Structural, functional and mutational analysis of the pfr gene encoding a ferritin from *Helicobacter pylori*

Stefan Bereswill,1 Uta Waidner,1 Stefan Odenbreit,2 Flavia Lichte,1 Frank Fassbinder,1 Günter Bode3 and Manfred Kist1

Author for correspondence: Stefan Bereswill. Tel: +49 761 203 6539. Fax: +49 761 203 6562. e-mail: bereswil@sun1.ukl.uni-freiburg.de

The function of the pfr gene encoding the ferritin from *Helicobacter pylori* was investigated using the Fur titration assay (FURTA) in *Escherichia coli*, and by characterization of a pfr-deficient mutant strain of *H. pylori*. Nucleotide sequence analysis revealed that the pfr region is conserved among strains (>95% nucleotide identity). Two transcriptional start sites, at least one of them preceded by a σ70-dependent promoter, were identified. Provision of the *H. pylori* pfr gene on a multicopy plasmid resulted in reversal of the Fur-mediated repression of the fhuF gene in *E. coli*, thus enabling the use of the FURTA for cloning of the ferritin gene. Inactivation of the pfr gene, either by insertion of a resistance cassette or by deletion of the up- and downstream segments, abolished this function. Immunoblot analysis with a Pfr-specific antiserum detected the Pfr protein in *H. pylori* and in *E. coli* carrying the pfr gene on a plasmid. Pfr-deficient mutants of *H. pylori* were generated by marker-exchange mutagenesis. These were more susceptible than the parental strain to killing by various metal ions including iron, copper and manganese, whereas conditions of oxidative stress or iron deprivation were not discriminative. Analysis by element-specific electron microscopy revealed that growth of *H. pylori* in the presence of iron induces the formation of two kinds of cytoplasmic aggregates: large vacuole-like bodies and smaller granules containing iron in association with oxygen or phosphorus. Neither of these structures was detected in the pfr-deficient mutant strain. Furthermore, the ferritin accumulated under iron overload and the pfr-deficient mutant strains lacked expression of a 12 kDa protein which was negatively regulated by iron in the parental strain. The results indicate that the nonhaem-iron ferritin is involved in the formation of iron-containing subcellular structures and contributes to metal resistance of *H. pylori*. Further evidence for an interaction of ferritin with iron-dependent regulation mechanisms is provided.

Keywords: *Helicobacter pylori*, prokaryotic ferritin, metal resistance, iron sequestration

INTRODUCTION

The Gram-negative, spiral-shaped, microaerophilic bacterium *Helicobacter pylori* is the causative agent of various diseases of the upper gastrointestinal tract, such as chronic gastritis and peptic ulceration (Buck, 1990; Lee et al., 1993). This pathogen is furthermore believed to trigger the development of gastric adenocarcinoma and MALT lymphoma (Asaka et al., 1994; Forman, 1996). The bacteria colonize under the mucus layer of the stomach, in close contact with the epithelial cells. *H. pylori* is highly adapted to this specific environment, as it has developed strategies to acquire iron from host-borne sources including lactoferrin (Dhaenens et al., 1997), transferrin (Velayudhan et al., 1997), and haemin...
S. BERESWILL and OTHERS

receptors for lactoferrin and for haemin (Dhaenens et al., 1997) concentrations repressed the production of the putative al., pathogenic bacteria virulence genes are part of the Fur function of the iron-dependent regulation could be also of importance for the host interaction.

The intracellular amount of free ferrous iron is controlled by the iron-binding protein ferritin, which incorporates ferrous iron and stores the ferric iron formed after oxidation in the central cavity of the molecule (Harrison & Arioso, 1996). The native form of the eukaryotic ferritins and of the ferritin from E. coli is a multimer of 24 subunits surrounding an inner space in which about 4500 iron molecules can accumulate (Harrison & Arioso, 1996; Hempstead et al., 1994).

The 19 kDa ferritin protein Pfr of H. pylori (Frazier et al., 1993) is homologous to eukaryotic and prokaryotic ferritins, and does not contain haem (Doig et al., 1993). This feature distinguishes Pfr from the bacterioferritins, which represent a different family of iron-binding proteins (Yariv et al., 1981; Harrison & Arioso, 1996). It is not clear whether H. pylori does possess a bacterioferritin. The Dps-like protein encoded by the napA gene is only distantly related to this protein family (Evans et al., 1995a, b). Overproduction of the H. pylori pfr gene in E. coli caused accumulation of iron and gave rise to the formation of paracrystalline inclusions (Frazier et al., 1993). Corresponding structures were found in the cytoplasm of some H. pylori strains, and immunohistochemical analysis revealed that the ferritin protein is localized in these structures. The ferritin function of the Pfr protein was further supported by the fact that characteristic domains responsible for the ferrooxidase function and for binding of iron are strictly conserved (Frazier et al., 1993; Hempstead et al., 1994) but the incorporation of iron into Pfr multimers was not shown.

The increased iron content of E. coli harbouring the pfr gene from H. pylori on a plasmid led to the hypothesis that overexpression of the Pfr protein mediates an increase in iron uptake (Frazier et al., 1993), and it was speculated that this was due to ferritin-mediated inhibition of the Fur repressor. This assumption was further supported by the finding that ferritin genes from H. pylori and from other bacterial species strongly derepressed the Fur-regulated fhuD—reporter gene fusion in E. coli, as evaluated by the Fur titration assay (FURT A; Stojilkovic et al., 1994).

In this study, heterologous expression including FURT A analysis in E. coli, and insertional inactivation of the pfr gene, were performed to obtain further insights into the role of the ferritin gene in the iron metabolism of H. pylori.

METHODS

Bacterial strains, plasmids and growth conditions. Bacterial strains and plasmids used are listed in Table 1. The H. pylori strains were grown on HHP blood agar in a microaerobic atmosphere at 37 °C as previously described (Bereswill et al., 1998a). The E. coli strains were grown in Luria–Bertani (LB) medium (Miller, 1972). If necessary the media were supplemented with the antibiotics tetracycline (Tc, 20 mg l–1), chloramphenicol (Cm, 20 mg l–1) or ampicillin (Ap, 100 mg l–1).

Monitoring of growth under conditions of iron starvation and metal overload. To test H. pylori wild-type and mutant strains for their susceptibility to metal overload and oxidative stress, the strains were grown on Brucella broth agar supplemented with 1 % β-cyclodextrin (BBC). Parameters for iron deprivation and overload were chosen as evaluated earlier (Bereswill et al., 1997b). Briefly, iron deprivation was established by addition of the iron chelator desferrioxamine B (desferal) and confirmed by reduced growth. For conditions of metal overload, BBC agar was supplemented with chloride salts of ferric iron, ferrous iron, copper, or manganese. Oxidative stress was generated with the radical mediator paraquat (methyl viologen). Bacterial growth was monitored 3 d after subculture on the indicator medium and reassessed after 6 d. The experiments with the pfr mutants were performed without antibiotic supplementation.

Analysis of Fur activity. The activity of the Fur repressor was determined as described by Stojilkovic et al. (1994) using the E. coli indicator strain H1717, which contains a lacZ reporter gene under the transcriptional control of the Fur-regulated fhuA promoter (Table 1). Briefly, the activity of LacZ was monitored by reading the colour of colonies on MacConkey agar (Difco) supplemented with ferrous or ferric chloride concentrations of 10, 50, 100 or 1000 μM after 24 h. The iron chelator 2′,2′-dipyridyl (50 μM) was used to establish conditions of iron deprivation, as described by Zimmermann et al. (1989). In the absence of iron, colonies appeared red due to the expression of β-galactosidase. The addition of iron to the agar medium caused activation of Fur, which resulted in the formation of colourless colonies. All growth experiments were performed in triplicate.

DNA isolation and manipulation. The isolation and manipulation of DNA was performed according to standard protocols (Sambrook et al., 1989). Plasmid DNA was isolated from E. coli, previously grown in 100 ml LB medium, by anion-exchange chromatography using a kit (Qiagen).

The plasmid pSO10, which contains the pfr gene of strain P1 on a 7.5 kb BamHI fragment, originated from a plasmid-based DNA library consisting of BamHI-fragmented DNA cloned in plasmid pMinI (Table 1). Clones carrying the pfr region were selected by hybridization to a radioactively labelled degenerate oligonucleotide mixture (ATG GTN AAY AAR GAY GTN...
described by Chirgwin et al. (1979). Briefly, bacteria grown on
parisons were performed using the
hpdb.html-provided by The Institute for Genomic Research
entry S54729 and from the Internet [tigr.org/tdb/mdb/hpdb/
were subcloned in pBluescript KS and sequenced. The DNA
fragments of the insert in plasmid pSOl0 covering the
AAR) derived from the N-terminal sequence of the Pfr protein agar plates were resuspended in 400 µl ice-cold TES (10 mM
Tris/HCl pH 8, 100 mM EDTA, 100 mM NaCl). After
addition of 400 µl TES containing 1% SDS (95 °C), a twofold
extraction of the suspension with hot phenol (65 °C) was
performed, the water phase was diluted with 1.2 ml 4 M
saturated NaCl solution (6.5 °C) and homogenized by
shearing (passage through a 23–25G needle). The homogenate
was centrifuged through a 1 ml CsCl cushion (6 M CsCl in
water) and precipitated in ethanol. Oligonucleotide PFR-R3 (Table
18–20 h at 20 °C. The RNA pellet was resuspended in water
10 mM Tris/HCl pH 7.5, 1 mM EDTA) at 16000 × g for
18–20 h at 20 °C. The RNA pellet was resuspended in water
and precipitated in ethanol. Oligonucleotide PFR-R3 (Table
2) was labelled at the 5'-end with [γ-32P]ATP (1.5 pmol) and
hybridized to 20 ng H. pylori RNA in avian myeloblastosis
virus (AMV) buffer (50 mM Tris/HCl pH 7.3, 40 mM KCl, 5 mM
DTT) by heating at 95 °C for 5 min and slow cooling at
42 °C for 15 min. The annealing mixture was supplemented with
0.8 µM each of the four dNTPs. AMV reverse transcriptase (USB) was added to extend the primer for 45 min at
42 °C. The sequencing reaction was performed using plasmid
pSO10 as template. The Sequenase version 2.0 DNA
Sequencing kit (USB) was used according to the instructions
provided, and the probes were run on a 7% sequencing gel.

Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics*</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. pylori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 43504</td>
<td>wt, cagA+ vacA (s1a/m1)</td>
<td>ATCC</td>
</tr>
<tr>
<td>G27</td>
<td>wt, cagA+ vacA (s1b/m1)</td>
<td>Censini et al. (1996)</td>
</tr>
<tr>
<td>G27-PFR1, -2, -3</td>
<td>G27 pfr::cat, pfr gene inactivated by insertion of the promoterless cat cassette from pTnMax5, Cm'</td>
<td>This study</td>
</tr>
<tr>
<td>NCTC 11638</td>
<td>wt, cagA+ vacA (s1a/m1)</td>
<td>Bukanov & Berg (1994)</td>
</tr>
<tr>
<td>P1</td>
<td>wt, cagA+ vacA (s1a/m1)</td>
<td>Odenbreit et al. (1996a)</td>
</tr>
<tr>
<td>151</td>
<td>wt, cagA+ vacA (s1b/m1)</td>
<td>Bereswill et al. (1997a)</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>F− endA1 hsdR17 (rK− m'c2K−) supE44 thi recA1 gyrA96 relA1 ΔlacZM15</td>
<td>BRL</td>
</tr>
<tr>
<td>H1443</td>
<td>araB araD lac rpsL thi</td>
<td>Zimmermann et al. (1989)</td>
</tr>
<tr>
<td>H1717</td>
<td>arob fluF::splαlacM Km'</td>
<td>Stojilkovic et al. (1994)</td>
</tr>
<tr>
<td>2136</td>
<td>araD139 Δ(lacU169 strA thi-1, cl Ars on λ prophage</td>
<td>Pohiner et al. (1993)</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBluescript KS+</td>
<td>oriColEI, plasmid vector, Am</td>
<td>BRL</td>
</tr>
<tr>
<td>pEV40b</td>
<td>oriColEI, pAp, expression vector for fusion of genes with MS2 DNA polymerase and six histidine residues, Ap</td>
<td>Pohiner et al. (1993)</td>
</tr>
<tr>
<td>pGEM5Z'f</td>
<td>oriColEI, plasmid vector, Am</td>
<td>Promega</td>
</tr>
<tr>
<td>pMinI</td>
<td>oriColEI, Tc, orIT tetA tetR</td>
<td>Kahrs et al. (1995)</td>
</tr>
<tr>
<td>pPFR1</td>
<td>pGEM5Z'f with a 0.65 kb insert carrying the complete pfr gene of H. pylori strain P1, Ap</td>
<td>This study</td>
</tr>
<tr>
<td>pPFR1-CAT</td>
<td>pPFR1 pfr::catΩ, Ap, Cm</td>
<td>This study</td>
</tr>
<tr>
<td>pPFR2</td>
<td>pGEM5Z'f with a 0.45 kb insert carrying the partially deleted pfr gene from H. pylori strain P1, Ap</td>
<td>This study</td>
</tr>
<tr>
<td>pFTN1</td>
<td>pGEM5Z'f with a 0.8 kb PCR product carrying the ftp (rgA) gene from E. coli strain H1443, Ap</td>
<td>This study</td>
</tr>
<tr>
<td>pSO10</td>
<td>pMin1 with a 7.5 kb chromosomal BamHI fragment carrying the pfr gene from H. pylori strain P1, Cm</td>
<td>This study</td>
</tr>
<tr>
<td>pSO20</td>
<td>pfr gene from H. pylori strain P1 cloned into pEV40b, Ap</td>
<td>This study</td>
</tr>
<tr>
<td>pTnMax5</td>
<td>catΩ, orfL lysR tnpR tnpA lacZ Ap</td>
<td>Kahrs et al. (1995)</td>
</tr>
</tbody>
</table>

* wt, wild-type. Antibiotic-resistance markers: Ap, ampicillin; Cm, chloramphenicol; Tc, tetracycline. The cagA status and the vacA allele type of the H. pylori strains were determined as previously described (Atherton et al., 1995; Strobel et al., 1998).
Table 2. Primer oligonucleotides

<table>
<thead>
<tr>
<th>Designation</th>
<th>Sequence (position in the pfr region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTN-L1</td>
<td>ATCTTCGCAGTTATTTAAG</td>
</tr>
<tr>
<td>FTN-R4</td>
<td>GCCGGAGGAGTGAGTT</td>
</tr>
<tr>
<td>GEM-L</td>
<td>CGAGGGCCATGTAATTG</td>
</tr>
<tr>
<td>GEM-R</td>
<td>TATTGCTGACCTGTAGG</td>
</tr>
<tr>
<td>PFR-L1</td>
<td>TTTGGACCTAATCTCA (817)</td>
</tr>
<tr>
<td>PFR-L2</td>
<td>AGACATCTTTAAGTTTCG (1007)</td>
</tr>
<tr>
<td>PFR-L3</td>
<td>GACGTGAATTCCAGTTATCAAAGACATC (996)</td>
</tr>
<tr>
<td>PFR-R1</td>
<td>ATGTTTTCTCACCCTAC (1617)</td>
</tr>
<tr>
<td>PFR-R2</td>
<td>AGATTTCCTGCTTTTAG (1496)</td>
</tr>
<tr>
<td>PFR-R3</td>
<td>GACACACCTGGCCATTCTTTAG</td>
</tr>
<tr>
<td>PFR-R4</td>
<td>GACAGGGACGCCCTGTACC</td>
</tr>
<tr>
<td>CAT-L1</td>
<td>CGAGATTTTTCAGAG</td>
</tr>
<tr>
<td>CAT-R1</td>
<td>ACGCCCGCCCTGCC</td>
</tr>
</tbody>
</table>

PCR amplification, cloning and insertional inactivation of the pfr gene. The primer oligonucleotides used are listed in Table 2. Amplification by PCR and cloning of the PCR products was performed using Tth DNA polymerase (Pharmacia) as described previously (Bereswill & Geider, 1997; Bereswill et al., 1997a). The primers PFR-L1/-R1, -L2 and -R2 were deduced from the pfr sequence of strain P1 (EMBL accession number Y16068). The primer combinations PFR-L1/-R1 and -L2/-R2 were used to amplify the complete pfr gene from isolated DNA of various H. pylori strains (Fig. 1a). The products were cloned into plasmid pGEM5ZF. The cloning of the PCR products amplified from DNA of H. pylori strain P1 resulted in plasmids pPFR1 and pPFR2, carrying a complete or a partially deleted version of the pfr gene, respectively (Fig. 1a). Inactivation of the pfr gene in pPFR1 yielded plasmid pPFR1-CAT (Fig. 1a) which was constructed by ligating the promoterless CAT cassette amplified from plasmid pTnMax5 (Kahrs et al., 1995) with primers CAT-L1 and CAT-R1 into the BssHII site in the middle of the pfr gene. The integration of the cassette in pPFR1 was selected by growth of transformants of E. coli DH5α with the antibiotics Cm and Ap. The direction of the pfr gene in the cloning vector was confirmed by restriction analysis with appropriate enzymes.

Protein electrophoresis and immunoblot analysis. Protein concentration was measured by the Lowry method. Gel-electrophoretic separation and analysis of proteins was performed by the method of Laemmli (1970). Bacteria previously grown on agar were resuspended in sample solution. After solubilization by boiling for 5 min the proteins were electrophoretically separated on a 15% SDS-polyacrylamide gel. Proteins were visualized by staining with Coomassie brilliant blue.

For immunoblot analysis the proteins separated by SDS-PAGE were blotted onto a positively charged membrane (Immobilon) and analysed with the Pfr antiserum AK198 (see above). The bound rabbit antibodies were detected with a protein A-alkaline phosphatase conjugate (Sigma) followed by incubation with nitroblue tetrazolium. In some experiments
binding of antibodies was detected by using light emission. In this case the blot was developed using a chemiluminescent alkaline phosphatase substrate and the signal was visualized by exposure to an X-ray film (Kodak).

Element-specific electron microscopy. Bacteria previously grown under iron deprivation or iron overload, as described above, were subjected to electron microscopy as previously described by Bode et al. (1993). The presence of iron, phosphorus and oxygen was detected by electron-spectroscopic imaging (ESI) and electron energy-loss-spectroscopy (EELS) according to standard procedures (Bode et al., 1993). To visualize bacterial structures, electrons were used with an energy loss of 283 eV for carbon. The elemental composition of characteristic cytoplasmic structures was then analyzed and visualized using specific energy loss of oxygen (532 eV), phosphorus (132 eV) and iron (708 eV).

RESULTS

Cloning and genetic analysis of the pfr gene from H. pylori strain P1

To investigate the genetic variability of the pfr gene in different H. pylori strains, the pfr gene from strain P1 was sequenced on both strands by using plasmid pS010 as template. The comparison of the nucleotide sequence to the pfr regions of H. pylori strains NCTC 11638 and 26695 (Frazier et al., 1993; Tomb et al., 1997) revealed that the pfr coding region and parts of the flanking DNA regions are conserved. The presence of the pfr gene in different strains (see Table 1) was confirmed by PCR with primers deduced from the pfr gene of strain P1 (Fig. 1). Using primers PFR-L1/R1 or PFR-L2/R2 single PCR products of the expected size were generated from DNA of all strains as target (not shown). The PCR product carrying the pfr region of strain G27 was also sequenced. The nucleotide sequences of the pfr genes from strains NCTC 1168, P1, and G27 were found to be 99%, 99% and 98% identical with pfr in strain 26695. Two ORFs, located upstream and downstream from the pfr gene, were identified in strain P1. These are homologous to ORFs HP0654 and HP0652 which flank the pfr locus (HP0653) in strain 26695 (Fig. 1a). Similar identity values were found for the deduced amino acid sequences of the Pfr proteins (>97% identity). The amino acid exchanges concern residues known not to be involved in the function of the ferritin (Fig. 1b; Harrison & Arioso, 1996).

Transcriptional analysis of the pfr gene

Transcriptional start sites in front of the pfr gene were determined by primer extension analysis of total RNA isolated from H. pylori strain P1 and from E. coli DH5α(pS010). A strong primer extension product was produced using RNA preparations from H. pylori and from DH5α(pS010) as target. This indicated the presence of a transcriptional start site at position -28 with respect to the ATG start codon (Fig. 2a, lanes 1 and 3; S1). A Pribnow box (−10, TATAAT) and a putative -35 region (TTTACT) indicated that the promoter structure preceding this start site shares significant homology with the σ70 consensus of E. coli (Fig. 2b, S1).

The second primer extension product, which was exclusively generated from RNA of H. pylori strain P1 (Fig. 2a, lanes 1 and 3, S2), identified an additional RNA start site at position −70 relative to the start codon (Fig. 2b, S2). The putative promoter preceding this site has some characteristics of the σ70 consensus of E. coli but is not as well conserved as the first site.

Both transcriptional start sites were completely conserved in strains P1, NCTC 11638 and 26695. Further computational analysis of the DNA region downstream from the pfr gene identified a perfect inverted repeat (CAAAAAACN₄GTTTTTG) located 17 nucleotides downstream from the TAA stop codon (Fig. 2b). This motif, although it causes a stem–loop of low stability, could represent a transcriptional terminator structure and was also completely conserved among strains.

Functional characterization of the pfr gene in E. coli

It has been reported earlier that bacterial ferritin genes on plasmids, including rsgA (ftn) and pfr from E. coli and from H. pylori respectively, cause inactivation of the ferric uptake repressor Fur in E. coli as indicated by a positive phenotype in the FURTA.
To investigate whether the FURTA could be used to isolate the \textit{pfr} gene and possibly other genes involved in iron metabolism of \textit{H. pylori}, plasmid-based DNA libraries of strains NCTC 11638 and P1 were transferred into \textit{E. coli} H1717 and single colonies of the transformants were screened on MacConkey agar containing 100 \textmu M iron. From each library analysed, three out of 1000 transformants appeared red, representing a Fur-derepressed phenotype. PCR analysis with the primer combination PFR-L2/-R2 detected the \textit{pfr} gene in three of the plasmids (not shown), confirming that the ferritin gene from \textit{H. pylori} is detected by the FURTA. The remaining plasmids, which gave no signal in the \textit{pfr}-specific PCR assay, were either not stable as indicated by the loss of the phenotype after retransformation into strain H1717, or contained the \textit{fur} gene from strain NCTC 11638 as described elsewhere (Bereswill et al., 1998b).

It has been earlier hypothesized that the inhibition of Fur in \textit{E. coli} H1717 by ferritin genes on plasmids is caused by the activity of the ferritin protein (Stojiljkovic et al., 1994). To investigate the inhibition of Fur by ferritin in more detail, plasmids pPFR1, pPFR1-CAT and pPFR2, carrying the complete, an inactivated, or a partially deleted version of the \textit{pfr} gene from strain P1, respectively (Fig. 1a), were constructed (see Methods) and separately transferred into \textit{E. coli} strain H1717. The results of the analysis by FURTA, summarized in Table 3, indicated that only the intact gene on plasmid pPFR1 mediated de-repression of the \textit{fhuF::lacZ} reporter even in the presence of up to 1 mM iron. Both insertional inactivation and deletion of the up- and downstream segments of the \textit{pfr} gene completely abolished this function. This indicated that the inhibition of Fur by pPFR1 is mediated by the catalytic activity of the Pfr protein rather than by binding of Fur to the \textit{pfr} DNA in the plasmid, which could cause the same phenotype.

The plasmid pFTN1, which carries the \textit{fim} (rsgA) gene of \textit{E. coli}, derepressed the \textit{fhuF::lacZ} fusion in the same manner as plasmid pPFR1.

\textbf{Table 3. FURTA analysis of the \textit{pfr} and \textit{ftn} genes in \textit{E. coli} H1717}

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Genotype</th>
<th>LacZ expression on MC with iron*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEM5Z'f</td>
<td>+pfr</td>
<td>—</td>
</tr>
<tr>
<td>pPFR1</td>
<td>pfr</td>
<td>+</td>
</tr>
<tr>
<td>pPFR1-CAT</td>
<td>pfr::cat<sup>ac</sup></td>
<td>—</td>
</tr>
<tr>
<td>pPFR2</td>
<td>Δpfr<sup>†</sup></td>
<td>—</td>
</tr>
<tr>
<td>pFTN1</td>
<td>fim (rsgA)</td>
<td>+</td>
</tr>
</tbody>
</table>

* MC, MacConkey agar with 0.05, 0.1, and 1 mM iron. +, Red colour, \textit{fhuF::lacZ} derepression, weak Fur-activity; —, colourless, reflecting repression of \textit{fhuF::lacZ} by Fur.
[†] Δpfr, partial \textit{pfr} gene (without the up- and downstream segments) (see Table 1 and Fig. 1).
Inactivation of the pfr gene in H. pylori

The pfr::cat gene in plasmid pPFR1-CAT was used to achieve marker exchange mutagenesis in H. pylori. The H. pylori wild-type strains listed in Table 1 were transformed with the pfr::cat gene fusion and recombinants carrying the resistance marker in the chromosome were selected. Two different approaches (see Methods), using linear or circular DNA were successful in mutagenizing strain G27, yielding the mutant strains G27-PFR1, -PFR2 and -PFR3. Microscopical appearance and biochemical tests revealed that the mutants presented as spiral-shaped rods which were microaerophilic and positive for urease and for catalase. The PCR-directed typing of the vacA gene (Atherton et al., 1995) further confirmed the mutants as derivatives of H. pylori G27, which harbours a vacA gene of allele type s1b/m1 (not shown).

The correct insertion of the cat cassette within the chromosomal pfr gene was analysed by PCR using the primer combinations PFR-L2/-R2 and CAT-L/-R (Fig. 3). The amplification of the pfr gene in the mutant strains generated a 1.2 kb product (Fig. 3, lanes 3–5) which was bigger than the product obtained from wild-type strain G27 by an amount corresponding to the size of the cat cassette (Fig. 3, lane 1). The cat gene was exclusively amplified from the mutant strains (Fig. 3, lanes 6–9). Analysis of DNA from strains G27 and G27-PFR1 by Southern hybridization with DNA probes specific for pfr and for cat proved additionally that the cat cassette was correctly inserted and that the mutant strains carry a single insertion of the marker (not shown).

Detection of the ferritin protein

To study the production of the Pfr protein in H. pylori and in E. coli total proteins were analysed by SDS-PAGE and by Western immunoblotting using the polyclonal antiserum AK198 (Fig. 4). The analysis of protein profiles by Coomassie staining revealed that the presence of plasmid pPFR1 in strain H1717 gave rise to an additional protein band of around 19 kDa which was not produced by H1717 carrying the plasmid vector alone (Fig. 4a, lanes 1 and 2). The protein profiles obtained for the H. pylori parent strain and for the three mutants were identical (Fig. 4a, lanes 3–6).

Immunoblot analysis with the Pfr-specific antiserum confirmed that the 19 kDa protein overproduced by E. coli H1717(pPFR1) is identical with Pfr (Fig. 4b, lane 2). A weak signal, which was probably due to a weak cross-reaction of the antibodies with the ferritin protein Ftn (RsgA) from E. coli was also seen in H1717(pGEM5Z’f) (Fig. 4b, lane 1). The Pfr protein was also detected in the H. pylori parent strain G27 (Fig. 4b, lane 3) but not in the pfr-deficient mutants, indicating that the mutagenesis of the pfr gene was successful (Fig. 4b, lanes 4–6).

Growth characteristics of the pfr-deficient mutant strains

To further investigate the role of pfr in iron metabolism, the growth of the mutants under iron deprivation, iron overload and oxidative stress was monitored. The toxic (no growth) and the sublethal (growth inhibition about 50%) concentrations of the metals iron, copper and manganese, of the iron chelator desferal and of the oxygen radical mediator paraquat were estimated by growing the H. pylori wild-type strains listed in Table 1 on BBC agar with increasing amounts of the agents. Iron and the other metals inhibited growth completely at concentrations of 3 mM. Desferal and paraquat were inhibitory at concentrations of 20 μM and 10 μM, respectively. Sublethal concentrations are given in Table 4. Growth of all strains was not impaired in the presence of sodium chloride at concentrations of up to 3 mM, excluding the influence of osmotic stress.
Table 4. Growth characteristics of pfr mutants compared to the parent strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>None (15 μM)</th>
<th>Desferal (20 μM)</th>
<th>Ferrous iron* (0.5 mM)</th>
<th>Ferric iron* (1 mM)</th>
<th>Ferric iron* (2 mM)</th>
<th>Paraquat (1 μM)</th>
<th>Paraquat (10 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G27</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
<tr>
<td>G27-PFR1-3</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>-</td>
</tr>
</tbody>
</table>

* BBC agar supplemented with chloride salts of the metals.

Under conditions of oxidative stress or iron deprivation, the growth of the pfr mutant strains was not different from the parental strain G27 (Table 4). However, in the presence of excess iron, the growth of the pfr mutants was significantly impaired with respect to that of the parental strain: the addition of ferrous chloride at concentrations of 1 mM and 0.5 mM abolished or at least reduced growth of the mutants to about 50%, respectively, whereas the growth of wild-type strain G27 was not impaired by elevated levels of ferrous iron (up to 2 mM). The elevated susceptibility of the mutants to killing by iron was more pronounced for ferrous chloride; ferric chloride caused a reduction in growth only at concentrations above 1 mM and completely abolished growth at a concentration of 2 mM (Table 4).

The pfr mutants were also more susceptible to killing by copper and manganese. In the presence of these metals, the growth behaviour of the parent strain and of the mutants was identical to that observed for overload generated with ferrous iron (see above, Table 4).

Visualization of iron-containing subcellular structures

To further clarify the role of Pfr in the formation of iron-containing subcellular structures, strain G27 and the pfr mutant G27-PFR1 were grown under normal, iron-rich (500 μM) or iron-depleted conditions and analysed by transmission electron microscopy (TEM) and by element-specific electron-spectroscopic imaging (ESI; Fig. 5). The latter technique allows specific analysis of the elemental composition of cellular structures (Bode et al., 1993).

Analysis by TEM did not detect significant differences between the pfr mutant and the parent strain (Fig. 5a, b). Both strains consisted of curved rods and growth in presence of iron did not significantly change the cell morphology or the appearance of the cytoplasm.

In contrast, the analysis by ESI specific for iron revealed that the parental strain G27 harbours two types of iron-containing cytoplasmic aggregates (Fig. 5c), which were exclusively formed upon growth in the presence of iron. Neither type of structure was detected in the mutant G27-PFR1 (Fig. 5d). When the parent strain was grown on BBC agar without iron supplementation, no ESI signal was detected in the cytoplasm, perhaps indicating that the cytoplasmic iron concentration was below the detection limit of the method. The pictures obtained were similar to that obtained for analysis of the mutant grown under iron-rich conditions (Fig. 5d).

Further analysis of the elemental composition of the iron-containing aggregates in strain G27 by ESI and electron energy-loss spectroscopy (EELS) specific for carbon, oxygen and phosphorus, respectively, revealed two types of iron-containing aggregates, which were clearly distinguishable by their morphology and by their elemental composition: the large amorphous vacuole-like aggregates (type I) of 0.05-0.20 μm diameter contained iron in association with phosphorus and oxygen, whereas the small round granule-like structures (type II) of 0.02-0.10 μm diameter, consisted of iron and oxygen. Carbon was detected in both structures (Fig. 5e).

Accumulation of the Pfr protein under conditions of iron overload

The observation that the accumulation of iron in subcellular structures was induced by iron and was dependent on the presence of the intact ferritin gene led to the speculation that the ferritin protein could be positively regulated by iron and might have an influence on iron-dependent regulation in H. pylori. To further investigate these possibilities, total proteins from H. pylori strain G27 grown on BBC agar as well as under conditions of iron overload or iron deprivation, were analysed by SDS-PAGE (Fig. 6a). Growth in the presence of 1 mM ferric or ferrous chloride significantly reduced the intensity of a small protein band of around 12 kDa (Fig. 6a, lanes 2 and 3). The intensity of the 12 kDa band was furthermore increased under conditions of iron deprivation (Fig. 6, lane 4) and clearly diminished in the pfr-deficient mutant G27-PFR1 (Fig. 6, lane 5).

Further analysis of the Pfr protein by immunoblotting with the Pfr-specific antiserum (Fig. 6b) revealed that iron overload caused significant accumulation of the ferritin protein (Fig. 6b, lanes 2 and 3), whereas iron deprivation resulted in a slight decrease in the intensity of the ferritin band (Fig. 6b, lane 4). Under conditions of
Genetic characterization of the *H. pylori* *pfr* gene

![Figure 5](image)

Fig. 5. Visualization of cytoplasmic iron aggregates in *H. pylori*. (a, b) Transmission electron micrographs of the *H. pylori* parent strain G27 and of the *pfr*-deficient mutant strain G27-PFR1. (c–e) Analysis of cells by ESI specific for iron (c, d), and for carbon (e). Strains G27 (c, e) and G27-PFR1 (d) were grown in the presence of 1 mM ferric chloride and analysed by electron microscopy using electrons with an energy loss of 283 eV for carbon (C, edge) and an energy loss of 708 eV for iron (b, c; Fe L$_{\alpha_{2\gamma}}$ edge). The iron-containing aggregates, which were detected only in strain G27, are marked by white arrows (c). Bars, 0.5 µm.

![Figure 6](image)

Fig. 6. Iron-dependent protein expression in *H. pylori* and analysis of the Pfr protein under conditions of iron overload. Total cell lysates from *H. pylori* strains G27 (lanes 1–4) and G27-PFR1 (lane 5) grown on BBC agar with various supplements were separated on a 15% polyacrylamide gel. Lanes 1 and 5, BBC agar without supplements; lanes 2, 3 and 4, BBC agar with 1 mM ferric chloride, 1 mM ferrous chloride and 10 µM desferal, respectively. The size of a selected marker protein (M) is given to the right. (a) Visualization of electrophoretically separated proteins by staining with Coomassie blue. The 12 kDa protein band which disappeared in the presence of iron overload is marked by the black arrow to the left. (b) Detection of the Pfr protein with the specific antiserum AK198 by immunoblot analysis. The band corresponding to the Pfr protein is marked by the arrow to the right.

Iron overload, two bands of similar but not identical molecular mass were reproducibly detected (Fig. 6b, lanes 2 and 3). This might indicate that the ferritin protein is modified upon accumulation.

DISCUSSION

Populations of *H. pylori* exhibit genetic polymorphisms (Taylor *et al.*, 1996) and it has recently been demonstrated that the chromosomal localization of the *pfr* gene varies among strains (Jiang *et al.*, 1996). The present analysis revealed that the ferritin gene is well conserved among strains. This finding provides evidence for positive selection of the *pfr* gene, which is further supported by the fact that changes in the amino acid sequence of Pfr from different strains do not concern residues involved in the basic functions of the ferritin.

The viability of the *pfr*-deficient mutant strains in the presence of chloramphenicol indicated that the *pfr* promoter is active at all growth stages. The two transcriptional start sites might indicate that the gene is constitutively expressed in *H. pylori*. This assumption is supported by the similarity of one binding site for RNA
polymerase to \(\sigma^{38} \)-dependent promoters, which are known to mediate continuous transcription of housekeeping genes in most bacterial species. This promoter is obviously responsible for transcription of the \(pfr \) gene in \(E. coli \) and for the heterologous production of the protein in \(E. coli \). The second transcriptional start site in front of the \(pfr \) gene is active in \(H. pylori \) but not in \(E. coli \). This observation might be explained by differences in the transcription machinery of both species or by the lack of a \(H. pylori \)-specific sigma factor which is essential for transcriptional activity of this promoter. The corresponding promoter might be involved in upregulation of the \(pfr \) gene expression under different conditions, e.g. iron overload.

The fact that inactivation of Fur in \(E. coli \) H1717 was caused solely by the intact \(pfr \) gene excluded the possibility that the repressor was titrated out by binding to a Fur-binding site present in the \(pfr \)-containing plasmid. These observations supported the earlier hypothesis that the Pfr protein inactivates Fur by removal of the ferrous iron cofactor (Stojilkovic et al., 1994). The inhibition of Fur by ferritin may explain the earlier observation that the \(pfr \) gene on a plasmid causes accumulation of iron in \(E. coli \) (Frazier et al., 1993). Based on these findings it can be hypothesized that the interaction of ferritin with Fur allows the bacteria to maintain iron uptake especially under conditions of iron overload. The resulting formation of iron deposits might contribute to survival under conditions of iron starvation.

Different approaches were applied to investigate whether the usage of circular or linear DNA, or the transformation of calcium-competent cells, is effective for creation of \(H. pylori \) mutants. The results showed that \(H. pylori \) is able to transport and to recombine both types of DNA at comparable efficiency. The fact that a protocol developed for transformation of calcium-competent cells of \(E. coli \) resulted in recombinants indicated that \(H. pylori \) is transformable by this approach, but the calcium treatment had no influence on the transformation efficiency (not shown).

The biological function of the iron-containing aggregates detected in the cytoplasm of \(H. pylori \) is not known but it can be speculated that they represent deposits for iron and for phosphorus which could contribute to survival under unfavourable environmental conditions. Phosphorus and oxygen are typical components of the ferrihydrite core of prokaryotic and eukaryotic ferritins (Harrison & Arioso, 1996; Wai et al., 1995; Bezkorovainy, 1987). Together with the earlier finding that the Pfr protein was detected within paracrystalline cytoplasmic arrays of \(H. pylori \) (Frazier et al., 1993), this elemental composition provides evidence that the ferritin is a major iron-containing component of the cytoplasm. The fact that the \(pfr \) mutant lacked the iron-containing aggregates indicates furthermore that the Pfr protein plays a crucial role in the formation of these structures. This is in good agreement with the observation that heterologous expression of the ferritin genes from \(H. pylori \) and from \(C. jejuni \) caused the formation of paracrystalline inclusions in \(E. coli \) (Frazier et al., 1993; Wai et al., 1997). The fact that crystalline arrays were not detected by TEM analysis of strain G27 in the present study might be explained by differences in preparation or staining of the specimens. It is also possible that in strain G27 the inclusions are not dense enough to be detected by TEM.

Metal ions favour the formation of the toxic superoxide and hydroxyl radicals (Miller & Britigan, 1997). The finding that the \(pfr \) mutants were more susceptible to the toxicity of iron indicated that the \(pfr \) gene is involved in metal resistance of \(H. pylori \). The ferritin from \(E. coli \) can protect cells from the toxicity of iron (Touati et al., 1995). A ferritin-deficient mutant of \(Campylobacter jejuni \) was found to be more sensitive to killing by oxygen radicals (Wai et al., 1996). In contrast, under conditions of oxidative stress, growth of the \(pfr \)-deficient mutants of \(H. pylori \) did not significantly differ from the parent strain. This might indicate that in \(H. pylori \) detoxification of oxygen radicals is mediated by additional systems, which act independently of ferritin. In this context it seems noteworthy that \(H. pylori \) does possess superoxide dismutase (Spiegelhalder et al., 1993) and catalase (Odenbreit et al., 1996a), both involved in detoxification of oxygen radicals. Finally, the possibility has to be considered that \(H. pylori \) detoxifies oxygen radicals in an individual way. In this context it is interesting that \(H. pylori \) produces the oxygen-sensitive enzymes pyruvate:flavodoxin oxidoreductase (Por) and 2-oxoglutarate:acceptor oxidoreductase (Oor), which catalyse electron transfer via ferredoxin components to NADPH and are in this combination rarely established in bacteria (Hughes et al., 1997).

The finding that the \(pfr \) mutant strains, beside their sensitivity to iron, were also more prone to killing by the metals copper and manganese suggests that the binding and sequestration of metals by Pfr is not specific for iron. The role of Pfr in resistance of \(H. pylori \) to other metals, including nickel, zinc or bismuth, which act as cofactors for \(H. pylori \) enzymes, or are used as therapeutic agents, is currently under investigation.

The induction of the formation of the cytoplasmic iron aggregates by iron concurs with the observation that the ferritin protein accumulated under conditions of iron overload. This upregulation makes sense, because the toxic effect of excess iron can be compensated by ferritin. Corresponding regulation of ferritins has been reported for other micro-organisms (Harrison & Arioso, 1996). In eukaryotes production of ferritins is also positively regulated by iron. It can be speculated that the two promoters in front of the gene contribute to this regulation phenomenon. However, accumulation of ferritin under iron-rich conditions could also be mediated by translational or post-translational processes. The two bands observed in cells grown under iron-rich conditions could represent two forms of ferritin, one of which is modified and therefore migrates more slowly.
ACKNOWLEDGEMENTS

U. W., S. O. and S. B. made equal contributions to this study. Parts of this work will be included in the MD thesis of U. W. The authors thank Drs Wolfgang Breit and Rainer Haas for continuous support and encouragement. Tanja Vey provided excellent technical assistance. The authors are also grateful to Drs Antonello Covacci and Klaus Hantke for providing strains G27 and H1717, respectively, and to Dr Steve Batsford, who critically corrected the manuscript. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) to M. K. (Ki201/8-2).

REFERENCES

