10 min).

Southern blotting and dot blot analysis. Southern blot and dot blot analyses were carried out using standard methods (Sambrook \textit{et al.}, 1989) and the DIG Nucleic Acid Detection kit. Briefly, 10 \textmu g genomic DNA was cleaved with restriction endonuclease HindIII. Nucleotide sequences were analysed using the MOTIF World Wide Web server.

DNA sequencing and analysis. The nucleotide sequence of the \textit{trl}-I DNA fragment was determined by dideoxyribonucleotide chain termination using the Sequenase kit (USB/Amersham). The nucleotide sequence of the inverse-PCR product, \textit{trl}-I, was determined by the sequencing service at MWG-Biotech, Milton Keynes, UK. Nucleotide sequences were analysed using the BLAST program (version 2.0) from the National Centre for Biotechnology Information (NCBI) internet site covering the GenBank, EMBL, DDBJ and PDB databases. Searches for amino acid sequence motifs were carried out using the MOTIF World Wide Web server.

RESULTS

Arbitrarily primed PCR identifies a tRNA-associated locus (\textit{trl}).

Total RNA was isolated from two clinical isolates, namely isolate MI 212 (recovered from an asymptomatic
individual) and isolate MI 299 (recovered from a patient with a duodenal ulcer). Isolate MI 212 was cagA-positive while isolate MI 299 was cagA-negative. Both isolates were plasmid-free. Single-stranded cDNA was prepared from the RNA of both isolates, followed by second strand synthesis by PCR using radiolabelled dATP and a selection of arbitrary primers. Following polyacrylamide electrophoresis the cDNA fingerprints were visualized by autoradiography. Of the arbitrary primers used, primer P1, which had an internal EcoRI site, gave different fingerprints for the two isolates (Fig. 1). The isolates differed with respect to a 187 bp fragment (designated trl-I) that was present in isolate MI 212 but absent in isolate MI 299. This fragment was purified as described in Methods. It was subsequently digested with restriction endonuclease EcoRI and cloned into the unique EcoRI site of pUC18 to give plasmid pWD1. To confirm the differential expression of the trl locus, Northern blot analysis of total RNA from isolates MI 212 and MI 299 was performed using DIG-labeled trl-I DNA as the probe. A hybridization band of approximately 400 bp was present in isolate MI 212. No hybridization signal was observed for isolate MI 299, confirming that the trl locus was only expressed in isolate MI 212 (Fig. 2b). The 187 bp of fragment trl-I was sequenced. A search of public databases was carried out [prior to the release of the genome sequence of H. pylori strain 26695 (Tomb et al., 1997)] but no significant similarities with known genes or gene products were found.

To further characterize the trl locus, Southern blot analysis of HindIII digests of genomic DNA from isolates MI 212 and MI 299 was carried out using DIG-labeled fragment trl-I DNA as the probe. This analysis located the trl locus on a HindIII-digested genomic DNA fragment of approximately 3 kbp for isolate MI 212 (Fig. 2d). No hybridization signal was observed for isolate MI 299, suggesting that not only was the trl locus not expressed in isolate MI 299, but also that homologous DNA was not present in the genome of isolate MI 299.

Fig. 1. Arbitrarily primed PCR of RNA. Polyacrylamide gel electrophoresis of [α-32P]dATP-labelled, arbitrarily primed PCR products showing the cDNA fingerprints of two H. pylori isolates. Lanes: 1, isolate MI 299; 2, isolate MI 212. The arrow identifies the differentially expressed cDNA fragment trl-I.

Fig. 2. Northern and Southern blot analysis. (a) Ethidium-bromide-stained agarose/formaldehyde gel with total RNA from isolates MI 212 and MI 299. Lanes: 1, isolate MI 212; 2, isolate MI 299. The positions of the 235, 165 and 55 H. pylori rRNA are labelled. (b) Northern blot analysis of the same total RNA as in (a) probed with DIG-labeled trl-I DNA. Lanes: 1, isolate MI 212; 2, isolate MI 299. (c) A similar membrane was hybridized with a DIG-labeled probe complementary to the 235 rRNA of H. pylori as a control. (d) Southern blot analysis of HindIII digests of genomic DNA from isolates MI 212 (lane 1) and MI 299 (lane 2). The membrane was hybridized with DIG-labeled trl-I DNA.
Nucleotide sequencing locates the \(trl \) locus between the \(tRNA^{gly} \) and \(tRNA^{leu} \) genes and reveals two possible ORFs

To obtain further nucleotide sequence information surrounding \(trl-I \), inverse-PCR was used as described in Methods. A 3 kbp PCR product was obtained designated \(trl-II \). A total of 1258 bp of nucleotide sequence was obtained from the PCR product \(trl-II \). A public database search revealed strong nucleotide sequence identity between this new sequence and \(tRNA \) genes from several different organisms. By combining the
original nucleotide sequence data of fragment trl-I and the extra 1258 bp from PCR product trl-II, the trl locus was shown to be located between two tRNA genes, tRNAGly and tRNALeu (Fig. 3). This was confirmed by the release of the complete genome sequence of H. pylori strain 26695 (Tomb et al., 1997). Nucleotide sequence analysis revealed the possibility of two ORFs for the trl locus (Fig. 3a). The first of these ORFs (designated ORF-G; bp 616–322) begins with a GTG start codon and encodes a putative protein of 98 aa (10.8 kDa). The second ORF (designated ORF-A; bp 375–635) is in the opposite orientation to ORF-G, begins with an ATG start codon and encodes a putative protein of 86 aa (9.5 kDa). A search of the public databases revealed that ORF-G is the ORF that is predicted by Tomb et al. (1997) as its putative product shows 98% amino acid sequence identity with the hypothetical protein HP0945.

Nucleotide sequence analysis located the binding sites for the arbitrary primer P1 (bp 412–434 and 602–624; Fig. 3b). Each site showed 39% nucleotide sequence identity with P1. Analysis of the nucleotide sequence upstream of both putative ORFs did not reveal any obvious regions corresponding to Shine–Dalgarno consensus ribosome-binding sites (Shine & Dalgarno, 1974). However, one sequence (TGGGC) 6 bp upstream of the ORF-A start codon may be a possible ribosome-binding site due to a transversion mutation from an adenine to a cytosine. A search for motifs within the amino acid sequence of the two putative proteins revealed no identities with known amino acid motifs.

Primer extension reveals that the putative ORF for trl begins with an ATG start codon and that the locus is co-transcribed with tRNAGly.

To determine the transcription initiation site of the trl locus, primer extension was performed. Two primers were used, P2 and P3, which would determine the direction of transcription of the trl locus. A cDNA product of 261 bp was produced by extension with primer P2 (Fig. 4). There was no product from primer extension with primer P3. This result revealed that the trl locus is transcribed in the same direction as the transcript predicted by ORF-A and not ORF-G. Therefore, there is no transcript corresponding to hypothetical protein HP0945 in isolate MI 212. The result also shows that the transcription initiation site for the trl locus is located at base G (position bp 230; Fig. 4), the first base of the tRNAGly gene. The trl locus is therefore co-transcribed with tRNAGly.

Nucleotide sequence analysis of trl-negative isolates

In an attempt to identify a possible integration/excision site for the trl locus, the region between tRNAGly and tRNALeu in trl-negative isolates MI 270, MI 299, MI 339, MI 354 and MI 365 was amplified by PCR using primers P5 and P6. A product of 141 bp was obtained for three of the isolates (MI 299, MI 354 and MI 365), while a slightly larger product of 157 bp was obtained for the remaining two (MI 270 and MI 339) (Fig. 5a). The PCR products were sequenced directly using primers P5 and P6.

Analysis of the nucleotide sequences showed three main features. Firstly, the size difference between the PCR products was due to a 16 bp sequence present in isolates MI 270 and MI 339 but absent in the other three isolates (Fig. 5b). This 16 bp sequence is identical in both isolates and possesses a conserved 4 bp direct repeat (AGTT) at both its 5' and 3' ends. The other trl-negative isolates also have an AGTT sequence at the 5' boundary with the 16 bp sequence. With the exception of this 16 bp region, the sequences from all five isolates were identical. Secondly, a comparison of the sequences with that of isolate MI 212 confirmed that none of these isolates possessed the trl ORF. Thirdly, the sequence data
revealed that the nucleotide sequence between tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} in both of the trl-negative isolate types (i.e. 37 bp for MI 299, MI 354 and MI 365 and 53 bp for MI 270 and MI 339) revealed no identity to the nucleotide sequence between tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} in isolate MI 212. This suggests that in the trl-negative isolates, the trl locus has been replaced by (or replaces) this 37 bp/53 bp segment due to a site-specific recombination event involving the nucleotide sequence of the tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} and not the sequences between the tRNAs. Therefore, the existence of trl-negative isolates is not due to a loss or gain of a DNA segment from the region between the tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} of trl-positive isolates but rather to the replacement of the whole of this tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} region.

The trl locus is only present in 50% of clinical isolates tested

A collection of \textit{H. pylori} clinical isolates was screened for the trl locus in order to determine whether there was an association between the presence of the locus and \textit{H. pylori}-related disease type. Dot blot hybridization of 64 clinical isolates with DIG-labelled trl-I DNA gave positive signals for 32 (50\%) isolates. No correlation between trl status and clinical origin was revealed (data not shown).

DISCUSSION

This study reports the use of the technique of arbitrarily primed PCR in the identification of a locus that is expressed in 50\% of clinical isolates of \textit{H. pylori}. The trl locus described shows 98\% nucleotide sequence identity with an ORF encoding the hypothetical protein HP0945 from the recently sequenced genome of \textit{H. pylori} strain 26695 (Tomb \textit{et al.,} 1997). However, primer extension analysis has shown that there is no transcript corresponding to hypothetical protein HP0945 and that the transcript of the trl locus is in the opposite orientation to that predicted by Tomb \textit{et al.,} (1997). Since the release of the genome sequence of strain 26695, it has become apparent that predictions of putative ORFs followed by assignment of putative roles must be performed with caution. ORF assignment can vary depending on the system used for analysis of the genome sequence (Berg \textit{et al.,} 1997; Saunders \textit{et al.,} 1998). For example, the analysis of the genome sequence by Saunders \textit{et al.,} (1998) used a different strategy to that of Tomb \textit{et al.,} (1997) and revealed clearly identifiable differences in ORF assignment. The incorrect assignment of ORF-HP0945 confirms these findings.

No correlation was seen between the presence of the trl locus and the clinical origin of the isolates. Whether the trl transcript is translated into a functional protein remains unclear. There are no obvious amino acid motifs within the putative amino acid sequence. Preliminary investigations using hybrid trl-fusion protein constructs in \textit{E. coli} suggest that trl is not translated (data not shown) and that therefore the trl locus may be an example of transcribed ‘junk’ DNA.

A number of gene products in other bacteria are associated with tRNAs (Rossi \textit{et al.,} 1981; van Delft \textit{et al.,} 1987; Bös & Kersten, 1991; Bremaud \textit{et al.,} 1995). For example, the \textit{tuB} operon in \textit{E. coli} and \textit{Stigmamella aurantica} is co-transcribed with four tRNAs which are subsequently removed by processing. This allows for the translation of the \textit{tuB} transcript into a functional protein. Primer extension analysis revealed only one tRNA-trl transcript, indicating that the transcript remains unprocessed. Whether this extended tRNA\textsubscript{G\textasciitilde}-trl transcript affects the functioning of the tRNA is unclear. Tomb \textit{et al.,} (1997) have identified two copies of the tRNA\textsubscript{G\textasciitilde} gene in \textit{H. pylori} strain 26695 so that if the tRNA\textsubscript{G\textasciitilde} which is associated with the trl locus is unable to function correctly, such isolates should have a second copy of the tRNA\textsubscript{G\textasciitilde} gene to counteract this defect.

The nucleotide sequence characterization of the tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} region in isolate MI 299 confirmed that the trl locus was absent. It also revealed that the absence of the trl locus in isolate MI 299 is not the

\textit{H. pylori} tRNA-associated locus

Fig. 5. Characterization of trl-negative isolates. (a) Agarose gel of the amplified products from a PCR using primers P5 and P6 complementary to the tRNA\textsubscript{G\textasciitilde} and tRNA\textsubscript{L\textasciitilde} Lanes: 1, isolate MI 212 (trl-positive); 2, isolate MI 270; 3, isolate MI 354; 4, isolate MI 339; 5, isolate MI 365; M, 100 bp ladder (BRL). (b) Comparison of the nucleotide sequence from the PCR products obtained from the trl-negative isolates in (a) and the same region from isolate MI 299. The doubly underlined numbers above the nucleotide sequence are the base pair numbers with respect to the trl locus of MI 212 (Fig. 3b). Dashes indicate gaps that were introduced to allow optimal alignment between the five sequences. The repeat sequences (AGTT) are underlined.
result of an excision or integration event within the region between the tRNA{Gly} and tRNA{Leu} in a trl-positive isolate but rather due to the complete replacement of this DNA region by a 37 bp/53 bp DNA segment. These data would suggest that an extra-chromosomal source for either the trl-positive or trl-negative regions exists which can integrate into the bacterial genome via the conserved tRNA sequences. In addition, the identification of two types of trl-negative isolates revealed the possibility of another site-specific recombinational event occurring in the region between tRNA{Gly} and tRNA{Leu}. It would appear likely that the extra 16 bp sequence identified in isolates MI 339 and 365 by a recombinational event involving the direct repeat AGTT sequence. The genome sequence of H. pylori strain J99 has been released since the submission of this paper (Alm et al., 1999). Strain J99 is trl-negative with a 37 bp region between the tRNA{Gly} and tRNA{Leu} identical to that described herein.

The location of the trl locus within a tRNA cluster is noteworthy given that tRNA genes have been shown to be the sites of integration for transposons, plasmids and bacteriophages in various bacteria (Reiter et al., 1989; Inouye et al., 1991; Hayashi et al., 1993; McShan et al., 1997; Ratti et al., 1997). Some bacteriophage carry tRNA genes in their genomes which can facilitate site-specific integration via conserved sequences in bacterial genomes (Cheetham & Katz, 1995). Plasmids (Hagblom et al., 1986; Madon et al., 1987; Reiter et al., 1989; Richardson & Park, 1997) and pathogenicity islands (Ritter et al., 1995; Hacker et al., 1997; Hensel et al., 1997; Sullivan & Ronson, 1998) have also been shown to be associated with tRNA genes. The highly conserved nucleotide sequences of the tRNA genes provide stable integration sites and the possibility of integrating into the genomes of a broad range of bacteria. Many of the proteins described in H. pylori show stronger amino acid sequence similarities to the corresponding proteins from Gram-positive bacteria and eukaryotes (Berg et al., 1997; Tomb et al., 1997). This would suggest that transfer of genetic information from different phylogenetic groups to H. pylori has occurred. Therefore, one possible explanation for the presence of the trl locus in only a proportion of H. pylori isolates is that the locus was acquired by horizontal transfer. The exact mechanism behind trl acquisition remains to be elucidated.

Bacteriophage have been described in H. pylori but only at the morphological level (Schmid et al., 1990; Heintschel von Heinegg et al., 1993). Molecular studies of H. pylori bacteriophage might identify a possible mechanism of horizontal gene transfer in this organism. Plasmids have also been identified and well-characterized in H. pylori (Kleanthous et al., 1991; Heuermann & Haas, 1995; Minnis et al., 1995). They, too, could be important elements in the horizontal transfer of acquired genetic elements between strains of H. pylori.

In contrast to other reports on the use of arbitrarily primed PCR of RNA to identify differentially expressed genes in prokaryotes (Wong & McClelland, 1994; Kwaik & Pederson, 1996; Peek et al., 1998; Thies et al., 1998; Yuk et al., 1998), few arbitrarily primed PCR products were seen in the fingerprints produced in the present work. This is most likely due to the fact that total prokaryotic RNA contains large amounts of rRNA species which reduces the efficiency of obtaining arbitrarily primed PCR products (Wong & McClelland, 1994). Indeed, it would seem that the reason that the trl locus was identified using this technique is that, as it is co-transcribed with tRNA{Gly}, it would be a well-represented transcript in a total RNA preparation from a trl-positive H. pylori isolate. Therefore, the technique as used in this work has not been as sensitive as previously described (Wong & McClelland, 1994; Kwaik & Pederson, 1996; Thies et al., 1998; Yuk et al., 1998).

This problem of abundant structural RNA species in a total RNA preparation could be overcome by using a method that would specifically remove the abundant 23S, 16S and 5S rRNA species. Complementary DNA to these specific RNA species could be hybridized under suitable conditions giving DNA–rRNA hybrids that could then be removed by either hydroxylapatite chromatography or biotin–streptavidin binding (Li & Gruber, 1996).

The genetic variability of H. pylori has been well-documented, although the mechanisms responsible are as yet undefined (Marshall et al., 1998). At the molecular level, the organism’s genetic diversity has been shown by extensive point mutations and mosaic differences in conserved genes (Atherton et al., 1995), the presence or absence of particular loci (Xiang et al., 1995; Cao & Cover, 1997) and pathogenicity islands (Censi et al., 1996), and by large-scale chromosomal rearrangements (Taylor et al., 1992; Jiang et al., 1996). The identification of the trl locus in only 50% of clinical isolates tested further confirms the genetic diversity in H. pylori, as do the differences seen in the nucleotide sequences of the region between the tRNA{Gly} and tRNA{Leu} genes in trl-negative isolates. Use of an optimized version of arbitrarily primed PCR of RNA in the identification of other such genetic variations may provide a better understanding of the genetic diversity and pathogenicity of H. pylori.

ACKNOWLEDGEMENTS

W.G.D. was the recipient of an Irish American Partnership scholarship in conjunction with Forbairt and Abbott Laboratories (Ireland). D.G.M. was in receipt of a Health Research Board of Ireland studentship.

REFERENCES

Alm, R. A., Ling, L.-S. L., Moir, D. T. & 20 other authors (1999). Genomic sequence comparison of two unrelated isolates of the

Received 11 November 1998; revised 22 January 1999; accepted 22 February 1999.