Identification of a novel nutrient-deprivation-induced Sinorhizobium meliloti gene (hmgA) involved in the degradation of tyrosine

Anne Milcamps¹,² and Frans J. de Bruijn¹,²,³

Author for correspondence: Frans J. de Bruijn (MSU-DOE Plant Research Laboratory). Fax: +1 517 355 9614. e-mail: debruijn@pilot.msu.edu

Sinorhizobium meliloti strain N4 carries a Tn5luxAB insertion in a gene which is induced by nitrogen and carbon deprivation as well as in the presence of tyrosine. The Tn5luxAB-tagged locus was found to share significant similarity with the human hmgA gene and the corresponding Aspergillus nidulans gene, encoding the enzyme homogentisate dioxygenase, which is involved in the degradation of tyrosine. Extended DNA sequence analysis of the tagged locus revealed the presence of several ORFs, including one encoding a polypeptide sharing a high degree of similarity with human and fungal maleylacetoacetate isomerases. Strain N4 was found to be unable to use tyrosine as carbon source, to lack homogentisate dioxygenase activity, to produce a melanin-like pigment and to be affected in stationary-phase survival. This is believed to be the first report of a hmgA-homologous gene in bacteria.

Keywords: Rhizobium, starvation, homogentisate dioxygenase, maleylacetoacetate isomerase, glutathione S-transferase

INTRODUCTION

Bacteria often encounter severe stress conditions such as nutrient limitation, temperature shifts, pH variability, oxidative stress and osmotic stress in their natural environment (Foster & Spector, 1995; Graham, 1991; Moriarty & Bell, 1993). Coping with and surviving these adverse conditions requires numerous physiological changes and morphological adaptations. Much of our knowledge regarding bacterial responses to nutrient limitation comes from studies on Bacillus subtilis, Salmonella typhimurium and marine Vibrio species (Hecker et al., 1996; Spector et al., 1993; Ostling et al., 1993). However, Escherichia coli has served as a model system and its responses to starvation or entry into stationary phase have been studied in detail. Several morphological effects have been observed, such as the generation of smaller and sphere-shaped cells (Lange & Hengge-Aronis, 1991). Numerous physiological changes have been described that occur when E. coli cells enter stationary phase. Storage compounds such as glycogen are synthesized (Okita et al., 1981). Proteins are degraded at a higher rate to provide the starving cell with amino acids for the synthesis of new proteins and to remove abnormal proteins resulting from cellular breakdown (Mandelstam, 1963; Li et al., 1994). RNase activity in stationary-phase cells increases (Mandelstam, 1963) and nutrient-scavenging capacity is enhanced by increased synthesis or production of alternative substrate-capturing or metabolic enzymes, and specific transport systems (for reviews, see Matin et al., 1989; Kolter et al., 1993).

Many starvation-induced proteins have been identified by means of two-dimensional-PAGE. Nystrom (1994) and Matin (1991) have shown that at least 70 proteins (Pex and Cst) are induced by nitrogen, phosphate or carbon limitation. Lomovskaya et al. (1994) cloned one of the cAMP-independent starvation-induced loci (the pexB gene) via reverse genetics but most of the genes encoding these proteins have not been characterized in detail. Genes that have been investigated include the energy-metabolism genes hya and ccbAB-appA (Atlung et al., 1997), the peptide-transport gene cstA (Schultz & Matin, 1991), the ugp operon encoding the uptake of phosphate compounds (Kasahara et al., 1991), the carbon-starvation-induced csi loci (Weichart et al., 1993) and the carbon-starvation-induced csi (slp) loci that encode secreted products (Alexander et al., 1993; Alexander & St John, 1994). Several loci with a (putative) regulatory function have been identified.
including rpoS encoding a stationary-phase-related sigma factor, which controls the expression of several stationary-phase-induced genes (Lange & Hengge-Aronis, 1991; Hengge-Aronis, 1993), uspA, encoding the universal stress protein (Nystrom & Neidhart, 1994), the ssrA gene encoding a stringent starvation protein (Williams et al., 1994), the cspA cold-shock gene analogue cspD (Yamanaka & Inouye, 1997), the phosphate-starvation-induced cbpA locus encoding a DNA-binding protein (Yamashino et al., 1994) and the hig and htp genes encoding integration host factor (IHF) (Nystrom, 1995).

In contrast to what is known in E. coli, little information is available about the physiological response of soil bacteria to nutrient deprivation or slow growth rate conditions (for reviews, see Roszak & Colwell, 1987; van Elsas & van Overbeek, 1993). However, their ability to cope with nutritional and other environmental stresses is of vital importance for their survival, persistence and competitiveness in the soil. Soil is a harsh, oligotrophic environment (Williams, 1985). Growth substrates are scarcely available because of a paucity of organic matter, the insolubility of organic substrates, their recalcitrant nature (i.e. humus or lignin) and limited microbial access to these nutrients. Therefore, in the soil, bacterial growth is very slow and periods of non-growth occur frequently. The rhizosphere soil is more advantageous for growth of soil microbes, due to the presence of root exudates which provide readily accessible nutrients. However, even in the rhizosphere, bacterial growth and activity are generally limited to the short periods during which such exudates are available (Lynch & Whipp, 1990).

Recently, several research groups have started to investigate the response of soil micro-organisms to nutrient-limiting conditions, either in culture or in the soil habitat, and have identified a number of nutrient-limitation-induced genes. For example, Pseudomonas fluorescens has been mutagenized with a Tn5luxAB reporter gene transposon, resulting in the isolation of loci induced by deprivation for nitrogen and phosphate (Kragelund et al., 1995). One of the phosphate-deprivation-induced gene fusions has been used as a reporter system to assay phosphate availability in the barley rhizosphere (Kragelund et al., 1997). In Pseudomonas putida, a gene involved in carbon starvation survival has been identified by mini-Tn5 mutagenesis (Kim et al., 1995). Morphological and physiological changes have been documented for Rhizobium leguminosarum bv. phaseoli in stationary growth phase (Thorne & Williams, 1997), showing a general response (decreased protein, DNA and RNA synthesis) similar to E. coli. The deprived cells also exhibited cross-protection against other stresses. In addition, Uhde et al. (1997) have described the isolation of Sinorhizobium meliloti mutants affected in stationary growth phase survival and carrying the transposon insertion in a gene encoding an ABC-type transporter, genes for cytochrome synthesis or genes for amino acid metabolism.

We have focused our investigations on strain 1021 of the common soil microbe S. meliloti, the nitrogen-fixing symbiont of alfalfa, for which an extensive system of genetic analysis is available. Using Tn5luxAB (Wolk et al., 1991), we have isolated 33 S. meliloti strains with Tn5luxAB gene fusions induced by either nitrogen or carbon deprivation or both (Milcamps et al., 1998). Here, we report the characterization of the Tn5luxAB-tagged locus in one of these strains (N4), identifying a novel bacterial gene involved in tyrosine degradation.

METHODS

Strains and plasmids. The following strains were used: Sinorhizobium meliloti strain 1021 (Meade et al., 1982) and Escherichia coli DH5a (Hanahan, 1983). S. meliloti strain 1021 is the reference strain. S. meliloti strains N1, N4, N12 and N110 were obtained by Tn5-1063 mutagenesis of strain 1021 and carry Tn5luxAB reporter gene fusions that are inducible under conditions of nitrogen deprivation (Milcamps et al., 1998). The following plasmids were used: pRK2013 [ColEl replicon, Tra', Km' (Ditta et al., 1980)], pPH1J1 [IncP, Tra', Sm'Sp'Gm'] (Hirsch & Beringer, 1984); pLAFR1 [broad host range, IncP, Mob', Tra', Tcp' (Friedman et al., 1982)]; pBluescript II SK [Ap', obtained from Stratagene]. pN4Eco is plasmids recovered from strain N4 and carry the Tn5-1063 with flanking DNA on a EcoRI fragment and carry the Tn5-1063 with flanking DNA on a EcoRI fragment and Clal fragment respectively (Km', this work). pLAFRN4Eco is pN4Eco cloned into pLAFR1 (this work).

Growth media and conditions. E. coli strains were grown at 37°C on LB medium (Sillhavy et al., 1984), supplemented with desired antibiotics at the following final concentrations: Km 25 µg ml⁻¹, Tc 10 µg ml⁻¹, Sp 50 µg ml⁻¹. S. meliloti strains were grown at 28°C on TY medium (Beringer, 1974) or GTS medium, supplemented with the appropriate antibiotics (Sm for S. meliloti 1021 at 100 µg ml⁻¹; Km for Tn5luxAB-bearing mutant strains at a final concentration of 200 µg ml⁻¹). The composition of basic GTS medium is (per litre): 0.1 g KH₂PO₄; 1 g NaCl; 3 g Tris; 246 mg MgSO₄·7H₂O; 11 mg CaCl₂; 0.27 mg FeCl₃·6H₂O; 0.242 mg Na₂MoO₄·2H₂O; 3 mg H₃BO₃; 2.23 mg MnSO₄·4H₂O; 0.287 mg ZnSO₄·7H₂O; 0.125 mg CaSO₄·5H₂O; 0.065 mg CoCl₂; 2 mg biotin (Kiss et al., 1979). The carbon source in GTS medium was succinate (0.27%) and glucose (0.2%); the nitrogen source was (NH₄)₂SO₄ (0.2%), unless specified otherwise. GTS–N is GTS medium devoid of all nitrogen sources; GTS–C is GTS medium devoid of all carbon sources. Phenylalanine, tryptophan or tyrosine was added to basic GTS medium as carbon or nitrogen source at a final concentration of 0.2%. When supplemented to GTS or GTS–N, these amino acids were used at a final concentration of 0.02% or 0.2%.

DNA manipulations. Plasmid DNA for restriction analyses was isolated using an alkaline lysis method according to Sambrook et al. (1989). Plasmid DNA for sequencing was isolated using a Qiagen kit. Hybridization was performed as described by Amersham, using the non-radioactive DNA-labelling and detection kit of Boehringer Mannheim.

Plasmid transfer. Plasmids were introduced into host cells by transformation (CaCl₂ method) or via triparental conjugation (Sambrook et al., 1989; Ditta et al., 1980; de Bruijn & Rossbach, 1994).

DNA sequence analysis. Double-stranded DNA sequence analysis of fragments subcloned into Bluescript vectors was performed using standard primers and primer walking approaches. DNA sequencing was carried out at the DNA Sequencing Facility at Michigan State University and the
Biotic Institute at Yale University (CT, USA). Analysis of the data obtained was carried out using the Sequencher program (Gene Codes Corporation). Codon preference profiles were determined with the Codon Use 3.1 program (C. Halling, University of Chicago, Chicago, IL, USA). Similarity searches were carried out using the BLAST program (Altschul et al., 1990). Alignments of deduced amino acid sequences were obtained using the PILEUP program and similarity values were computed with the BESTFIT program (Genetics Computer Group, Madison, WI, USA).

Measurements of luciferase activity. Luciferase activity in strain N4 was monitored using a Hamamatsu Photometric System model C1660-20 (Photonic Microscopy) coupled to a Nikon 35 mm f 2.0 macro lens, or a luminometer (Lumat B89501; Wallace Inc.).

For measurements of luciferase activity of colonies on Petri dishes, an exponentially growing culture was spotted on a filter, placed on GTS medium. The Petri dishes with filters were incubated for 36 h at 28 °C. Subsequently, the filters were transferred to GTS medium (control) and GTS–N, GTS–C or GTS supplemented with different amino acids at a concentration of 0.02%, as indicated in the text. The Petri dishes were incubated at 28 °C for 6–24 h and luciferase activity was analysed with the Hamamatsu photonic camera. For this purpose, 50 μl n-decyl aldehyde (substrate for luciferase; Sigma) was spread on a glass Petri dish cover, which was subsequently placed over the Petri dish carrying the filter. After 60 s of exposure to the aldehyde, the Petri dish with filter was placed under the camera and photons were counted for 1 min, as described by Wolk et al. (1991).

For measurements of luciferase activity of cultures, an overnight culture, grown in GTS, was diluted in fresh medium and grown to exponential phase. The cells were harvested by centrifugation (rotor and tubes at room temperature) and resuspended in regular GTS medium or modified GTS medium as indicated in the text and figure legends. The cultures were further incubated at 28 °C, and luciferase activity and cell density were measured at regular intervals. Quantitative measurements were carried out using a luminometer. Culture samples (10 μl) were mixed with 100 μl of a 2% BSA solution in H₂O (albumin bovine 98–99% ; Sigma), containing 0.2% n-decyl aldehyde, vortexed for 30 s and immediately analysed with the luminometer. Photons were counted for 1 min and data were recorded as relative light units (RLU).

Luminescence of GTS medium without cells was used for baseline subtraction. For measurements of luciferase activity in carbon-deprived cells, 100 μl of cells and 100 μl of regular GTS medium were vortexed for 10 s, in the presence of FMN (20 μM final). This mixture was incubated at room temperature for 10 min, and a 10 μl aliquot was used for photometric determination, as described above. GTS was added to provide the carbon-deprived cells with an energy source to reduce FMN to FMNH₂, which is a required cofactor for the luciferase reaction. It should be noted that quantitative variation in luminescence of the same fusion under the same induction conditions in different experiments is often observed. Therefore, data collected in separate experiments were not compared in a quantitative fashion.

Homogentisate dioxygenase assay. Homogentisate dioxygenase activity was measured by spectrophotometric determination (A₂₅₈) of the formation of maleylacetate (Edwards & Knox, 1955). Exponentially growing cultures of strains 1021 and N4 were centrifuged, and the cells were washed and resuspended in either induction medium (GTS–N supplemented with tyrosine) or regular GTS medium. The assay was carried out after 2 and 4 h incubation at 28 °C. The cells were collected by centrifugation, concentrated 10-fold in 100 mM potassium phosphate buffer, pH 7.0, and lysed by sonication (2 min at 50% power; TSD-375 Sonicator; Tekmar). The extract was clarified by centrifugation and aliquots were used for the enzyme assays in reaction mixtures containing, in a final volume of 1 ml, 100 mM potassium phosphate buffer pH 7.0, 2 mM ascorbate, 50 μM FeSO₄, 250 μM homogentisate and 50 μl extract (corresponding to 50–75 μg protein). Protein concentration was determined with the Bio-Rad protein assay.

Growth and survival in stationary growth phase. Strains 1021 and N4 were cultured in GTS medium in 250 ml flasks and incubated with shaking at 28 °C for 3 weeks. Viable cells of each culture were counted at regular time intervals by plating a dilution series of each culture on TY. The experiment was performed in triplicate.

Nodulation experiments. Alfalfa (Medicago sativa) seeds were sterilized by soaking in 95% ethanol for 10 min, followed by 3 min in 3% peroxide (freshly prepared) and rinsed several times with sterile H₂O. Seeds were germinated on water agar (1.2% agar). Two-day-old seedlings were inoculated with a washed, exponentially growing culture of either strain 1021 or strain N4. The plants were grown in tubes containing 20 ml sterile nitrogen-free B-D liquid medium (Broughton & Dilworth, 1971), incubated in a growth chamber (16 h light, 28 °C) for 6 weeks and analysed for nodulation and nitrogen fixation. Acetylene reduction assays were carried out by capping the tubes, containing individual plants, with rubber seal stoppers, injecting acetylene to a final concentration of 10% of the gas phase and determining ethylene production after 1–3 h, using a Varian (model 3700) gas chromatograph.

RESULTS

Cloning of the n4 locus and recreation of the Tn5luxAB insertion mutant

Mutant strain N4 was obtained by screening a Tn5luxAB insertion bank of S. meliloti strain 1021 for strains displaying luciferase activity under nitrogen-deprivation conditions (Milcamps et al., 1998). Southern blot analysis of restricted genomic DNA of strain N4, probed with a DNA fragment carrying Tn5luxAB, showed that this strain contained a single transposon insertion (Milcamps et al., 1998). The tagged locus of strain N4 was excised as an EcoRI or ClaI fragment, self-ligated and introduced into E. coli as a replicating plasmid (pN4Eco and pN4Cla respectively) due to the oriV within the Tn5luxAB (Wolk et al., 1991). The pN4Eco plasmid was also cotransformed into the broad-host-range vector plAFR1 (pLAFRN4). pLAFRN4 was subsequently introduced into S. meliloti strain 1021 via conjugation, and the wild-type locus was replaced with the tagged locus of strain N4, as described by Ruvkun & Ausubel (1981). The reconstructed mutant strain (N4R) was examined for luciferase activity and other phenotypic traits (see below) under nitrogen-deprivation conditions, and was found to have an identical phenotype to that of the original N4 mutant strain; this suggested that the original Tn5luxAB insertion was indeed responsible for the observed phenotypic traits. The Tn5luxAB-tagged locus of strain N4 will be referred to in the text as the n4 locus and the chimeric Tn5luxAB fusion as the n4 gene fusion.
Luciferase activity of strain N4

Strain N4 was analysed for its luminescence under different conditions, using a photonic camera (see Methods) (Fig. 1). Induction of the n4 gene fusion harboured by strain N4, resulting in luciferase expression, was observed under nitrogen-deprivation (GTS–N) and carbon-deprivation (GTS–C) conditions but, surprisingly, also on rich medium (TY) (Fig. 1). Quantitative measurements of the luciferase activity were performed on broth cultures of strain N4. Nitrogen-deprivation conditions were created by resuspending exponentially growing cells in nitrogen-free medium (GTS–N). The influence of the growth phase of the culture on luciferase activity was first determined. For this purpose, a culture of strain N4 was sampled as the OD600 increased from 0.2 to 1.5, and the cells were analysed for luciferase activity (see Methods). Luminescence was observed as long as cells were in the exponential growth phase (up to OD600 1). Cells in the stationary growth phase, however, did not respond well to transfer to deprivation medium and showed a decline in luciferase activity (data not shown). This decline is likely to be due to a lack of energy (FMN) in stationary-phase cells, which produce less reducing power (Siegele & Kolter, 1992). It should be pointed out that cells resuspended in regular GTS medium keep growing; cells in GTS–N medium are retarded in growth and cells in GTS–C medium stop growing immediately after resuspension.

Measurement of luciferase activity over time showed that the n4 gene fusion was induced after 1 h of nitrogen deprivation (Fig. 2a). Luminescence increased over time but levelled off after 8–10 h, as cells started to reach the late exponential phase (data not shown). Therefore, in subsequent experiments, an induction time of 4 h was used.

When strain N4 was analysed for luciferase activity in comparison to strains N1, N12 and N110 (carrying luxAB fusions in loci different from the n4 locus but also induced by nitrogen deprivation), a similar level of activity was found (Fig. 2a). Moreover, the temporal pattern of nitrogen deprivation induction did not differ between these strains, suggesting that the observed expression pattern (intensity and temporal activity) was shared by all four nitrogen-deprivation-induced fusions. Incubation of strain N4 in carbon free medium (GTS–C) resulted in a very low level of luciferase activity (Fig. 2b). As pointed out above, this is likely to be caused by the lack of FMNH2 (Meighen & Dunlap, 1993), which cannot be generated by bacterial cells in the absence of a suitable carbon source. Luciferase activity of the n4 gene fusion could indeed be increased by briefly providing the carbon-deprived cells of strain N4 with an energy source shortly before the luciferase assay (see Methods; Fig. 2b).

(NH4)2SO4 was found to inhibit the luciferase activity in strain N4 at a minimum concentration of 2 mM. Therefore, concentrations below this level of available nitrogen were considered as deprivation conditions in this study. The n4 gene fusion was found to be induced on rich medium (TY), but to a lesser degree than on nitrogen-free medium. To examine if a particular component of TY medium induced the expression of the n4 gene fusion, luciferase measurements were carried...
Nutrient-deprivation-induced gene in S. meliloti

Fig. 3. Luciferase activity of strain N4 grown under different conditions: (a) different nitrogen and carbon sources; (b) GTS or GTS-N supplemented with Tyr (tyrosine), Phe (phenylalanine), Trp (tryptophan), Hom (homogentisate) or Hydr (hydroxyphenyl-pyruvic acid). All substrates were added at a concentration of 0.02%. The results are means of three independent determinations, ±SE.

Fig. 4. Map of the n4 cluster, with indication of the TnSluxAB insertion site, ORFs, protein sequence similarities, organism with which similarity was found and similarity significance (P value: probability that such a match would occur merely by chance, as given by the BLAST algorithm). P, PstI; S, SalI; B, BamHI; E, EcoRI; X, Xhol.

out with cells grown on GTS medium, supplemented with different TY medium ingredients (Fig. 3b). Tyrosine, tryptophan and phenylalanine were tested at a concentration of 0.02%, a typical concentration for TY medium. Only GTS supplemented with tyrosine caused the production of a significant level of luciferase activity in strain N4. GTS-N supplemented with tyrosine caused the production of a level of luciferase activity that was higher than with GTS-N or GTS + tyrosine. This suggests that more than one regulatory system may control the expression of the n4 locus. Supplementation of GTS-N with tryptophan did not influence the induction of the n4 gene fusion by the nitrogen-starvation condition. Phenylalanine, when added to GTS, did not cause induction of luciferase activity. However, GTS-N + phenylalanine caused a higher induction than GTS-N alone, indicating that phenylalanine stimulates expression of the n4 gene fusion only in nitrogen-free medium.

DNA sequence analysis

The DNA sequence of a 4 kb fragment harbouring the n4 locus was analysed. Several potential ORFs were identified, with the TnSluxAB insertion located in ORF1 (see Fig. 4). A sequence similarity search in GenBank
revealed a striking similarity of the deduced ORF1 product with eukaryotic enzymes, encoded by the hmgA gene of Aspergillus nidulans (50% identity, 56% similarity), a human cDNA clone (50% identity, 56% similarity) and a cDNA clone of mouse (51% identity, 57% similarity) (Fig. 5). All three loci encode homogentisate dioxygenase (hydroxyphenylacetate dioxygenase), involved in the degradation of tyrosine (Fernandez-Canon & Penalva, 1995; Fernandez-Canon et al., 1996; Schmidt et al., 1997). In humans, tyrosine degradation occurs through homogentisate, and interruptions of this pathway cause the disease alkaptonuria. Degradation of tyrosine has been studied to a much lesser extent in bacterial systems, such as Legionella...
pneumophila, Vibrio cholerae and Shewanella colwelliana (Steintert et al., 1995; Kotob et al., 1995; Coon et al., 1994). Two of the loci involved in the tyrosine degradation pathway have been identified and characterized: the melA and lly genes of S. colwelliana and L. pneumophila respectively (Fuqua et al., 1991; Winternieyer et al., 1994). However, a hmgA-like gene such as the gene tagged with Tn5luxAB in strain N4 has not, to our knowledge, previously been described in bacteria.

Downstream from ORF1, we found three ORFs with the same transcriptional direction (Fig. 4). The deduced gene product of ORF2 displays a weak similarity with a protein encoded by an unknown ORF of Mycobacterium tuberculosis (g1524223). The deduced amino acid sequence of ORF3, however, showed significant similarity with the recently described enzyme maleylacetacetate isomerase, reported for A. nidulans and humans (40% identity and 46% similarity; 47% identity and 53% similarity respectively) (Fig. 6; Fernandez-Canon & Penalva, 1998). This enzyme is involved in the degradation of maleylacetacetate, the next enzymic step in the tyrosine degradation pathway after the homogentisate dehydrogenase step. Similarity of the deduced amino acid sequence encoded by ORF3 was also found with glutathione S-transferase (GST) from human (PID g2498441; 47% identity and 54% similarity) and GST of the nematode Caenorhabditis elegans (42% identity and 48% similarity; Wilson et al., 1998). Similarity was also found with the gene products encoded by a bacterial ORF with unknown function from Sphingomonas sp. (Armengaud & Timmis, 1997) and the gstA gene of Rhizobium leguminosarum. The product of the latter gene, described as a GST based on sequence similarity, has not been ascribed a distinct function since a mutation in gstA does not display a distinct phenotype (Tawfiq Alkafaf et al., 1997). The S. meliloti ORF3 was followed by an ORF with significant similarity to the 3' end of the gene product of a Rhodobacter capsulatus purU-like gene, possibly involved in purine biosynthesis (Armengaud et al., 1997).

The four S. meliloti ORFs are transcribed in the same way by the same promoter.
orientation and DNA sequence motifs characteristic of transcriptional terminators were not found in the intergenic regions. Thus the four ORFs may be part of the same transcriptional unit. Each of the four ORFs was preceded by a Shine–Dalgarno sequence. ORF1 is 1359 bp long, ORF2 and ORF3 are 1174 and 639 bp long, respectively. Upstream of ORF1, a −35/−10-type of promoter consensus sequence was found. In addition, in the 5′ upstream region of ORF1, a small ORF with the opposite transcriptional direction was identified which may encode a regulator protein since amino acid sequence similarity searches, as well as a pattern search, revealed similarities with a group of bacterial regulatory proteins of the marR signature family (Prosite: PDOC00861; data not shown).

Tyrosine as nitrogen and carbon source

Since the n4 locus of S. meliloti was induced by nitrogen and carbon deprivation, as well as in the presence of tyrosine, we examined whether tyrosine could serve as sole carbon or nitrogen source for S. meliloti. Solid GTS medium, supplemented with tyrosine displayed a cloudy appearance due to partial precipitation of tyrosine. On this medium, a halo appeared around colonies of strains 1021 and N4, suggesting that tyrosine was metabolized by actively growing cells. Although the growth was slow, strain 1021 was found to be able to utilize tyrosine, tryptophan and phenylalanine as sole nitrogen sources but only tyrosine as sole carbon source (Table 1). Strain N4 was unable to grow on tyrosine as sole carbon source, indicating that the n4 locus is important for the derivation of carbon substrates from tyrosine; this is consistent with the observation that the n4 locus is induced under carbon-deprivation conditions. However, strain N4 was able to grow with tyrosine as sole nitrogen source, indicating that S. meliloti does not employ the entire degradation pathway to obtain nitrogen from tyrosine. Instead it may scavenge nitrogen from tyrosine at an earlier stage of the pathway, before the homogentisate dioxygenase catalysed step (see Fig. 7). Since the n4 locus was induced by nitrogen deprivation, the induction of expression of the n4 gene fusion might be caused by degradation products of tyrosine. To support this conclusion, we tested two substrates of the tyrosine degradation pathway described for A. nidulans (homogentisate and hydroxyphenylpyruvic acid; Fernandez-Canon & Penalva, 1995). As shown in Fig. 3(b), both these intermediates indeed induced the n4 gene fusion.

Physiological and biochemical analysis of strain N4

Strain N4 produced a brown pigment when grown in liquid or solid TY medium for several days. This was not observed for strain 1021. In regular GTS medium, pigmentation was not observed in exponentially growing cells, but older cultures, grown for at least 7 d, did display a faint brown pigmentation. A similar observation has been reported for the A. nidulans mutant strain carrying an insertion in the hmgA gene. The interruption of the hmgA gene in this fungus results in the accumulation and secretion of homogentisate, which turns dark brown due to oxidation. Similarly, the pigment of strain N4 turned brown after prolonged incubation. The addition of tyrosine (0:02 % or 0:2 %) to GTS medium enhanced the production of the pigment significantly at 0:2 %. In aerated liquid medium, colour formation occurred much more quickly, with the cultures changing in a few days from a pale colour to pink, red, brown, and finally black. These data support the hypothesis that strain N4 is secreting homogentisate.

Table 1. Growth of S. meliloti strains 1021 and N4 with different amino acids as nitrogen or carbon source

<table>
<thead>
<tr>
<th>Medium</th>
<th>Strain 1021</th>
<th>Strain N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTS</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>GTS-C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GTS-C+tyrosine</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>GTS-C+tryptophan</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GTS-C+phenylalanine</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GTS-N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GTS-N+tyrosine</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GTS-N+tryptophan</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>GTS-N+phenylalanine</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ +, Good growth; +, reduced growth; −, no growth.

A. nidulans

<table>
<thead>
<tr>
<th>Bacterial species and gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Phenylalanine dioxygenase</td>
</tr>
<tr>
<td>4-Hydroxyphenylpyruvate</td>
</tr>
<tr>
<td>4-Hydroxyphenylpyruvate dioxygenase</td>
</tr>
<tr>
<td>Homogentisate</td>
</tr>
<tr>
<td>Maleylacetoacetate</td>
</tr>
<tr>
<td>Maleylacetoacetate isomerase</td>
</tr>
<tr>
<td>Fumarylacetoacetate</td>
</tr>
<tr>
<td>Fumarylacetoacetate hydrolase</td>
</tr>
<tr>
<td>Fumarate + Acetoacetate</td>
</tr>
</tbody>
</table>

Fig. 7. Phenylalanine/tyrosine degradation pathway, described for A. nidulans. Bacterial genes, corresponding to the enzymes of this pathway, are indicated to the right.

+ ++, Good growth; +, reduced growth; −, no growth.
growth phase a decrease in viable counts was observed
pigment, resulting from homogentisate secretion. Exam-
ation of strains 1021 and N4 for growth in minimal
medium and colony-forming units were determined at
stationary growth phase was analysed. In this paper, we present the results of biochemical and
characteristics of strains N4 and 1021 in liquid minimal GTS
medium. The results are means of three measurements from three cultures, ±SE.

Fig. 8. Growth and survival of strains N4 (○) and 1021 (●) in liquid minimal GTS medium. The results are means of three measurements from three cultures, ±SE.

Additional evidence for the proposed interruption of the tyrosine degradation pathway in strain N4, and the block in homogentisate dioxygenase activity, was obtained by enzyme assays. Cell extracts of strains 1021 and N4 were spectrophotometrically analysed for the presence of maleylacetoacetate, the degradation product of homogentisate (see Methods). Cell extracts of strain 1021 but not of strain N4, showed absorption at A$_{330}$, suggesting that the mutant strain N4 cannot produce maleylacetoacetate.

Growth rate and survival of strain N4

The growth rate and survival characteristics of strains N4 and 1021 in stationary growth phase was analysed. Both strains were individually grown in minimal GTS medium and colony-forming units were determined at regular intervals for up to 3 weeks. Strain N4 was found to be unaffected in growth rate, but in the stationary growth phase a decrease in viable counts was observed (Fig. 8). This decline in survival might be due to the transposon insertion in strain N4, rendering the strain incapable of scavenging carbon from tyrosine, which may constitute an alternative nutrient source in starving, stationary-phase cells. Reduction of survival, observed after 1 week of growth, was found to occur concomitantly with the production of the light brown pigment, resulting from homogentisate secretion. Examination of strains 1021 and N4 for growth in minimal GTS medium supplemented with homogentisate at different concentrations (0.0001–0.02%), showed that this substrate prevented growth at a concentration of 0.01% or higher. Smaller concentrations of homogentisate allowed growth but at a reduced rate, suggesting that homogentisate has a toxic effect on S. meliloti cells. Therefore, the observed impairment of survival of strain N4 in minimal GTS medium may be the result of the inability to use tyrosine as nutrient source or the secretion of the toxic compound homogentisate.

Symbiotic phenotype of strain N4 on alfalfa plants

Alfalfa plants inoculated with strain N4 displayed a normal nodulation and growth phenotype. Nodules were produced that were regular in shape, colour and number, and the nodules displayed acetylene reduction activity similar to those produced by inoculation with strain 1021 (data not shown); this suggests that the tyrosine catabolism pathway via homogentisate dioxygenase is not essential for nodulation and symbiotic nitrogen fixation.

DISCUSSION

In a recent study (Milcamps et al., 1998), we reported that under nutrient-deprivation conditions, S. meliloti induces several genes responsible for scavenging nitrogen/carbon from alternative nutrient sources such as amino acids, nitrate, ribose, etc. Out of a collection of 21 strains harbouring nitrogen-deprivation-induced luxAB fusions, strain N4 was selected and subsequently shown to be induced by both nitrogen- and carbon-deprivation conditions. In addition, supplementation of the growth medium with tyrosine was found to induce the n4 gene fusion. These results suggest that a complex regulatory system responding to distinct environmental cues may be controlling the expression of the n4 locus. In this paper, we present the results of biochemical and molecular studies showing that the S. meliloti n4 locus contains a gene encoding the enzyme homogentisate dioxygenase, which is responsible for the conversion of homogentisate to maleylacetoacetate. Given the highly significant similarities of the Tn5luxAB-tagged gene in S. meliloti strain N4 with genes encoding homogentisate dioxygenase in A. nidulans, human and mouse, as well as the similarity in phenotype of strain N4 with the A. nidulans mutant strain in terms of production of a brown pigment and the capacity to use tyrosine as nutrient source, we propose to name ORF1 in the S. meliloti n4 locus hmgA. We believe that this constitutes the first report of the identification of a gene encoding homogentisate dioxygenase in bacteria.

Downstream of the S. meliloti hmgA gene we found an ORF with significant similarity to eukaryotic genes encoding maleylacetoacetate isomerase (maiA) and GST (gst). Maleylacetoacetate isomerase functions in the tyrosine degradation pathway of A. nidulans and humans, and catalyses the step after the homogentisate dioxygenase step. The A. nidulans gene maiA is clustered with the hmgA gene. In S. meliloti, the hmgA gene and the putative maiA gene may constitute a single transcriptional unit, suggesting their involvement in the same catabolic pathway. Similarity was also discovered with several GSTs. In eukaryotes, the GSTs constitute a large supergene family of detoxifying enzymes which function
by conjugation of the tripeptide glutathione to electro-
philic substrates (Meister & Anderson, 1983). Data for prokaryotes are not abundant, but several studies on microbes have shown that GSTs may have a role in
detoxification of xenobiotics (Zablotowicz et al., 1993; Lloyd-Jones & Lau, 1997; Vuilleumier, 1997). More-
over, some GST enzymes have been reported to function as isomerases using maleylacetoacetate as substrate, which explains their amino acid similarity with the
maleylacetoacetate isomerases (Seltzer, 1989).

It is intriguing that both the S. meliloti hmgA gene and the putative maiA gene share very high similarities with
eukaryotic genes. Although several bacterial genomes
have been sequenced, we did not find high similarities with bacterial genes.

In contrast to amino acid synthesis, little is known about
degradation of amino acids, such as tyrosine, in bacteria.
The major pathway for tyrosine catabolism in
mammals, humans and fungi has been shown to involve
homogentisate as a key intermediate (Fernandez-Canon & Penalva, 1995; Fernandez-Canon et al., 1996). Phenylalanine is converted to tyrosine and subsequently
degraded to homogentisate. The aromatic ring of
homogentisate is cleaved by the enzyme homogentisate
dioxygenase and after isomerization to fumarylacet-
acetate, fumarate and acetoacetate are produced (see
Fig. 7). Micro-organisms appear to possess a similar
pathway, and evidence for tyrosine degradation via this
pathway derives from studies on microbial growth on
medium containing tyrosine and identification of homog-
entisate as intermediate; the ability of cells to
metabolize homogentisate and hydroxyphenylpyruvate;
and the detection of homogentisate dioxygenase activity
in microbial cells (Blackley, 1977). Only recently have
genes encoding enzymes in this pathway been identified.

In the case of A. nidulans, several genes of the tyrosine
degradation pathway have been isolated, including
fabA, encoding fumarylacetoacetate hydrolase, hmgA, encoding homogentisate dioxygenase, and
maiA, encoding maleylacetoacetate isomerase (Fernandez-
Canon & Penalva, 1995, 1998). In bacteria, only the
melA and lly genes of S. colwelliana and L. pneumophila
encoding hydroxyphenylpyruvate dioxygenase, which
converts hydroxyphenylpyruvate to homogentisate,
have been described (Fuqua et al., 1991; Wintemeyer et al., 1994).

Tyrosine was found to serve as a nitrogen source as well
as a carbon source for S. meliloti. Tyrosine is catabolized via a series of enzymic steps, yielding succinate and fumarate, which enter the Krebs cycle and provide the
cell with energy and substrates. When tyrosine is used as
nitrogen source, nitrogen is obtained via deamination of the
amino group of tyrosine. Three S. meliloti genes
have been described which are involved in the
deamination of aromatic amino acids, such as tyrosine
(Kittell et al., 1989). Deamination makes nitrogen available in the first step of tyrosine degradation, well
before the step involving homogentisate dioxygenase
(see Fig. 7). This is consistent with the observation that
strain N4 is not impaired in growth on tyrosine as
nitrogen source. Interestingly, the hmgA gene is induced
under nitrogen-deprivation conditions. This induction
may be due to tyrosine itself or degradation products of
the tyrosine pathway since homogentisate and hydroxy-
phenylpyruvic acid, two intermediates in the tyrosine
degradation pathway (see Fig. 7), were also found to
induce luciferase expression in strain N4.

Phenylalanine served as a nitrogen source but not as a
carbon source. Also, the n4 locus was found to be
induced by phenylalanine, but only under nitrogen
starvation conditions. This observation suggests that
phenylalanine may be converted to tyrosine only when
nitrogen is limiting. As only limited information on
bacterial degradation of amino acids is available, we do
not know the mechanism which bacteria employ to
degrade phenylalanine. Our observations suggest that
bacteria, in contrast to fungi, may have other pathways
and other regulatory conditions to degrade phenyl-
alanine.

Another interesting observation from this study was the
production of a brown pigment by strain N4, as a result
of homogentisate secretion. Brown pigments derived
from homogentisate are described as melanin-type
pigments (pyo-melanin) (Yabuuchi & Ohyama, 1972). Melanin production in S. meliloti strain 1021 is a
not naturally occurring process, but has been observed in
other bacteria such as Vibrio cholerae, S. colwelliana
and L. pneumophila (Coyne & Al-Harthi, 1992; Fuqua et al., 1991; Wintemeyer et al., 1994), as well as in other
Rhizobium strains (Cubo et al., 1988). Several different
pathways have been described for melanin production
(via DOPA, or homogentisate, or catecho1) but few
 genetic studies have been carried out to support the
biochemical data. The most common pathway for
melanin production in rhizobia is via DOPA (3,4-
dihydroxyphenylalanine), which can be easily detected
with tyrosine and CuSO₄ in the medium (Cubo et al.,
1988). In the case of strain N4, the brown pigmentation
appears to be the result of the accumulation of homo-
gentisate in the medium and subsequent oxidation and
polymerization, which results in the formation of
pyomelanin. The fungus A. nidulans, with a mutation
in the hmgA gene, displays a similar phenotype
(Fernandez-Canon & Penalva, 1995); and in humans,
disruption of homogentisate dioxygenase results in
the excretion of melanin in urine (Fernandez-Canon et al.,
1996).

From our phenotypic analysis, we conclude that the S.
meliloti n4 locus is important for survival. Although the
interruption of the locus is not lethal for the cell, the
mutation has an effect upon the ability to grow with

By: A. MILCAMS and F. J. DE BRUIJN

944

Nutrient deprivation survival. The exact role of the n4 locus in the starvation
response, persistence and survival of S. meliloti in the soil or rhizosphere is being further investigated.
ACKNOWLEDGEMENTS

This work was supported by NSF STC grant no. DEB9120006 from the Center of Microbial Ecology, NSF grant no. IBN9402659 from the National Science Foundation and grant no. DE-FG02-91ER20021 from the Department of Energy. Dr Anne Milcamps is the recipient of a Colleen Foundation Fellowship. We would like to thank Dr Peter Wolk and Dr Mike Tomashow for the use of the phoquant camera and the luminometer, as well as helpful discussions.

REFERENCES

A. MILCAMPS and F. J. DE BRUIJN

Nutrient-deprivation-induced gene in *S. meliloti*

Received 3 August 1998; revised 18 December 1998; accepted 13 January 1999.