Physical map of the chromosome of Aeromonas salmonicida and genomic comparisons between Aeromonas strains

Elizabeth Umelo† and Trevor J. Trust‡

Author for correspondence: Elizabeth Umelo. Tel: +1 604 822 4417. Fax: +1 604 822 6041. e-mail: umelo@interchange.ubc.ca

I-Ceul and Pmel physical maps of the Aeromonas salmonicida A449 chromosome were constructed using PFGE. The circular chromosome of A. salmonicida A449 was estimated to be 4658±30 kb. The approximate location of several genes, including those encoding proteins implicated in virulence, were identified. The map showed that the known virulence-factor-encoding genes were not clustered. The I-Ceul genomic digestion fingerprints of several typical and atypical strains of A. salmonicida were compared. The results confirmed the homogeneity of typical strains, which provided further support for the clonality of the population structure of this group. Extensive diversity was observed in the I-Ceul digestion fingerprint of atypical strains, although a clonality was observed in the strains isolated from diseased goldfish. The results suggest that comparison of I-Ceul digestion fingerprints could be used as a powerful taxonomic tool to subdivide the atypical strains and also help clarify some of the current confusion associated with the taxonomy of the genus Aeromonas.

Keywords: Aeromonas salmonicida, physical map, genetic map, circular chromosome, genome comparison

INTRODUCTION

Aeromonas salmonicida is a fish-pathogenic bacterium. A number of virulence-implicated factors have been identified in A. salmonicida, such as the paracrystalline tetragonal surface protein array (A-layer), several proteases and haemolysins, a glycerophospholipid cholesterol acyl transferase and LPS (reviewed by Noonan & Trust, 1995a). Although the genes encoding some of these factors have been cloned, sequenced and characterized, nothing is known about their location or organization on the chromosome.

Strains of A. salmonicida are broadly grouped either as typical or atypical, depending on several genotypic and phenotypic properties (Austin & Austin, 1993; Belland & Trust, 1988). The typical strains cause the septicaemic disease furunculosis in salmonids and are reported to be a homogeneous group (Austin & Austin, 1993; Belland & Trust, 1988). The nutritionally fastidious atypical strains cause different types of diseases in a variety of fish and are very heterogeneous. The heterogeneity of atypical strains has made the subclassification of this group difficult. Indeed the atypical A. salmonicida strains grouped under the subspecies nova have been reported to have potential for further subdivision (Belland & Trust, 1988). The taxonomy of the genus Aeromonas as a whole is riddled with significant confusions because of poor correlation between results obtained using different classification methods (Austin et al., 1989; Wilcox et al., 1992). Austin and co-workers have suggested that the problems inherent in the current classification methods need to be addressed before a definitive classification for the genus Aeromonas can be made (Austin & Austin, 1993). Hence the need for better classification tools for the genus cannot be over-emphasized.

PFGE, which allows the resolution of megabase-sized DNA molecules (Schwartz et al., 1983), has made it possible to construct genome maps of numerous microorganisms. Using PFGE technology, the physical maps of organisms such as Escherichia coli (Smith et al.,
E. UMELO and T. J. TRUST

1987), several Salmonella species (Liu et al., 1993a), Streptomyces species (Lin et al., 1993) and Borrelia burgdorferi (Cajens & Huang, 1993) have been determined. These were constructed by ordering high molecular mass genomic DNA fragments obtained following digestion with rare cutting restriction enzymes and separation by PFGE.

In this study, we have used PFGE and Southern blotting analysis to determine the physical and genetic map of the A. salmonicida A449 chromosome. Genes of A. salmonicida, including those encoding proteins implicated in virulence, were localized on the map. The I-CeuI digestion fingerprints of several typical and atypical strains of A. salmonicida, including representative strains from other Aeromonas species, were compared. The use of the I-CeuI digestion fingerprint as a taxonomic tool for Aeromonas was also investigated.

METHODS

Bacterial strains, vectors and growth conditions. The strains and vectors used in this study are listed in Table 1. All strains were cultured on trypticase soy agar or broth (TSA or TSB; BBL). Atypical strains of A. salmonicida were cultured on TSA supplemented with 5% horse blood or in TSB supplemented with 10 μg haemin ml⁻¹. The Aeromonas strains were grown at 20 °C for 24-36 h while E. coli strains were grown at 37 °C for 18 h. Antibiotics were used at the following concentrations (μg ml⁻¹): ampicillin, 100; chloramphenicol, 180.

Preparation of intact genomic DNA. Aeromonas strains were grown in 10 ml TSB to an OD₆₀₀ of 45 using the red 66 filter of the Klett-Summerson Photoelectric Colorimeter, model 800-3, corresponding to approximately 1·5 x 10⁸ c.f.u. ml⁻¹ and a yield of 10 μg DNA (Smith et al., 1988). Chloramphenicol was added and the culture was grown for a further 1 h and then chilled on ice for 10 min. The cells were harvested and washed in 10 ml Prett IV (10 mM Tris/HCl, pH 7·6, 1 mM NaCl). The cells were thoroughly resuspended in 1·6 ml Prett IV and warmed to 37 °C. An equal volume of 1% (w/v) lysozyme (Bio-Rad) warmed to 37 °C was added to the cells and the sample was mixed. The mixture was dispensed into 1 ml syringes and allowed to solidify at room temperature for at least 2 h. The agarose moulds containing the cells were pushed out of the syringes approximately 50 μl at a time and each small cylinder (insert) was sliced off with a scalpel. The inserts were placed into 6 ml EC lysis solution (6 mM Tris/HCl, pH 7·6, 1 mM NaCl, 100 mM EDTA, pH 8·0, 0·5% Brij-35, 0·2% deoxycholate, 0·5% Sarkosyl) containing 1 mg lysozyme ml⁻¹ and 20 μg RNase ml⁻¹ and incubated at 37 °C overnight with shaking. The EC solution was replaced with 6 ml ESP solution (0·5 M EDTA, pH 9–9·5, 1%, w/v, lauryl sarcosine, 1 mg proteinase K ml⁻¹) and the sample was incubated at 50 °C for 48 h with shaking. The ESP solution was removed and the inserts were first incubated twice in 10 ml TE (10 mM Tris/HCl, pH 7·4, 0·1 mM EDTA) containing 1 mM PMSF for 2 h and then three times in 10 ml TE for 2 h without PMSF. The inserts were stored in TE at 4 °C until use.

Restriction enzyme digestion and end-labelling of I-CeuI fragments. For complete DNA digestion with I-CeuI and Pmel, each insert was first incubated in 100 μl 2× NEB buffer (New England Biolabs) for I-CeuI digestion or 2× NEB buffer for Pmel digestion, followed by a 15 min incubation on ice. The solutions were replaced with 100 μl 1× NEB buffer containing 2 U I-CeuI for I-CeuI digestion and 1× NEB buffer containing 4 U Pmel for Pmel digestion, followed by a 15 min incubation on ice. Complete digestion of A449 genomic DNA was carried out at 37 °C for 4 h. For PacI digestion, inserts were incubated twice in 100 μl 1× NEB buffer 1 containing 10 U PacI was added to the insert and incubated at 4 °C overnight. Digestion was conducted at 37 °C for at least 4 h. For partial I-CeuI digestion of A449 genomic DNA, digestion was terminated after 40 min at 37 °C. After PFGE separation, the partially digested DNA fragments were excised from the gel under low wavelength UV light and then digested to completion with I-CeuI. After digestion, the DNA within the agarose pieces was end-labelled by blunt-ending the 5’-terminal I-CeuI overhangs using Klenow DNA polymerase and radioactive dNTPs. Each piece of agarose was first incubated in 100 μl 1× Klenow buffer (New England Biolabs) on ice for 20 min. The buffer was replaced with a fresh 100 μl 1× Klenow buffer containing 10 μCi (370 Kbq) each of [α⁻³²P]dATP and [α⁻³²P]dCTP (Amersham), 2 mM dCTP, 2 mM dGTP and 5 U Klenow DNA polymerase and the sample was incubated on ice for 20 min. The end-labelling reaction was conducted at 18 °C for 2 h and the labelled DNA fragments were separated by PFGE. After separation, the gels were dried and exposed to X-OMAT AR film (Kodak).

PFGE conditions. DNA samples were analysed using the CHEF-DRII PFGE system (Bio-Rad) connected to a model 1000 Mini chiller (Bio-Rad) to keep the buffer temperature at 14 °C. TBE buffer (0·5 x 10 mM Tris/HCl, 54 mM borate, 1·0 mM EDTA, pH 8·3) and 0·7–1% agarose gels supplemented with 1·5 μg ethidium bromide ml⁻¹ were utilized in the separation of DNA. Using the long gel cast (21 x 14 cm; Bio-Rad), both Pmel and I-CeuI digests were separated using a pulse ramp of 10–80 s at 5·5 V cm⁻¹ for 53 h, unless otherwise specified. To separate PacI genomic DNA fragments, two windows of separation were utilized, first using a pulse ramp of 10–80 s at 5·5 V cm⁻¹ for 30 h and then using a pulse ramp of 5–10 s at 5·0 V cm⁻¹ for 30 h.

Southern blotting and DNA probes. Following PFGE, agarose gels were prepared as unblots (Tsao et al., 1983). The gels were incubated twice for 30 min in denaturation solution (0·5 M NaOH, 1·5 M NaCl) and twice for 30 min in neutralization solution (1·5 M NaCl, 1·0 M Tris/HCl, pH 8·0). After neutralization, the gels were dried under vacuum, first without heat for 30 min and then at 80 °C for 1 h. The dried gels (unblots) containing the DNA were subsequently probed in a Southern hybridization analysis as described by O’Toole et al. (1994). The DNA fragments utilized as probes in Southern blotting experiments were either cloned A. salmonicida genes, heterologous genes from E. coli or PCR fragments amplified using primers designed from published gene sequences of A. salmonicida. The PCR reactions were performed as previously described (Umeolo & Trust, 1997). The amplified DNA fragments were confirmed by sequencing and then labelled for use as probes using standard methodology (Umeolo & Trust, 1997).

Cloning of fragments from Pmel, PacI and I-CeuI genomic DNA digests. Specific A449 genomic DNA fragments obtained following either single or double digestion with I-CeuI, PacI and Pmel, were excised under low wavelength UV light. The pieces of agarose containing the DNA were individually incubated in 100 μl 1× NEB buffer 3 twice on ice for 30 min. The solution was replaced with a fresh 100 μl of NEB buffer 3 containing 20 U each of PstI and BgIII, incubated
Table 1. Bacterial strains and vector used in this study

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Source (other strain designations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical A. salmonicida</td>
<td>A449</td>
<td>Brown trout, Eure, France</td>
</tr>
<tr>
<td></td>
<td>A450</td>
<td>Brown trout, Tarn, France</td>
</tr>
<tr>
<td></td>
<td>A488</td>
<td>Brook trout, USA</td>
</tr>
<tr>
<td></td>
<td>A505</td>
<td>Salmonid fish, Japan</td>
</tr>
<tr>
<td></td>
<td>A202</td>
<td>Salmonid fish, Japan</td>
</tr>
<tr>
<td></td>
<td>A251</td>
<td>Atlantic salmon, UK (ex-NCMB 1102)</td>
</tr>
<tr>
<td></td>
<td>A440</td>
<td>Brook trout, USA</td>
</tr>
<tr>
<td></td>
<td>A438</td>
<td>British Columbia, Canada</td>
</tr>
<tr>
<td></td>
<td>A447</td>
<td>Salmonid, Weymouth, UK</td>
</tr>
<tr>
<td>Atypical A. salmonicida</td>
<td>A400</td>
<td>Goldfish, Boolara, Australia</td>
</tr>
<tr>
<td></td>
<td>A402</td>
<td>Goldfish, Boolara, Australia</td>
</tr>
<tr>
<td></td>
<td>A419</td>
<td>Goldfish, Arkansas, USA</td>
</tr>
<tr>
<td></td>
<td>A491</td>
<td>Goldfish, Maryland, USA</td>
</tr>
<tr>
<td></td>
<td>A460</td>
<td>Atlantic salmon, Nova Scotia, Canada</td>
</tr>
<tr>
<td></td>
<td>A461</td>
<td>Atlantic salmon, Nova Scotia, Canada</td>
</tr>
<tr>
<td></td>
<td>A462</td>
<td>Atlantic salmon, Nova Scotia, Canada</td>
</tr>
<tr>
<td></td>
<td>A477</td>
<td>European carp, Europe</td>
</tr>
<tr>
<td></td>
<td>A480</td>
<td>European carp, The Netherlands</td>
</tr>
<tr>
<td></td>
<td>A475</td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td>A522</td>
<td>Herring, British Columbia, Canada</td>
</tr>
<tr>
<td></td>
<td>A523</td>
<td>Herring, British Columbia, Canada</td>
</tr>
<tr>
<td></td>
<td>A588</td>
<td>Atlantic cod, Nova Scotia, Canada</td>
</tr>
<tr>
<td></td>
<td>A600</td>
<td>Shubunkin (Goldfish), Germany</td>
</tr>
<tr>
<td></td>
<td>A601</td>
<td>Goldfish, Europe</td>
</tr>
<tr>
<td></td>
<td>A602</td>
<td>Putative Aeromonas strain</td>
</tr>
<tr>
<td>A. hydrophila</td>
<td>TF7</td>
<td>Trout lesion, Quebec, Canada</td>
</tr>
<tr>
<td></td>
<td>Ah300</td>
<td>Human diarrhoeal faeces</td>
</tr>
<tr>
<td></td>
<td>Ah30</td>
<td>Salmonid fish, British Columbia, Canada</td>
</tr>
<tr>
<td></td>
<td>Ah55</td>
<td>Salmonid fish, British Columbia, Canada</td>
</tr>
<tr>
<td>A. sobria biotype veronii</td>
<td>As701</td>
<td>Human septicaemia, USA</td>
</tr>
<tr>
<td></td>
<td>As702</td>
<td>Human septicaemia, USA</td>
</tr>
<tr>
<td>E. coli</td>
<td>DH5α</td>
<td>Hanahan (1983)</td>
</tr>
<tr>
<td>Vector</td>
<td>pBluescript</td>
<td>Stratagene</td>
</tr>
</tbody>
</table>

overnight at 4°C and then at 37°C for 16–24 h. After digestion, the agarose containing the DNA was broken into small pieces with a Pasteur pipette and Pst1/BamHI-digested pBluescript was added to the sample. The DNA was extracted by phenol/chloroform extraction and precipitated by adding 0·1 vols 3 M sodium acetate and 2 vols 100% ethanol followed by incubation at -70°C for 1 h. The DNA was recovered by centrifugation, air-dried and resuspended in water. An aliquot of the DNA sample was ligated, electroporated into *E. coli* DH5α and plated on selection medium. Cloned DNA fragments were used as probes in Southern blotting.

RESULTS

Estimation of chromosome size

The genomic DNA of *A. salmonicida* A449, with an estimated G + C content of 55 mol% (Belland & Trust, 1988), was digested with various enzymes to identify those which cleaved rarely. While the majority of the enzymes cleaved the A449 chromosome into too many fragments, two enzymes that produced a few fragments suitable for size estimation were identified (Fig. 1). *I-CeuI*, an intron-encoded enzyme which cleaves within the 23S rRNA-encoding gene (*rrl*) (Gauthier et al., 1991; Liu et al., 1993b), cleaved the A449 chromosome into nine fragments, the estimated sizes of which were 2800 ± 100, 515 ± 25, 766 ± 40, 238 ± 20, 186 ± 20, 178 ± 30, 525 ± 15, 670 ± 20, 50 ± 30, 30 ± 20, 76 ± 20 and 48 ± 0 ± 30 kb. *Pmel*, which cleaves an AT-rich octanucleotide site, produced 11 fragments from A449, the estimated sizes of which were 876 ± 3.5, 670 ± 20, 50 ± 30, 30 ± 20, 76 ± 20, 50 ± 30 and 48 ± 0 ± 30 kb. *Pcal* also cleaved an AT-rich octanucleotide site and produced at least 22 fragments from the A449 genomic DNA (Fig. 1). However, some fragments generated by *Pcal* digestion were used as tools to show the linkage between some *Pmel*- and *I-CeuI*-derived fragments, as discussed below. By comparing the total fragment sizes obtained using *I-CeuI* and *Pmel*, the mean size of the *A. salmonicida* A449 chromosome was estimated at 4658 ± 30 kb.
Construction of the I-CeuI physical map

The I-CeuI physical map of the A. salmonicida A449 chromosome was deduced using a combination of complete and partial digestion. Partial I-CeuI digestion of the A449 chromosome yielded the nine expected fragments, in addition to fragments corresponding to combinations of flanking fragments (Fig. 2). The partial fragments were isolated, digested to completion with I-CeuI and separated by PFGE adjacent to complete I-CeuI A449 genomic digests to aid identification of the constituent fragments. Since the resultant digests were often too faint to be visualized after ethidium bromide staining, the fragments obtained after complete digestion of partial fragments were end-labelled with radioactive nucleotides prior to being analysed by PFGE. Other I-CeuI-derived partial fragments obtained in this study include 3+5/6, 2+4+5/6 and 1+5/6 (data not shown). By comparison and alignment of the fragments obtained from complete digestion of the partials, the chromosomal order of the nine I-CeuI fragments was deduced as 1-5/6-3-7-9-8-5/6-4-2. Since Ceu5 and 6 migrated as a doublet under the separation conditions utilized in the partial digestion analysis, the identity of any fragment migrating at this size needed to be confirmed by a different approach.

Confirmation of the position of Ceu5 and 6 in the I-CeuI physical map

PacI-derived fragment 3 (Pac3) was used to confirm the position of Ceu5 and 6 in the deduced order of the A. salmonicida A449 I-CeuI-derived DNA fragments. Cleavage of Pac3 with I-CeuI yielded three subfragments (data not shown). One of the subfragments migrated at the same size as Ceu4, suggesting that the other two subfragments were part of the I-CeuI-derived fragments flanking Ceu4 on the A449 chromosome. DNA fragments unique to each of the three subfragments were cloned and utilized as probes on A449 I-CeuI digests. The probes hybridized to Ceu2, 6 and 4. Thus, Pac3 revealed the order of the I-CeuI-derived fragments in that region of the chromosome to be 6-4-2. This suggested that Ceu5 was located at position 1-5-3 on the I-CeuI cleavage map of A449 chromosome. That Ceu5 was indeed located beside Ceu1 and Ceu6 beside Ceu4 was confirmed by the fact that digestion of Ceu6 with PacI yielded two subfragments, one of which corresponded to the same size as that obtained by the I-CeuI digestion of Pac3, while Ceu5 was not cleaved by PacI (data not shown). Therefore, the deduced order of the nine I-CeuI-derived fragments of A. salmonicida A449 chromosome was 1-5-3-7-9-8-6-4-2.

Circularization of the I-CeuI physical map

Because B. burgdorferi (Casjens & Huang, 1993) and several Streptomyces species (Lin et al., 1993) have been shown to possess linear chromosomes, we sought to identify the conformation of the A. salmonicida A449 chromosome. Digestion of Pac2 with I-CeuI yielded two subfragments (data not shown). When DNA fragments cloned from each of the two Pac2 subfragments were used as probes on A449 I-CeuI digests, one hybridized to

![Fig. 1. Genomic DNA of A. salmonicida A449 digested using PacI and I-CeuI (a), and Pmel and I-CeuI (b) separated on a 1% agarose gel. (a) Lanes: 1, λ concatamer; 2, PacI digest; 3, I-CeuI digest. (b) Lanes: 1, λ concatamer; 2, Pmel digest; 3, I-CeuI digest. The DNA in (a) was separated first using a pulse ramp of 5-10 s for 30 h at 50 V cm⁻¹ and then a 10-80 s pulse ramp for 30 h at 5.5 V cm⁻¹. The DNA in (b) was separated using a pulse ramp of 10-80 s at 5.5 V cm⁻¹ for 53 h.](https://example.com/f1.png)

![Fig. 2. Partial I-CeuI digestion analysis of the genome of A. salmonicida A449. Lane 1, λ concatamer. In the lanes with the partial digests (2 and 3), digestion was terminated after 40 min and then analysed next to a complete digest (lane 4) conducted for 4 h. The partial fragments are indicated by arrows and the constituent I-CeuI fragments are indicated on the right. The fragments were separated using a pulse ramp of 5-50 s at 185 V cm⁻¹ for 20 h using a 0.7% agarose gel.](https://example.com/f2.png)
Chromosome of the fish pathogen *Aeromonas salmonicida*

Isolation of Ceul and digestion with PmeI yielded six subfragments, four of which migrated at the size as Pme2, 5, 9 and 10, while the other two subfragments did not correspond to any PmeI-derived A449 genomic DNA fragments, suggesting that these two subfragments originated from the PmeI fragments located at the junctions of the I-CeuI, with one between Ceul and Ceu5 and the other between Ceul and Ceu2. Use of the two subfragments as probes on PmeI digests revealed they constituted part of Pme1 and 3.

To confirm the linkage between adjacent PmeI fragments, PacI-derived fragments which contained PmeI sites were utilized. Pac1, 2, 4, 5, 7 and 8/9 contained PmeI sites and therefore could be used to link adjacent PmeI-derived fragments. When used as probe, Pac1 hybridized to Pme1 and 2, Pac2 linked Pme3 and 4, Pac4 and 5 linked Pme1, 11, 7 and 6, Pac7 linked Pme2 and 10, while Pac8/9 linked Pme10, 9 and 5. The PmeI fragment linkage order deduced using this approach was 6-7-11-1-2-10-9-5 and 3-4.

Finally, partial digestion analysis of *A. salmonicida* A449 with PmeI yielded several partial fragments, the size of two of which corresponded to Pme6 and 8, and Pme9 and 10. Thus, the PmeI cleavage map was shown to be 8-6-7-11-1-2-10-9-5. Since Pme8 hybridized to Ceu6 and Pme4 was localized to Ceu6, 4 and 2 by hybridization, this showed that the complete cleavage map of PmeI was 3-4-8-6-7-11-1-2-10-9-5. This accounted for the 11 PmeI fragments and the deduced linkage pattern was in agreement with the order predicted by comparison of PmeI and I-CeuI fragments with common genes. Since the *A. salmonicida* A449 chromosome has been deduced to be circular and the remaining linkage is localized within the single Ceul fragment, it follows that to complete the circle, Pme3 is linked to Pme5 (Fig. 3).

Mapping of virulence factor-encoding genes and others

Isolated genes of *A. salmonicida* were localized to the fragments generated by I-CeuI and PmeI by Southern blotting analysis. Radiolabelled 2 DNA was included in the hybridization cocktail to aid in identifying the fragment to which the genes hybridized. Table 2 shows the genes analysed and the I-CeuI- and PmeI-derived A449 chromosomal fragments to which they localized. Since relatively few genes of *A. salmonicida* have been characterized, heterologous genes of *E. coli* were also used as probes to localize the homologous copies of these genes on the A449 chromosome. Using this approach, the PmeI- and I-CeuI-derived fragments of A449 which contained DNA homologous to the E. coli tRNA encoding UvrD helicase II, LytB and isoleucyl tRNA synthase were identified (Table 2).

Genomic comparison of Aeromonas strains

To examine the genomic relationship between typical and atypical strains of *A. salmonicida* isolated from diverse geographical origins and from different fish diseases, the genomic I-CeuI digestion fingerprints of nine typical and 16 atypical strains were compared (Fig. 4). In addition, the I-CeuI digestion fingerprints of four strains of *A. hydrophila* and two *A. sobria* biotype *veronii* strains were also compared to *A. salmonicida* strains. I-CeuI produced nine fragments with nearly identical digestion fingerprints from the genome of the typical strains examined (Fig. 4a). In contrast, extensive polymorphism was observed in the number and size of the fragments obtained following digestion of the genome of the atypical strains with I-CeuI (Fig. 4b and c, lanes 8-12), which is a good indication of significant genome diversity within this group. While nine of the atypical strains yielded nine fragments after I-CeuI
digestion, A480 yielded 10 fragments, A600, A460, A461 and A462 yielded eight fragments, A475 yielded seven fragments and A602 yielded three fragments.

Like the typical strains of A. salmonicida, A. sobria biotype veronii genomic DNA was also cleaved into nine fragments and the two strains examined had an identical I-CeuI digestion fingerprint (Fig. 4c, lanes 2 and 3). There was also an observed similarity in size between the five smallest fragments of the A. sobria strains in comparison with the typical strains of A. salmonicida. In contrast, A. hydrophila strains showed polymorphism similar to that observed within the atypical strains of A. salmonicida (Fig. 4c, lanes 4–7). A. hydrophila strains Ah30 (lane 6) and Ah55 (lane 7) yielded 10 fragments upon digestion with I-CeuI, TF7 yielded eight fragments (lane 4) while Ah300 yielded seven fragments (lane 5). The I-CeuI digestion fingerprints of TF7 and Ah300 were practically identical, with the exception of the additional fragment produced from the TF7 genome.

DISCUSSION

This study presents the first chromosomal map of an Aeromonas species to be determined. The known genes which encode proteins implicated in the pathogenesis of A. salmonicida A449, such as aspA, aroA, vapA and GCAT, are dispersed around the circular chromosome. The exe genes encoding proteins of the general secretory system and apsE encoding a protein involved in the specific transport of VapA, the subunit protein for the A-layer, are also far apart on the chromosome, showing a distinction in location in addition to function. While it was known that abcA, which encodes a protein involved in vapA regulation and LPS biosynthesis, was immediately downstream of vapA (Chu & Trust, 1993), the location of the apsE relative to the vapA–abcA loci was unknown. The map shows that vapA, abcA and apsE are clustered. The recently identified fla (Umelo & Trust, 1997) and pilin genes (P. Lutwyche and others, unpublished data) are widely separated on the A. salmonicida A449 chromosome. The two endogenous IS elements ISASI and ISAS2 of A. salmonicida (Gustafson et al., 1994) are clustered with the exception that one of the three copies of ISAS2 is located at a site distant from the others. While the copy numbers of ISASI and ISAS2 in the A. salmonicida chromosome were previously unknown, this study has revealed that there are at least three copies of ISAS2 and possibly only one of ISASI.

The attenuation of A. salmonicida by growth at high temperature was reported to be a result of insertion of ISASI and ISAS2 into vapA and its flanking DNA.
Chromosome of the fish pathogen *Aeromonas salmonicida*

Fig. 4. Comparison of the I-CeuI genomic digestion fingerprint of *Aeromonas* strains. (a) Typical *A. salmonicida* strains. Lanes: 1, A449; 2, A450; 3, A488; 4, A505; 5, A202; 6, A251; 7, A440; 8, A438; 9, A447. (b) Atypical *A. salmonicida* strains. Lanes: 1, A419; 2, A402; 3, A400; 4, A491; 5, A600; 6, A477; 7, A588; 8, A461; 9, A522; 10, A480; 11, A475. (c) Strains of other *Aeromonas* species. Lanes: 1, λ concatamer; 2 and 3, *A. sobria* biotype veronii strains As701 (2) and As702 (3); 4-7, *A. hydrophila* strains TF7 (4), Ah 300 (5), Ah30 (6) and Ah55 (7); 8-12, atypical strains of *A. salmonicida* A523 (8), A601 (9), A602 (10), A462 (11) and A460 (12); 13, λ concatamer. The DNA fragments were separated in a 1% agarose gel using a pulse ramp of 5–90 s at 185 V cm\(^{-1}\) for 28 h.

(Gustafson *et al.*, 1994). In this regard, it is of interest to note the chromosomal relationship between *vapA* and the IS elements. Although one copy of ISAS2 is located in the vicinity of *vapA*, two copies of ISAS2 and the only copy of ISAS1 are located approximately 2300 kb from *vapA*, yet they are both capable of translocating into *vapA* and its flanking DNA. This suggests interesting mechanisms for endogenous mutation.

The near constant I-CeuI digestion fingerprint of the typical strains of *A. salmonicida* analysed in this study confirms the homogeneity within this group as previously suggested (Belland & Trust, 1988; Boyd *et al.*, 1994; Nielson *et al.*, 1993). Because these typical strains were obtained from diverse geographical locations, these results provide further evidence that the genome of *A. salmonicida* is quite stable and also supports the suggestion that the population structure of typical strains is clonal (Boyd *et al.*, 1994). In contrast, the I-CeuI digestion fingerprints of the atypical *A. salmonicida* strains varied extensively, although there were clearly closer relationships between some strains than others. For example, *A. salmonicida* A400, A402, A419, A491, A600 and A601 which were all isolated from diseased goldfish from either Australia, USA or Europe had nine fragments in similar I-CeuI digestion fingerprints. These results therefore suggested a clonality for the goldfish isolates. These observations are in agreement with an earlier study by Belland & Trust (1988) which reported as much as 99±3.0% homology between goldfish isolates from one location which had only an estimated 79±2.9% identity with atypical strains isolated from other diseases and locations. From that study, Belland & Trust reported distinct groups corresponding to isolates from goldfish and carp. In this study, we examined two isolates from carp, A480 and A477. In contrast to the reported similarity between the carp isolates observed using the DNA–DNA hybridization technique, we did not observe a similarity between the I-CeuI digestion fingerprints of the two carp isolates examined. Not surprisingly, another group of strains which appeared to be clustered were A460, A461 and A462 which were all isolated from a single disease outbreak in Atlantic salmon in Nova Scotia, Canada.

The I-CeuI digestion fingerprints of the rest of the atypical strains examined in this study were highly variable and could not be grouped, suggesting they have diverged from other atypical strains. While firm conclusions cannot be made, considering the number of strains analysed in this study, the results suggest that comparison of the I-CeuI digestion fingerprints could help identify related strains and thus help to better classify and subdivide the atypical strains. By comparison of the I-CeuI digestion fingerprints, the *A. sobria* biotype veronii strains were more closely related to *A. salmonicida* strains than were the four *A. hydrophila* strains.

The variability in the number of fragments obtained from the I-CeuI digestion of atypical strains of *A. salmonicida* and the *A. hydrophila* strains was a surprising finding. Such a variation, to our knowledge, has not been reported for any other species. Liu *et al.* (1993c) reported that recombination events occurring...
within the rrs genes are common in bacteria and Sneth
(1993) reported that genetic cross-overs have occurred
between different Aeromonas species as a result of
homologous recombination between rrs genes. It is
possible that such recombination events, either within
or between strains of different Aeromonas species, could
lead to deletions or insertions, resulting in either an
increase or decrease in the overall number of rrs
operons. Differences in the number of rrs operons have
been reported in two different Rhodobacter species.
Rhodobacter capsulatus strain SB1003 possesses four
rrs operons (Fonstein et al., 1992) while Rhodobacter
sphaeroides 2.4.1 possesses three rrs operons (Suwanto &
Kaplan, 1989). However, there is generally an
observed intraspecies conservation in genome backbone
and rrs operons in species in which the genome maps
of several strains have been constructed (reviewed by Cole
& Saint Girons, 1994). It is therefore tempting to
speculate that some strains currently classified as atypical
A. salmonicida may not belong in this species. This
could be a possible explanation for the difficulties which
have been encountered in the classification of atypical A.
salmonicida strains and other strains within the genus
Aeromonas.

A. salmonicida contains several endogenous plasmids
(Toranzo et al., 1983). In A. salmonicida A449, three
small plasmids of 50, 52 and 54 kb and a large plasmid
of approximately 145 kb have been reported (Belland &
Trust, 1989). The results obtained in this study show
that these endogenous plasmids did not interfere in the
linkage of both the I-CeuI- and PmeI-derived A. sal-
monicida A449 chromosomal DNA fragments. While
the three small plasmids probably migrated off the gel
under the conditions used in this study, the large plasmid
might not. Indeed, a very faint band migrating at
approximately 150 kb was sometimes seen in overloaded
lanes containing I-CeuI digests and could be the
linearized 145 kb plasmid of A. salmonicida A449.
Neither of the genes used as probes in Southern analysis
nor any of the fragments obtained during the I-CeuI
partial digestion analysis hybridized to the faint ap-
parent plasmid band.

The information provided in the map will be useful for
the rational development of a live attenuated A. sal-
monicida vaccine strain. The map will also be useful for
comparison of the chromosomal organization of Aero-
onas species as more strain maps are determined.
Finally, we have identified a tool that could have significant consequences in Aeromonas
taxonomy, either in confirming the current classification of strains
or in recognizing new isolates.

ACKNOWLEDGEMENTS
This study was supported in part by grants to T. J. T from the
National Centers of Excellence as part of the Canadian
Bacterial Disease Network Research Program. We are very
grateful to Dr Edward E. Ishiguro for providing us with E. coli
gene probes. Dr Francis Nano for use of equipment and Dr
Diane E. Taylor for helpful comments.

REFERENCES
(Aeromonas salmonicida). In Bacterial Fish Diseases: Disease in
Farmed and Wild Fish, pp. 86-170. Edited by B. Austin & A.
Austin. Chichester: Ellis Horwood.

Austin, D. A., McIntosh, D. & Austin, B. (1989). Taxonomy of fish-
asociated Aeromonas spp. with the description of Aeromonas
salmonicida subsp. smithia subsp. nov. Syst Appl Microbiof 11,
277-290.

Belland, R. J. & Trust, T. J. (1988). DNA-DNA reassociation
analysis of Aeromonas salmonicida. J Gen Microbiof 134,
307-315.

Belland, R. J. & Trust, T. J. (1989). Aeromonas salmonicida
plasmids: plasmid-directed synthesis of proteins in vitro and in

Boyd, E. F., Hiney, M. P., Peden, J. F., Smith, P. R. & Caugant,
salmonicida isolates by multilocus enzyme electrophoresis. J Fish
Dis 17, 97-98.

Casjens, S. & Huang, W. M. (1993). Linear chromosomal physical
and genetic map of Borrelia burgdorferi, the lyme disease agent.
Mol Microbiof 8, 967-980.

which influences A-protein expression in Escherichia coli encodes
a protein containing an ATP-binding cassette and maps beside

Chu, S., Cavaignac, S., Feutrier, J., Phipps, B. M., Kostynska, M.,
surface virulence array protein and gene of Aeromonas sal-

Microbiof Rev 14, 139-160.

cloning and nucleotide sequence analysis of the maltose inducible
porin gene of Aeromonas salmonicida. FEMS Microbiof Lett 112,
191-198.

the genome of Rhodobacter capsulatus SB 1003. J Bacteriol 174,
4070-4077.

the chloroplast large subunit rRNA gene of Chlamydomonas
eugametos encodes a double-strand endonuclease that cleaves
the homing site of this intron. Curr Genet 19, 43-47.

the Escherichia coli lytB gene, which is involved in penicillin
tolerance and control of the stringent response. J Bacteriol 175,
1203-1205.

Gustafson, C. E., Chu, S. & Trust, T. J. (1994). Mutagenesis of the
paracrystalline surface protein array of Aeromonas salmonica

Innis, M. A., Tokunaga, M., Williams, M. E., Loranger, J. M.,
the Escherichia coli prolipoprotein signal peptidase (isp) gene.
Proc Natl Acad Sci USA 81, 3708-3712.

genetic organization of the exo cluster of Aeromonas salmonica
ida. Gene 158, 77-82.

2148

Vaughan, L. M., Smith, P. R. & Foster, T. J. (1993). An aromatic-dependent mutant of the fish pathogen *Aeromonas salmonicida* is attenuated in fish and is effective as a live vaccine against the salmonid disease furunculosis. *Infect Immun* 61, 2172–2181.

Received 13 January 1998; revised 22 April 1998; accepted 1 May 1998.