Homologous expression of soluble methane monooxygenase genes in *Methylosinus trichosporium* OB3b

John S. Lloyd, Ruth Finch, Howard Dalton and J. Colin Murrell

Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK

An homologous expression system has been developed for soluble methane monooxygenase (sMMO) genes from *Methylosinus trichosporium* OB3b. sMMO-minus mutants were previously obtained after marker-exchange mutagenesis, by the insertion of a kanamycin-resistance cassette into the *mmoX* gene of the sMMO operon. Complementation of the sMMO-minus genotype was achieved by conjugation with broad-host-range plasmids containing the native promoter and sMMO operon from *Ms. trichosporium* OB3b (pVK100Sc and pHM2). In wild-type methanotrophs, copper ions present in the growth medium at concentrations greater than 0.25 μM inhibit transcription of sMMO genes. The stable maintenance of pVK100Sc resulted in transconjugant methanotrophs with a decreased sensitivity to copper, since expression of sMMO occurred at copper sulphate concentrations of 7.5 μM. sMMO activity was only detected in soluble extracts after the addition of purified sMMO reductase component, which is inhibited by copper ions *in vitro*. This phenomenon could have arisen due to the increased number of sMMO gene copies (derived from pVK100Sc) in the cell. Transconjugants obtained from conjugations with pHM2 expressed sMMO at copper concentrations of 0–2.5 μM only and sMMO activity was not restored by the addition of purified reductase component at copper concentrations higher than 2.5 μM. Southern hybridization showed that the plasmid had integrated into the chromosome, probably by a single homologous recombination event. This is the first report of homologous sMMO expression in a methanotroph with enzyme activities that are comparable to the activity reported in wild-type strains. This expression system will be useful for site-directed mutagenesis of active-site residues of sMMO from *Ms. trichosporium* OB3b.

Keywords: methanotroph, methane monooxygenase, recombinant, site-directed mutagenesis

INTRODUCTION

Methylosinus trichosporium OB3b is a methanotrophic bacterium which utilizes methane as a sole source of carbon and energy (Hanson & Hanson, 1996). Methane is oxidized to methanol, which is then oxidized further to formaldehyde by methanol dehydrogenase. Formaldehyde is subsequently assimilated into biomass or further oxidized to CO₂, providing reducing equivalents for biosynthesis. Methane oxidation is catalysed by methane monooxygenase (MMO) (EC 1.14.13.25) in a reaction that requires oxygen and NADH. *Ms. trichosporium* OB3b expresses two types of MMO: a membrane-bound, particulate MMO (pMMO) (Zahn & DiSpirito, 1996; Nguyen et al., 1998) and a cytoplasmic, soluble MMO (sMMO) (Dalton et al., 1993; Lipscomb, 1994). The MMO enzymes of *Ms. trichosporium* OB3b are able to degrade important groundwater pollutants including trichloroethylene and other halogenated hydrocarbons (Oldenhuis & Janssen, 1993). The highest rates of trichloroethylene degradation have been reported with *Ms. trichosporium* OB3b expressing sMMO (Oldenhuis et al., 1989; Brusseau et al., 1990).
Expression of the two distinct types of MMO is dependent upon the availability of copper ions in the growth medium: a high copper-to-biomass ratio (>0.25 μM copper ions) results in pMMO expression and a low copper-to-biomass ratio (<0.25 μM copper ions) causes expression of sMMO (Stanley et al., 1983). Using Northern blotting and primer extension analysis, Nielsen et al. (1996, 1997) showed that sMMO-specific mRNAs were transcribed under conditions of low copper-to-biomass ratios. In the presence of copper, the level of sMMO-specific mRNAs decreased and pMMO transcripts were detected. Furthermore, copper ions inhibit activity of the reductase component in vitro in Methylococcus capsulatus (Bath) (Green et al., 1985) and Ms. trichosporium OB3b (Fitch et al., 1993).

sMMO has been purified and characterized from a number of methanotrophs, but most is known about the enzymes from Ms. trichosporium OB3b (Fox et al., 1989) and Mc. capsulatus (Bath) (Colby & Dalton, 1978). Three protein components, the hydroxylase, the reductase and a regulatory protein B, are required for activity of sMMO. The hydroxylase comprises three subunits, arranged in an α₂βγ configuration of about 250 kDa (Woodland & Dalton, 1989; Dalton et al., 1993). The α subunits contain a di-iron centre (Lipscomb, 1994) where methane and dioxygen interact to form methanol at the active site (George et al., 1996). The reductase is a single polypeptide and contains an FAD group and one Fe₃S₅ centre per molecule. It accepts electrons from NADH and transfers them one at a time to the di-iron site of the hydroxylase (Lund et al., 1985). Protein B is a single-subunit protein containing no metals, prosthetic groups or cofactors (Green & Dalton, 1985), the activity of which may be regulated by proteolysis (Lloyd et al., 1997).

The X-ray crystal structure of the hydroxylase from Ms. trichosporium OB3b has been reported (Elango et al., 1997), demonstrating the high level of conservation within the active site of the hydroxylase from Mc. capsulatus (Bath) (Rosenzweig et al., 1993). From these studies, active-site residues located within the α subunit (encoded by mmoX) of sMMO have been implicated as having key roles in the mechanism of methane oxidation, including Glu243, Thr213 and Cys151 (Rosenzweig et al., 1993, 1995, 1997). Site-directed mutagenesis experiments at these positions are important to understand how methane, a stable and relatively unreactive molecule, is hydroxylated.

The genes encoding sMMO from Ms. trichosporium OB3b have been cloned and sequenced (Cardy et al., 1991a, b). The α, β and γ subunits of the hydroxylase are encoded by mmoX, mmyY and mmoZ, respectively, protein B by mmoB and the reductase by mmoC. mmoB and mmoC from Mc. capsulatus (Bath) were active when expressed in Escherichia coli, but the recombinant hydroxylase was inactive (West et al., 1992). sMMO from Ms. trichosporium OB3b was inactive when expressed in E. coli (Jahng et al., 1996). Active recombinant sMMO from Ms. trichosporium OB3b was reported in Pseudomonas putida F1, Agrobacterium tumefaciens and Rhizobium meliloti (Jahng & Wood, 1994; Jahng et al., 1996). However, when the recombinant strains were assayed using the propylene oxidation assay (Pilkington & Dalton, 1990; Fox et al., 1989), negligible sMMO activity was detected (Jahng et al., 1996).

Methanotrophs are difficult organisms to work with in terms of mutant isolation and gene transfer (Murrell, 1994). Marker-exchange mutagenesis has been used for the isolation of nitrogen-fixation mutants in methanotrophs (Toukdarian & Lidstrom, 1984). A similar strategy was used to construct stable sMMO-minus mutants of Ms. trichosporium OB3b by the insertion of a 1.5 kb kanamycin-resistance gene into the chromosome (Martin & Murrell, 1995). Six mutants were isolated that could not grow in the absence of copper, confirming an sMMO-minus pMMO-positive phenotype. Using a colorimetric assay based on the oxidation of naphthalene (Brusseau et al., 1990), sMMO activity was not detected and Southern hybridization confirmed the location of the kanamycin-resistance gene in the chromosome.

To overcome the lack of sMMO expression in an active form in heterologous hosts, the aim of this work was to complement the sMMO-minus genotype of Ms. trichosporium OB3b marker-exchange mutants with plasmid-encoded sMMO genes. Complementation of the mmoX-minus genotype with plasmid-encoded genes will allow active-site mutants to be expressed using this homologous expression system.

METHODS

Bacterial strains and growth conditions. The bacterial strains used in this study are described in Table 1. Growth of methanotrophs was as described by Colby & Dalton (1978) except that cultures were incubated at 30°C. For the growth of cultures in minimal-copper, 0.1 × nitrate mineral salts (NMS) was used, from which trace metal ions were removed using the methods described by Tsien et al. (1989). Cultures were grown in copper-plus media using 1 × NMS from which trace metal ions were not removed. Ms. trichosporium OB3b was also grown in batch culture using a 2 litre fermenter under the following conditions: temperature, 30°C; agitation speed, 500 r.p.m.; pH, 6.8, maintained via the automatic addition of 0.5 M HCl or 0.5 M NaOH; methane supply, 60 ml min⁻¹; air supply, 80 ml min⁻¹. For continuous culture, the same conditions were used as for batch culture except that the culture was oxygen limited. The dilution rate was 0.02–0.06 h⁻¹ to maintain the OD₅₄₀ at 2.2–3.8. The switch from expression of sMMO to expression of pMMO was followed by the sequential addition of copper sulphate to 2.5, 5 and 7.5 μM. Cells were harvested at steady state, which was reached after approximately 4–5 volume changes (6–8 d).

Construction of plasmids. The plasmids used in this study (Table 1) were constructed in E. coli DH1 via methods described by Sambrook et al. (1989). pHM1 (Martin, 1994) was previously constructed by subcloning the streptomycin-resistance gene (Q) from pH45S (Prenkt & Krisch, 1984) as a SalI fragment and ligating it into pDSK509 (Keen et al., 1988) digested with the same enzyme. The sMMO operon from Ms. trichosporium OB3b was excised from pMTL1000 (Martin, 1994) as a KpnI fragment and subcloned into KpnI-digested
Homologous expression system for sMMO genes

Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH1</td>
<td>F' recA1 endA1 gyrA96 thiI hsdR17 (rK- mK+) supE44 k-</td>
<td>Low (1968)</td>
</tr>
<tr>
<td>S17-1</td>
<td>RP4 2-Tetracycline::Mu-Kanamycin::Tn7 pro res mod+</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>Methanotrophs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ms. trichosporium OB3b</td>
<td>Type II possessing sMMO and pMMO</td>
<td>University of Warwick culture collection</td>
</tr>
<tr>
<td>OB3b mutant A</td>
<td>Kanamycin-resistant sMMO-minus single-crossover mutant of OB3b</td>
<td>Martin & Murrell (1995)</td>
</tr>
<tr>
<td>OB3b mutant F</td>
<td>Kanamycin-resistant sMMO-minus double-crossover mutant of OB3b</td>
<td>Martin & Murrell (1995)</td>
</tr>
<tr>
<td>RF100</td>
<td>Kanamycin- and tetracycline-resistant sMMO-minus single-crossover mutant of OB3b harbouring pVK100</td>
<td>This study</td>
</tr>
<tr>
<td>RF100SC</td>
<td>Kanamycin- and tetracycline-resistant sMMO-minus single-crossover mutant of OB3b complemented with pVK100Sc</td>
<td>This study</td>
</tr>
<tr>
<td>JLHM1</td>
<td>Kanamycin- and streptomycin-resistant sMMO-minus single-crossover mutant of OB3b harbouring pHM1</td>
<td>This study</td>
</tr>
<tr>
<td>JLHM2 strains A-E</td>
<td>Kanamycin- and streptomycin-resistant sMMO-minus double-crossover mutant of OB3b complemented with pHM2</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pDSK509</td>
<td>Kanamycin-resistant Mob+ conjugative broad-host-range vector</td>
<td>Keen et al. (1988)</td>
</tr>
<tr>
<td>pHM1 (formerly pDSK509Ω)</td>
<td>containing a streptomycin-resistance cassette as a BamHI fragment</td>
<td>Martin (1994)</td>
</tr>
<tr>
<td>pHM2 (formerly pDSK509Ωc)</td>
<td>pHM1 containing the sMMO operon of Ms. trichosporium OB3b as a KpnI fragment</td>
<td>Martin (1994)</td>
</tr>
<tr>
<td>pDCV200</td>
<td>pBR325 containing a 7.6 kb HindIII fragment of Ms. trichosporium OB3b genomic DNA encoding mmoX and the 5' region of mmoY</td>
<td>Cardy et al. (1991a)</td>
</tr>
<tr>
<td>pDCV202</td>
<td>pBR325 containing a 2.6 kb HindIII fragment of Ms. trichosporium OB3b genomic DNA encoding the 3' region of mmoZ, orfY and mmoC</td>
<td>Cardy et al. (1991b)</td>
</tr>
<tr>
<td>pMLT24</td>
<td>Ampicillin-resistant pBR322-based cloning vector</td>
<td>Chambers et al. (1988)</td>
</tr>
<tr>
<td>pMLT24-202</td>
<td>pMLT24 containing a HindIII fragment from pDVC200, encoding the 5' region of the Ms. trichosporium OB3b sMMO operon</td>
<td>Martin (1994)</td>
</tr>
<tr>
<td>pMTL-1000</td>
<td>pMLT24 containing the sMMO operon subcloned from pDVC200 and pDVC202</td>
<td>Martin (1994)</td>
</tr>
<tr>
<td>pVK100</td>
<td>Kanamycin- and tetracycline-resistant IncP1, broad host range</td>
<td>Knauf & Nester (1982)</td>
</tr>
<tr>
<td>pVK100Sc</td>
<td>pVK100 containing the Ms. trichosporium OB3b sMMO operon as a BamHI fragment</td>
<td>Martin (1994)</td>
</tr>
</tbody>
</table>

pHM1, to generate pHM2 (Martin, 1994) (Fig. 1). pVK100Sc (Martin, 1994) was previously constructed by subcloning DNA encoding the 5' region of the Ms. trichosporium OB3b sMMO operon from pDCV200 (Cardy et al., 1991a) as a HindIII fragment into pMLT24 (Chambers et al., 1988), to generate pMTL24-202 (Martin, 1994). The sMMO gene cluster from pDCV202 (Cardy et al., 1991) was previously cloned into pMTL24-202 (Martin, 1994) to generate pMTL1000 containing the entire sMMO operon from Ms. trichosporium OB3b. The complete sMMO operon was excised from pMTL1000 (using the multiple cloning sites in pMLT24) as a BamHI fragment. This was subcloned into pVK100 (Knauf & Nester, 1982) linearized with BglII, generating pVK100Sc (Fig. 2). pHM2 and pVK100Sc both contain the native sMMO promoter sequence.

Isolation of plasmid DNA. Plasmid DNA was isolated from Ms. trichosporium OB3b using a method devised by Saunders & Burke (1990) with the following modifications. A 50 ml culture (OD463 0.5-0.8) was pelleted and resuspended in 1.8 ml solution 1 (50 mM glucose, 20 mM Tris/HCl, 10 mM EDTA, pH 8.0) plus 200 μl lysozyme (10 mg ml⁻¹). The suspension was incubated at 37 °C for 15 min, followed by addition of 4 ml solution 2 (0.2 M NaOH, 1%, w/v, SDS) and incubation for 15 min on ice. Then 4 ml solution 3 (3 M potassium acetate, pH 4.8) was added and the mixture inverted every 2 min for 10 min (on ice).

Nick-translation and Southern hybridization. These methods were performed according to Sambrook et al. (1989). The following radiolabelled DNA fragments derived from pHM2 were used to probe JLHM2-C: the 1.7 kb pVH1 kanamycin-resistance cassette; the 2 kb BamHI streptomycin-resistance cassette; and the 2 kb SalI–Sall fragment of mmoX (Fig. 1).

Conjugation. The technique used for conjugating plasmids from E. coli into methanotrophs was based upon a method developed by Martin (1994). Batch cultures of methanotrophs...

463
sMMO operon of *Ms. trichosporium* OB3b contained within pM1000

\[\text{K, B, S, P} \]

\[\text{H} \]

\[\text{X X X C S P X S Sa C X X C S P X Sa S S H P C P} \]

\[\sim 1 \text{ kb} \]

\[\text{mmoX} \]

\[\text{mmoY} \]

\[\text{mmoB} \]

\[\text{mmoZ} \]

\[\gamma \]

\[\text{mmoC} \]

\[2 \text{ kb \ SacI/SalI fragment of mmoX probe} \]

\[2 \text{ kb \ BamHI streptomycin-resistance cassette probe} \]

\[\text{KpnI} \]

\[\text{Sm}^R \]

\[\text{pHM2} \]

\[\sim 21 \text{ kb} \]

\[1.7 \text{ kb \ PvuII kanamycin-resistance cassette probe} \]

Fig. 1. Restriction map of pHM2 (Martin, 1994) containing the sMMO operon from *Ms. trichosporium* OB3b. Km\(^R\), kanamycin-resistance gene; Sm\(^R\), streptomycin-resistance gene; B, BamHI; C, Clal; H, HindIII; K, KpnI; P, PstI; S, SalI; Sa, SacI; X, Xhol. Probes used for Southern hybridizations are also shown.

at an OD\(_{540}\) of approximately 0.2 were used; 50 ml of methanotroph recipient and 10 ml of overnight donor *E. coli* S17-1 culture containing the plasmid to be conjugated were washed with NMS. They were collected on a 47 mm sterile nitrocellulose filter (0.2 μm pore size). The filter was placed on NMS agar containing 0.02% (w/v) Proteose Peptone and incubated for 24 h at 30 °C in the presence of methane (50% in air). Cells from the conjugation plates were resuspended in 10 ml NMS and concentrated by centrifugation at 7000 g for 5 min. The cell pellet was resuspended in 1 ml NMS and 100 μl aliquots plated onto selective agar, followed by incubation for 2–3 weeks with methane/air (1:1, v/v) until single colonies appeared.

Preparation of soluble and insoluble extracts. Methanotrophs were lysed by four passages through a French pressure cell at 137 MPa and centrifuged at 50400 g for 60 min at 4 °C. Soluble extracts (containing sMMO) were prepared as previously described (Fox et al., 1989). Insoluble extracts (containing pMMO) were prepared by resuspending the insoluble material in a minimum volume of 25 mM MOPS, pH 7.0, containing 40 μM copper sulphate.

Protein purification. Purifications of sMMO from *Mc. capsulatus* (Bath) and *Ms. trichosporium* OB3b were undertaken as described by Colby & Dalton (1978) and Fox et al. (1989), respectively.

Enzyme assay. sMMO activity in soluble and insoluble extracts was determined by the propylene oxidation assay of Pilkington & Dalton (1990). The colorimetric naphthalene oxidation assay was used to detect sMMO activity in whole cells (Brusseau et al., 1990). Naphthalene oxidation plate assays for sMMO were performed as described by Bodrossy et al. (1995).

Determination of protein concentration. Protein concentration was assayed using Bradford protein assay reagent (BioRad) with bovine serum albumin as the standard.
Homologous expression system for sMMO genes

Fig. 2. Restriction map of pVK100Sc (Martin, 1994) containing the sMMO operon from Ms. trichosporium OB3b. Y, orfY; KmR, kanamycin resistance gene; TcR, tetracycline resistance gene; rlx, conjugal transfer locus of RK2; cos, cos site of phage λ; B, BamHI; E, EcoRI; H, HindIII; P, PstI; S, SalI; X, XhoI. See Fig. 1 for a detailed map of the sMMO operon.

Antibodies. Antiserum against the hydroxylase component of sMMO from Ms. trichosporium OB3b was raised as previously described (Woodland & Dalton, 1989), except that the pure hydroxylase was denatured by heating for 5 min at 80 °C before mixing with Freund's adjuvant.

SDS-PAGE and Western blotting. SDS-PAGE was performed with an X-Cell II apparatus (Novex). Acrylamide gels (12%, w/v) (Laemmli, 1970) were stained with Coomassie brilliant blue. Molecular masses were calculated using Mark 12 wide-range protein standards (Novex). Western blotting was performed with an X-Cell II Blot Module (Novex) and Hybond C nitrocellulose membranes (Amersham).

RESULTS

Growth of Ms. trichosporium OB3b sMMO-minus mutants

Ms. trichosporium OB3b mutants A and F were used in this study, which both have a kanamycin-resistance cassette inserted into mmoX (Martin & Murrell, 1995). Mutant A arose from a single homologous recombination event, while mutant F arose from a double homologous recombination event. Since naphthalene is oxidized by sMMO and not pMMO, the naphthalene oxidation assay was used to screen for the absence of sMMO activity in the sMMO-minus mutants. Three hundred single colonies of each mutant were subcultured onto minimal-copper and copper-plus agar both containing 50 μg kanamycin ml⁻¹. Wild-type Ms. trichosporium OB3b was used as the positive control. After 3 weeks, naphthalene oxidation plate assays confirmed that sMMO activity was absent in the Ms. trichosporium OB3b sMMO-minus mutants grown on copper-plus or minimal-copper agar. Wild-type Ms. trichosporium OB3b gave a positive naphthalene oxidation assay result on minimal-copper agar only. Using minimal-copper 0·1 × NMS batch cultures, sMMO expression was detected in the wild-type organism only. Although sMMO expression was not detected in the Ms. trichosporium OB3b sMMO-minus mutants under the same conditions, growth was evident, possibly due to scavenging of trace amounts of copper (necessary for the expression and activity of pMMO) from the medium by these cells. Western blotting with antiserum against the hydroxylase of Ms. trichosporium OB3b confirmed that the α, β and γ subunits of the hydroxylase were expressed. Western blot analysis of soluble extracts from Ms. trichosporium OB3b mutant F demonstrated cross-reactivity with the β and γ subunits of the hydroxylase, which are probably still expressed since there is not a transcriptional terminator within the kanamycin-resistance cassette inserted into mmoX (Fig. 3a). Therefore, in Ms. trichosporium OB3b mutant F at least, sMMO expression could be restored by complementation of mmoX only.

Conjugation of broad-host-range plasmids into Ms. trichosporium OB3b sMMO-minus mutants

To select for Ms. trichosporium OB3b mutant A transconjugants harbouring pVK100 and pVK100Sc, 50 μg kanamycin ml⁻¹ and 20 μg tetracycline ml⁻¹ were used. Ms. trichosporium OB3b mutant A [pVK100] transconjugants (designated RF100) were isolated at a frequency of 2 × 10⁻⁸ per recipient. Ms. trichosporium OB3b mutant A [pVK100Sc] transconjugants (designated RF100SC) were isolated at a frequency of 1 × 10⁻⁸ per recipient. To select for Ms. trichosporium OB3b mutant F transconjugants harbouring pHM1 and pHM2, 50 μg kanamycin ml⁻¹ and 25 μg streptomycin ml⁻¹ were used. Ms. trichosporium OB3b mutant F [pHM1] transconjugants (designated JLMH1) were selected on copper-plus agar at a frequency of 1·7 × 10⁻⁷ per recipient. Ms. trichosporium OB3b mutant F [pHM2] transconjugants (designated JLMH2) were selected on copper-plus agar at a frequency of 1·2 × 10⁻⁷ per recipient. Spontaneous resistance to kanamycin and tetracycline and/or kanamycin and streptomycin was observed at frequencies of < 1 × 10⁻¹⁰ in the sMMO-minus mutants.

Identification of sMMO-positive transconjugant methanotrophs

The putative transconjugant methanotrophs isolated above were replica-plated onto copper-plus and minimal-copper agar. After growth for 3 weeks in the presence of methane, the naphthalene oxidation plate assay was used to screen for the sMMO activity. No sMMO-positive JLMH1 or RF100 transconjugants were isolated, despite repeated attempts. sMMO activity was identified in RF100SC, and the activity continued to be maintained on minimal-copper agar containing 50 μg kanamycin ml⁻¹ and 20 μg tetracycline ml⁻¹. Three sMMO-positive JLMH2 transconjugants, designated JLMH2-A, JLMH2-B and JLMH2-C, were identified on minimal-copper agar. Replica-plating all of the trans-
conjugants harbouring pHM2 onto minimal-copper agar for a second time, followed by naphthalene oxidation plate assays, identified two more sMMO-positive transconjugants, designated JLMH2-D and JLHM2-E. These five sMMO-minus mutants that had been complemented with pHM2 were maintained on minimal-copper agar containing 50 μg kanamycin ml⁻¹ and 25 μg streptomycin ml⁻¹.

Growth of RF100SC and JLHM2-C in batch and continuous culture

RF100SC and JLHM2-C were each grown in a 2 litre fermenter containing 1 x NMS with 1 μM copper sulphate. This medium was used to ensure that the transconjugant methanotrophs could grow using pMMO, prior to the depletion of copper and expression of sMMO. This occurred as the cell density rose above an OD₅₄₀ of 2 and a biomass concentration of 0.86 g dry cell weight l⁻¹ (assuming a dry cell weight of 0.429 g l⁻¹ at an OD₅₄₀ of 1:0: Pilkington, 1986). The positive control used in all cases was wild-type Ms. trichosporium OB3b. When cells were expressing pMMO, the growth rate of Ms. trichosporium OB3b was 0.05 h⁻¹ and during expression of sMMO, the growth rate was 0.052 h⁻¹. The corresponding growth rate of RF100SC was approximately 0.05 h⁻¹ when expressing either pMMO or sMMO. The growth rate of JLHM2-C was 0.024 h⁻¹ when cells were expressing pMMO; it was 0.034 h⁻¹ during expression of sMMO. The switch from expression of pMMO to expression of sMMO occurred at a biomass concentration of 0.8-1.1 g dry cell weight l⁻¹, in all cases.

Expression and activity of sMMO in RF100SC and JLHM2-C

Continuous culture was used to determine the enzyme activity of MMO in the different methanotroph mutants complemented with sMMO genes. This also allowed the switch from expression of sMMO to pMMO to be monitored by the addition of increasing concentrations of copper sulphate. Propylene oxidation assays of soluble and insoluble extracts were performed at increasing copper sulphate concentrations, to determine the location and activity of MMO (Table 2). Specific activities of MMO from wild-type Ms. trichosporium OB3b grown in NMS containing between 0 and 1 μM copper sulphate in continuous culture have been reported in the range of 20–80 nmol propylene oxidized min⁻¹ (mg protein)⁻¹ for the soluble fraction (containing sMMO) and 0–8 nmol propylene oxidized min⁻¹ (mg protein)⁻¹ for the insoluble fraction (containing pMMO) (Burrows et al., 1984; Park et al., 1991; Fox et al., 1991; Martin, 1994). The MMO activities detected during this work in soluble extracts of wild-type Ms. trichosporium OB3b and RF100SC were comparable to values given in these reports. Specific activities of MMO of 140 ± 13 nmol propylene oxidized min⁻¹ (mg protein)⁻¹ were obtained for the soluble fraction of JLHM2-C. Such high activities had only previously been observed in wild-type Ms. trichosporium OB3b by Stirling & Dalton.
Western blotting using antiserum against the hydroxy-
7.5
grown in continuous culture, the hydroxylase of sMMO
lase component of
reductase from Mc.
grown in medium with copper sulphate added to
unusually high copper sulphate concentrations of
observed in RFlOOSC, grown in continuous culture at
wild-type Ms.
reductase from Ms.
by copper has previously been demonstrated by Green
1979), who observed very high MMO activity in the
soluble fraction: 84–146 nmol propylene oxidized min⁻¹
(mg protein)⁻¹. Propylene oxidation activity was not
detected in soluble extracts of RF100 or JLHM1.
The soluble and insoluble extracts that were assayed for
MMO activity were also analysed by SDS-PAGE and
Western blotting using antiserum against the hydroxy-
lase component of Ms. trichosporium OB3b as probe. In
wild-type Ms. trichosporium OB3b and JLHM2-C
grown in continuous culture, the hydroxylase of sMMO
was detected in the soluble fraction of cells grown in the
absence of copper only. At 2.5 and 5 μM copper sulphate,
metal, it was possible that the enzyme activity
detected in the soluble extracts of JLHM2-C (Table 2)
was derived from sMMO polypeptides present at a
concentration too low to be detected by Western
blotting. Constitutive expression of the hydroxylase was
observed in RF100SC, grown in continuous culture at
unusually high copper sulphate concentrations of
7.5 μM, as determined by Western blotting (Fig. 3b). At
a copper sulphate concentration of 7.5 μM, sMMO
activity could be detected in soluble extracts only by the
addition of saturating amounts of purified sMMO
reductase from Mc. capsulatus (Bath). Purified sMMO
reductase from Ms. trichosporium OB3b was not
available. The restoration of sMMO activity in vitro
suggested that the lack of sMMO activity in whole cells
grown in medium with copper sulphate added to 7.5 μM
was due to the inactivation of the reductase component.
Inactivation of the reductase from Mc. capsulatus (Bath)
by copper has previously been demonstrated by Green et
al. (1985). This result also confirmed functional com-
plementation between the reductase of Mc. capsulatus
(Bath) and the other sMMO components of Ms.
trichosporium OB3b as previously reported (Stirling &

Table 2. Enzyme activities during a switch from expression of sMMO to the expression of
pMMO in wild-type and transconjugant methanotrophs

<table>
<thead>
<tr>
<th>Strain</th>
<th>Copper sulphate concn (μM)</th>
<th>Propylene oxidation activity [nmol min⁻¹ (mg protein)⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soluble extract</td>
</tr>
<tr>
<td>Wild-type OB3b</td>
<td>0</td>
<td>42 ± 9</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>10 ± 4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>ND</td>
</tr>
<tr>
<td>JLHM2-C</td>
<td>0</td>
<td>140 ± 13</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>29 ± 3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>ND</td>
</tr>
<tr>
<td>RF100SC</td>
<td>0</td>
<td>54 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>12 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>50 ± 0.9*</td>
</tr>
</tbody>
</table>

* Activity was detected in the soluble fraction by the addition of saturating amounts of purified
reductase from Mc. capsulatus (Bath).

Southern blot analysis was used to elucidate how complementation of the sMMO-minus genotype in Ms.
trichosporium OB3b mutants A and F had occurred. Using the modified alkaline lysis method developed in
this work, attempts were made to isolate plasmid DNA from Ms. trichosporium OB3b, RF100, RF100SC,
JLHM1 and JLHM2-C. Plasmid DNA was successfully isolated from all the methanotrophs except JLHM2-C.
Southern blotting of the plasmid DNA isolated from RF100 and RF100SC confirmed that the DNA isolated
was pVK100 and pVK100Sc, respectively, and that no significant deletions or modifications to these plasmids
had occurred. It therefore appeared that sMMO ex-
pression had been restored in Ms. trichosporium OB3b via transcription of sMMO genes carried by
pVK100Sc. Since repeated attempts to isolate plasmid
DNA from JLHM2-C were unsuccessful, restriction
digests of chromosomal DNA were performed and used in Southern hybridizations. Positive hybridization was
identified with kanamycin- and streptomycin-resistance
gene probes and a mmoX probe (see Methods). Analysis of the hybridization fragments obtained suggested that,
J. S. LLOYD and OTHERS

Chromosomal DNA containing the sMMO operon of *Ms. trichosporium* OB3b mutant F

![Diagram of homologous recombination](image)

Fig. 4. Proposed homologous recombination event in JLHM2-C. Km, kanamycin-resistance cassette; Sm, streptomycin-resistance cassette.

in JLHM2-C, sMMO expression had been restored due to the homologous recombination of pHM2 into the chromosome. This could have occurred by single homologous recombination between the inactivated *mmoX* gene of *Ms. trichosporium* OB3b mutant F and the intact copy of *mmoX* present on pHM2 (Fig. 4).

DISCUSSION

The active expression of recombinant sMMO genes has previously been unsuccessful due to the expression of inactive hydroxylase in heterologous hosts. Using the homologous expression system developed in this study, sMMO expression was restored in sMMO-minus mutants by complementation with plasmid-encoded genes. This system has the advantage of a high level of active expression, arising from the natural sMMO promoter(s). In all methanotrophs so far studied, these appear to be very strong owing to the accumulation of the hydroxylase component of sMMO to about 60% of the total soluble cell protein. A major problem in developing genetic systems for the methanotrophs has been the lack of a suitable way of transforming these organisms and identifying plasmids that are stably maintained (Murrell, 1994). The best way of transforming methanotrophs with plasmids appears to be by conjugal transfer, which was used in the work presented here. Problems with slow growth of methanotrophs on plates and low conjugation frequencies (10^-5 to 10^-8) have, however, yet to be overcome.

Although *Ms. trichosporium* OB3b mutant A was derived from a single homologous recombination event (Martin & Murrell, 1995), spontaneous reversion to an sMMO-positive phenotype was not detected during this study, even at high cell densities in a fermenter. However, a problem was encountered when using pVK100 and pVK100Sc since only tetracycline resistance could be used to select for transconjugants containing this plasmid. Methanotrophs appear to be partially resistant to this antibiotic and combined with the instability of tetracycline over the extended growth periods of these organisms (typically 1–3 weeks on plates), this made the selection of transconjugant methanotrophs unreliable. Indeed, sMMO-positive *Ms. trichosporium* OB3b mutant F transconjugants harboring pVK100Sc could not be isolated, possibly because of this problem. The problem of tetracycline selection with other methanotrophs (*Methylocystis paruus* OBBP and *Methylocystis pyriformis*) has also been reported (Jahng et al., 1996).

Wild-type *Ms. trichosporium* OB3b and JLHM2-C switched from the expression of sMMO to expression of pMMO at a copper sulphate concentration of 0.25 μM. In contrast, expression of sMMO was still observed in the complemented mutant strain RF100SC at a copper sulphate concentration of 7.5 μM. This could have been caused by multiple copies of pVK100Sc in the cell, and hence multiple copies of the gene encoding the ‘active regulator protein’ proposed by Nielsen et al. (1997). Therefore, a higher concentration of the active regulator protein may be present in cells of RF100SC and so a higher concentration of copper could be required to repress transcription of the sMMO genes. Alternatively, the increased sMMO promoter copy number could...
require a higher concentration of copper for the repressor to bind and cause a net repression. At copper sulphate concentrations of 7.5 μM, sMMO activity could only be detected in RF1005C by the addition of purified reductase from Ms. trichosporium (Bath) to soluble extracts. This suggests that sMMO activity was lost due to inactivation of the reductase component by the higher concentration of copper as previously shown for the same component of the Mc. capsulatus (Bath) enzyme (Green et al., 1985). Presumably RF1005C was able to utilize methane as a sole carbon and energy source when sMMO was inactive by co-expressing pMMO. Fitch et al. (1993) reported that sMMO activity in soluble extracts of wild-type Ms. trichosporium OB3b decreased by 25% in the presence of 15 μM copper and that complete inactivation occurred with 75 μM copper. Inactivation of sMMO activity by copper has also been studied in Mc. capsulatus (Bath) (Green et al., 1985). Copper ions at 10 μM caused a 27% reduction in whole-cell sMMO activity whilst 80 μM copper ions caused complete inactivation of purified sMMO proteins.

Using this homologous system for the expression of hydroxylase mutants requires that transconjugants are grown under conditions of low copper-to-biomass ratios so that sMMO is expressed. If some of the mutations rendered the sMMO inactive, then the organism would not grow in conditions of low copper-to-biomass ratios and the mutated hydroxylase proteins would not be expressed. However, results obtained in this study suggest that when sMMO-minus mutants containing a kanamycin-resistance cassette in mnoX are cultured in minimal-copper medium, the inactivated sMMO operon is still transcribed. The most likely explanation for this is that the organism scavenges sufficient copper for the concomitant expression of active pMMO and inactive sMMO, to utilize methane as a sole carbon and energy source. This result suggests that previous ideas about the lack of expression of pMMO in cells expressing sMMO are incorrect. Consequently, the hydroxylase which may be inactivated by mutations introduced into mnoX by site-directed mutagenesis would still be expressed under growth conditions of minimal copper.

ACKNOWLEDGEMENTS

This work was supported through Biotechnology and Biological Sciences Research Council (BBSRC) studentships to John Lloyd and Ruth Finch. We thank Howard Martin for constructing some of the plasmids used in this work, as well as Robert Titmus and Susan Slade for excellent technical assistance. We also thank the reviewers for their helpful comments.

REFERENCES

Received 19 June 1998; revised 22 September 1998; accepted 28 October 1998.