the origin of replication of the symbiosis plasmid, DnaB is a possible y4dM target in Rhizobium.

This is the first evidence that a plasmid stabilization system may exist in Rhizobium and suggests a mechanism by which such a system might operate to retain certain symbiosis plasmids.

T. J. Falla and I. Chopra
Antimicrobial Research Centre and Department of Microbiology, University of Leeds, Leeds LS2 9JT
*For correspondence. Tel: +44 113 233 5604. Fax: +44 113 233 5638. e-mail: micic@leeds.ac.uk

containing ORF is located on the opposite, i.e. antisense, strand compared with that encoding the group IC4 structure and the rRNA. Coding of a group I intron nuclear homing endonuclease on the antisense pre-rRNA strand has also been observed in other eukaryotic micro-organisms, including Porphyra (16, our unpublished results), and suggests a novel expression strategy of a protein gene located in the rDNA.

Even though the Nectria rDNA insertions contain the obvious hallmark of nuclear group I introns, several simple experiments should be performed to confirm the results reported (3). These include the following: (i) to obtain and compare homologous intron sequences from different isolates to exclude the possibility of PCR-generated errors; (ii) to perform an RT-PCR sequencing analysis of the ligated SSU rRNA exons to confirm the possibility of PCR-generated errors; (iii) to establish an in vitro assay for G-labelling experiments specific for homing endonuclease on the antisense pre-RNA sense strand compared with that encoding the group IC4 structure and the rRNA.

To obtain and compare homologous intron sequences from different isolates to exclude the possibility of PCR-generated errors; (ii) to perform an RT-PCR sequencing analysis of the ligated SSU rRNA exons to confirm the possibility of PCR-generated errors; (iii) to establish an in vitro assay for G-labelling experiments specific for homing endonuclease on the antisense pre-RNA sense strand compared with that encoding the group IC4 structure and the rRNA.