Mycoplasma linear plasmids have an invertron-like structure related to other linear replicons in actinomycetes

Mathieu Picardeau and Véronique Vincent

Author for correspondence: Véronique Vincent. Tel: +33 1 45 68 83 60. Fax: +33 1 40 61 31 18.
e-mail: vvincent@pasteur.fr

Laboratoire de Référence des Mycobactéries, Institut Pasteur, 75724 Paris Cedex 15, France

INTRODUCTION

Our understanding of the organization of bacterial genomes has been greatly modified over the past few years. Many reports have revealed a wide variety of bacterial chromosomes. For example, Agrobacterium tumefaciens contains both a linear and a circular chromosome, Rhodobacter sphaeroides has two circular chromosomes, while Streptomyces and Borrelia species have linear chromosomes (Hinnebusch & Tilly, 1993). Extrachromosomal elements also consist of molecules of both linear and circular topology.

The first bacterial linear plasmid, pSLA2, was isolated in 1979 from Streptomyces rochei (Hayakawa et al., 1979). Among the linear elements, Sakaguchi has defined a class of extrachromosomal elements with inverted repeats at their ends and protein bound to their 5' ends, termed invertrons (Sakaguchi, 1990). These structural characteristics have been found in some actinomycetes, viruses and bacteriophages, as well as in eukaryotic cells. A second class of bacterial linear plasmids, having covalently closed ends at the termini of the DNA, was reported in the genus Borrelia (Hinnebusch et al., 1990).

Abbreviation: TIR, terminal inverted repeat.
The GenBank accession numbers of the nucleotide sequences of the left and right termini of pCLP are AF044971 and AF044972, respectively.

In a previous study, we demonstrated the presence of extrachromosomal elements in Mycobacterium xenopi, M. celatum and M. branderi that migrated in pulsed-field gel electrophoresis (PFGE) like linear molecules. The susceptibility of these elements to exonucleases also supported their linear topology and suggested an invertron-like structure (Picardeau & Vincent, 1997). Therefore, we have undertaken a physical study of the ends of these linear plasmids to determine whether they are linked with proteins and contain inverted repeats. We also studied the relationships of the mycobacterial linear plasmids with those of other actinomycetes.

METHODS

Mycobacterial strains. The M. celatum strains used in this study were clinical isolates kindly provided by W. R. Butler (Centers for Disease Control, Atlanta, USA). As previously described, M. celatum strain 4 contains two extrachromosomal elements of about 25 and 320 kb, and M. celatum strain 9 contains one extrachromosomal element of 180 kb (Picardeau & Vincent, 1997). M. avium strain 951849 was a clinical isolate from our laboratory (Centre National de Référence des Mycobactéries, Institut Pasteur).

PFGE. Mycobacterial isolates were cultivated in Middlebrook 7H9 broth, and cells were embedded in agarose and lysed as previously described (Picardeau et al., 1996). For preparation of non-proteolytically treated plasmids, proteinase K was...
omitted and plugs were incubated in 1% (w/v) SDS, 0.05 M EDTA instead of N-lauroylsarcosinate, 0.5 M EDTA. For digestion, plugs were extensively washed in TE buffer (10 mM Tris/Cl, pH 8.0, 1 mM EDTA) and incubated with XbaI or DraI for 2 h at 37°C. PFGE was performed by zero-integrated-field electrophoresis (ZIFE; Vysis, Les Ulis, France) using the 8–200 kb and 8–500 kb ROM cards.

Isolation of linear plasmid DNA. Separation of plasmid from chromosomal DNA was achieved by PFGE of highly concentrated DNA agarose plugs. DNA bands were excised from PFGE agarose gels and the plasmids were recovered from the gel by using a nucleic acid extraction kit (Nucleotrap, Macherey-Nagel). The linear plasmid DNA was eluted with TE as recommended by the manufacturer.

Southern blotting. DNA bands separated by PFGE, performed as described above, were blotted onto nylon membranes. The membranes were hybridized overnight at 65°C in Rapid hybridization buffer (Amersham) with the linear plasmid DNA probe radiolabelled with [α-32P]dCTP using a commercial kit (Nucleotrap, Macherey-Nagel). The linear plasmid DNA was eluted with TE as recommended by the manufacturer.

Cloning and sequencing of terminal DNA fragments. The 25 kb linear plasmid DNA of *M. celatum* strain 4, designated pCLP, was digested with XbaI. The XbaI was inactivated at 65°C, and the digested DNA was purified into distilled sterile water and ligated into the HindIII/XbaI sites of pBluescript KS+ (Stratagene). The ligation mixture was transformed into *Escherichia coli* XL-1 Blue MRF’ (Stratagene) by electroporation (Gene Pulser unit, Bio-Rad). Recombinant colonies were selected on Luria–Bertani solid medium [10 g Bactotryptone l−1 (Difco), 5 g yeast extract l−1, 10 g NaCl l−1, pH 7.5] supplemented with 100 μg ampicillin ml−1, 2 mM IPTG and 0.04% X-Gal. Recombinant plasmids were isolated by alkaline lysis (Birnboim & Doly, 1979) or a Qiagen Midi kit. The presence of inserts into the recombinant plasmids was determined by restriction analysis.

The sequences of the double-stranded plasmid DNAs were determined by the dideoxy chain-termination method (Sanger et al., 1977) with universal and reverse primers by using a *Taq* DyeDeoxy terminator cycle sequencing kit (Applied Biosystems), a model 9600 GeneAmp PCR system (Perkin-Elmer), and a model 373 stretch DNA analysis system (Applied Biosystems). Nucleotide sequences were analysed using the GCG package (University of Wisconsin, Madison, WI, USA) and The DNA Inspector IIe software (Textco, Lebanon, NH, USA).

PCR assays. Amplification reactions were performed in volumes of 50 μl containing 1× *Taq* polymerase buffer [50 mM Tris/HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.01% (w/v) gelatin], 5 μl dimethyl sulfoxide, 200 μM each of deoxynucleoside triphosphate, 1 μM of each primer, and 2 U *Taq* polymerase (Perkin-Elmer) for 38 cycles: 1 min at 95°C, 1 min at 55°C, and 1 min at 72°C, followed by a 10 min extension at 72°C.

We selected primers Com (5’-CCC CCC CCC CGGCTT CGC CG-3’), V3 (5’-AAG AAA TAC AGA TAC CCG CC-3’),
Ec4.2 (5'-ATT TTT CGT GAT GCT TGC CG-3'), L2 (5'-GCA CAA CGA TTT AGA GAC GC-3') and L3B (5'-GTC AGG TTG CTC CAC GCT GG-3') from the nucleotide sequences of the linear plasmid pCLP (see Fig. 2 for the locations of primers). Primers were tested on crude DNA extract of M. celatum strain 4 and on the two isolated plasmids, of 25 kb and 320 kb. The amplified products (the 403 bp product of Com/V3, the 333 bp product of Com/Ec4.2 and the 246 bp product of L2/L3B) were cloned into pGEM-T (Promega) as recommended by the manufacturer and the recombinant plasmids were isolated and sequenced as described above.

RESULTS

Association of protein(s) with the DNA of the linear plasmids

To investigate whether the plasmids contained a covalently bound protein, proteinase K was omitted from the lysis treatment of the cells during the preparation of the plugs. The objective was to preserve the putative terminal protein, which could be expected to retard the linear plasmid DNA during electrophoresis as shown for invertrons (Hirochika & Sakaguchi, 1982; Kinashi & Shimaji-Murayama, 1991). The result is shown in Fig. 1. The preparation of mycobacterial genomic DNA without proteinase K did not allow the extrachromosomal elements to enter the gel (Fig. 1a, b, c, lanes 2). Proteinase-K-treated and -untreated DNA samples were also electrophoresed after digestion with Drai and XbaI. The restriction patterns of the chromosomal DNAs were identical in proteinase-K-treated and -untreated DNAs, suggesting that the chromosomal DNAs were released and migrated into the gel in the absence of proteinase K treatment (Fig. 1a, lanes 3 and 4; Fig. 1b, lanes 3–6). Southern blot analysis following PFGE of undigested DNA probed with the host plasmids (the 180 kb plasmid detected in M. celatum strain 9, the 25 kb plasmid detected in M. celatum strain 4, and the 145 kb plasmid in M. avium strain 951849, respectively) revealed that the extrachromosomal elements remained trapped in the wells (Fig. 1a, b, c, lanes 2). The same results were obtained for all the linear plasmids tested in other species including M. xenopi and M. branderi (data not shown).

Cross-hybridization of the 25 kb linear plasmid with genomic DNA

Southern blot analysis following PFGE of Drai- and XbaI-digested DNA probed with the plasmids revealed that the extrachromosomal elements did not cross-hybridize with any DNA fragments of the chromosome of M. celatum strain 9 (Fig. 1a, lane 4). Our data also demonstrated that both plasmids of M. celatum strains 4 and 9 used as probes were not digested with Drai (Fig. 1). One element, the 25 kb plasmid from M. celatum strain 4, hybridized with the larger plasmid (Fig. 1b, lane 1). The size of this plasmid was estimated to be 320 kb by comparison with linear standards using migration

\[\text{Drai and XbaI. The restriction patterns of the chromosomal DNAs were identical in proteinase-K-treated and -untreated DNAs, suggesting that the chromosomal DNAs were released and migrated into the gel in the absence of proteinase K treatment (Fig. 1a, lanes 3 and 4; Fig. 1b, lanes 3–6). Southern blot analysis following PFGE of undigested DNA probed with the host plasmids (the 180 kb plasmid detected in M. celatum strain 9, the 25 kb plasmid detected in M. celatum strain 4, and the 145 kb plasmid in M. avium strain 951849, respectively) revealed that the extrachromosomal elements remained trapped in the wells (Fig. 1a, b, c, lanes 2). The same results were obtained for all the linear plasmids tested in other species including M. xenopi and M. branderi (data not shown).} \]

\[\text{Cross-hybridization of the 25 kb linear plasmid with genomic DNA} \]

Southern blot analysis following PFGE of Drai- and XbaI-digested DNA probed with the plasmids revealed that the extrachromosomal elements did not cross-hybridize with any DNA fragments of the chromosome of M. celatum strain 9 (Fig. 1a, lane 4). Our data also demonstrated that both plasmids of M. celatum strains 4 and 9 used as probes were not digested with Drai (Fig. 1). One element, the 25 kb plasmid from M. celatum strain 4, hybridized with the larger plasmid (Fig. 1b, lane 1). The size of this plasmid was estimated to be 320 kb by comparison with linear standards using migration

\[\text{Southern blot analysis following PFGE of Drai- and XbaI-digested DNA probed with the plasmids revealed that the extrachromosomal elements did not cross-hybridize with any DNA fragments of the chromosome of M. celatum strain 9 (Fig. 1a, lane 4). Our data also demonstrated that both plasmids of M. celatum strains 4 and 9 used as probes were not digested with Drai (Fig. 1). One element, the 25 kb plasmid from M. celatum strain 4, hybridized with the larger plasmid (Fig. 1b, lane 1). The size of this plasmid was estimated to be 320 kb by comparison with linear standards using migration} \]
conditions which resolved higher molecular mass fragments (Picardeau & Vincent, 1997). The plasmid estimated at 25 kb was designated as pCLP, while the other, of 320 kb, was designated pLLP. Interestingly, we found hybridizations with several restriction fragments larger than the 25 kb plasmid (Fig. 1b, lanes 3–6). The presence of two hybridization signals with proteinase-K-treated and -untreated DNA digested with Dral (Fig. 1b, lanes 3 and 4) suggest either the homology of pCLP with internal fragments of pLLP and/or cross-hybridization with the chromosomal DNA. Southern blot analysis also suggested that pCLP was restricted by XbaI and that the two restriction fragments obtained, corresponding to the two hybridization signals in the lower part of the blot, were retarded in PFGE by omission of proteinase K treatment (Fig. 1b, lane 5).

Characteristic features of the termini of pCLP

In comparison with linear replicons belonging to the genus *Streptomyces*, we hypothesized that free ends of mycobacterial linear plasmids, after proteinase K treatment, were blunted. For determining the DNA nucleotide sequence of the terminal fragments, pCLP was isolated and digested with XbaI. As Southern blot analysis after XbaI digestion was consistent with the presence of a single XbaI restriction site within pCLP, both restriction fragments could include the termini of this plasmid. The XbaI fragments were cloned into a Bluescript vector restricted with XbaI and HincII. Thus, ligation of XbaI fragments could only occur with the XbaI end of the vector and its opposite blunt end produced by the HincII cut. Among the transformants isolated, the restriction analysis of the cloned inserts showed two large fragments, of 10 kb and 14.5 kb, within the recombinant plasmids. These recombinant plasmids, designated pMPV7 and pMPV3, were selected for sequencing. The nucleotide sequence of 500 bp at each extremity of both inserts was determined (Fig. 2a).

Sequence analysis of the cloned end fragments revealed a high homology between the two terminal nucleotide sequences. The termini of pCLP contained 29 bp imperfect inverted repeats (93% base identity). This similarity could be extended for a further 16 bp at somewhat lower levels of identity (80% base identity). Surprisingly, we found that the first 10 bp of termini contain only guanines (Fig. 2b). Palindromic sequences, consisting of a cluster of two short inverted repeats, were located in the first 100 bp. Only a few other palindromes were found outside the first 100 bp of the termini. Although the terminal nucleotide sequences were not completely homologous to each other, the palindromic sequences had the same locations (Fig. 2b).

Due to the cloning strategy employed, the possible loss of a small internal XbaI fragment could not be excluded. Thus, we selected primers L3B and L2 from the inserts of recombinant plasmids pMPV3 and pMPV7, respectively, to check that the whole length of pCLP had been cloned. Moreover, to detect any rearrangement during the cloning procedures, we synthesized primers based on the known sequences: Com, corresponding to terminal nucleotide sequences shared by the two inserts; V3, from the pMPV3 insert; and Ec4.2 using the pMPV7 insert sequence (Fig. 2). PCR results on crude DNA extract of *M. celatum* strain 4 using primer couples Com/V3, Com/Ec4.2 and L2/L3B were consistent with the expected size. The sequence analysis of these PCR products revealed no sequence rearrangements (data not shown). Furthermore, preparative PFGE was used to isolate the 25 and the 320 kb plasmids, which were subsequently purified and used for PCR analysis. In both plasmids, we obtained the same results with the three primer couples as with the total genomic DNA as template (data not shown).

We also studied the base composition of the first 400 bp of the two terminal fragments. The first 60 bp of the termini had a high GC content. The mean GC content was 62 mol% in the left arm of pCLP and 49 mol% in the right terminal fragment. Within the right terminal sequence we found three regions of low GC content (less than 30%), alternating with regions of high GC content. Within the left terminal fragment, except for the first 60 bp, the variations in GC content were significantly less pronounced (Fig. 3).

Comparison of the DNA sequences of pCLP, comprising the terminal fragments and one internal region spanning both inserts (Fig. 2a), with the EMBL and GenBank
high GC content: only one adenine or one thymine was present (Fig.

Interestingly, the six terminal bases of SCP1 from \textit{S. coelicolor} were all guanines.

Databases revealed no significant homologies (data not shown). However, when the terminal nucleotide sequences of pCLP were compared with those of previously known sequences of linear plasmids from actinomycetes, homology was observed (Fig. 4). The first 10 bp of all the termini were quite similar, with a high GC content: only one adenine or one thymine was present (Fig. 4). Interestingly, the six terminal bases of SCP1 from \textit{S. coelicolor} were all guanines.

DISCUSSION

The linearity of some plasmids in mycobacteria suggested by electrophoretic mobility, nuclease treatment and hybridization experiments (Picardeau & Vincent, 1997) has been confirmed in this study. The mycobacterial linear plasmids characterized in this study have common features with those of Streptomyces and Rhodococcus and with other linear replicons designated as invertrons. They contain terminal inverted repeats (TIRs) with proteins linked to their ends (Sakaguchi, 1990).

Structure of mycobacterial linear plasmids

In this study, we demonstrated that proteins were covalently bound to the mycobacterial linear plasmids. These proteins were removed after proteinase K treatment. On the basis of the retardation of the terminal fragments of plasmids during PFGE and of their susceptibility to exonuclease III (Picardeau & Vincent, 1997), the structure of the mycobacterial linear plasmids can be assigned to the class of invertron (Sakaguchi, 1990). Taking into account that all invertrons described in prokaryotes and eukaryotes have proteins covalently attached at their '5' ends (Sakaguchi, 1990), one may assume that this is also the case for the mycobacterial linear plasmids. Further investigation will include the characterization of the DNA–protein complex.

The fact that the termini of pCLP can be ligated to the blunt ends of a cloning vector indicates that these termini are blunt. The existence of TIRs confirmed the invertron-like structure. In actinomycetes, the size of these TIRs is quite variable, ranging from 44 bp in SLP2 to 9500 bp in pPZG101 (Chen et al., 1993; Graviius et al., 1994). There is no correlation between plasmid size and the length of the TIR sequence (see Table 1). Analysis of the integration of sex factor SCP1 of \textit{Streptomyces coelicolor} into the chromosome showed that the free ends of SCP1 had been lost, suggesting a role of these TIRs in the integration of linear replicons similar to that of the TIRs of transposons (Hanafusa & Kinashi, 1992). Thus, the presence of TIR sequences within mycobacterial linear plasmids raises the possibility of their integration into the chromosome. However, we did not find any evidence of such events.

The palindromic sequences that we identified at the plasmid ends are also a characteristic feature of linear replicons. Interestingly, the sequence alignment of termini of other actinomycete linear plasmids (Fig. 4) showed a highly conserved region within the first 20 bp which corresponds to the first palindrome detected in mycobacterial plasmids (Fig. 2). In pCLP palindromes, hairpin sequences are often trinucleotides. These trinucleotides are GNA, which has been shown to form a stable single-residue loop closed by G and A, constituting a so-called sheared pairing (Chou et al., 1997). For linear replicons of streptomyces, they are thought to be potential hairpins required for the replication of the termini (Chen, 1996). The left arm of pCLP is noticeable because of its region of very low GC content. AT-rich regions were also observed in the terminal sequences of pHG207 from \textit{Rhodococcus} sp. (Kalkus et al., 1993). Such an AT-rich region might facilitate strand separation at the initial stage of replication and/or could be the evidence of a foreign origin of the mycobacterial linear plasmids from micro-organisms with a low GC content.

Hybridization experiments with pCLP as a probe (Fig. 1), and PCR analysis of the termini and of an internal region of pCLP, suggest the presence of pCLP within the 320 kb plasmid of \textit{M. celatum} strain 4 in at least one copy.

PCR analysis confirmed that the whole length of the plasmid has been cloned. Sequence analysis and sub-cloning experiments can now be undertaken for further investigation of the replication mechanisms and specially for the identification of a putative DNA polymerase gene, detected in almost all linear plasmids sequenced to date (Chang et al., 1996; Wu & Roy, 1993).

Distribution of linear plasmids in Actinomycetales

Initially, mycobacterial linear plasmids were found in \textit{M. xenopi}, \textit{M. celatum} and \textit{M. brandieri}. An investigation of possible hosts for linear replicons has allowed the detection of other linear plasmids in \textit{M. avium}.

In Table 1, we report all the linear replicons described to date within the actinomycetes except derivatives of pSLA2 and other plasmids whose structures and
functions have not been studied (Kinashi, 1994). In studies where the existence of terminal proteins and/or TIR sequences has not been described, the linearity of the molecules was demonstrated by their electrophoretic behaviour, the restriction analysis of the plasmid (in this case the sum of restriction fragments was in agreement with the molecular mass obtained by PFGE), by their susceptibility to exonucleases treatment or by electron microscopy (Chardon-Loriaux et al., 1986; Hayakawa et al., 1997; this study). Within the genera *Streptomyces* and *Rhodococcus*, belonging, like the genus *Mycobacterium*, to the order

Table 1. Distribution of linear plasmids in Actinomycetales

<table>
<thead>
<tr>
<th>Species*</th>
<th>Plasmid designation</th>
<th>Length (kb)</th>
<th>Blunt ends and/or terminal proteins</th>
<th>TIR (bp)</th>
<th>Conjugative transfer</th>
<th>Functions/genes carried</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. celatum</td>
<td>pCLP</td>
<td>25</td>
<td>yes</td>
<td>45</td>
<td>ND</td>
<td>Development of fasciation in plants</td>
<td>This study</td>
</tr>
<tr>
<td>R. fascians</td>
<td>pFID188</td>
<td>200</td>
<td>ND</td>
<td>ND</td>
<td>yes</td>
<td>Degradation of biphenyl</td>
<td>Crespi et al. (1992, 1994)</td>
</tr>
<tr>
<td>R. erythropolis</td>
<td>pBD2</td>
<td>208</td>
<td>ND</td>
<td>ND</td>
<td>yes</td>
<td>Degradation of isopropylbenzene and co-oxidation of trichloroethene</td>
<td>Dabrock et al. (1994); Kebeler et al. (1996)</td>
</tr>
<tr>
<td>R. opacus</td>
<td>pHG207</td>
<td>225</td>
<td>yes</td>
<td>583</td>
<td>yes</td>
<td>Hydrogen autotrophy</td>
<td>Kalkus et al. (1993, 1990)</td>
</tr>
<tr>
<td>R. erythropolis</td>
<td>pTA421</td>
<td>500</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Biphenyl degradation</td>
<td>Kosono et al. (1997)</td>
</tr>
<tr>
<td>R. globerulus</td>
<td>pSP6/pLP6</td>
<td>350/650</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Biphenyl degradation</td>
<td>Kosono et al. (1997)</td>
</tr>
<tr>
<td>S. lividans</td>
<td>SLP2</td>
<td>50</td>
<td>yes</td>
<td>44</td>
<td>yes</td>
<td>ND</td>
<td>Regulatory proteins</td>
</tr>
<tr>
<td>S. lividans</td>
<td>pBL1§</td>
<td>43</td>
<td>yes</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Regulatory proteins</td>
</tr>
<tr>
<td>S. clausuligerus</td>
<td>pSCL1</td>
<td>12</td>
<td>yes</td>
<td>900</td>
<td>ND</td>
<td>Regulatory proteins</td>
<td>Keen et al. (1988); Wu & Roy (1993)</td>
</tr>
<tr>
<td>S. rochei</td>
<td>pSLA2</td>
<td>17</td>
<td>yes</td>
<td>614</td>
<td>ND</td>
<td>Lankacidin group antibiotics</td>
<td>Hirochika et al. (1984); Hayakawa et al. (1979)</td>
</tr>
<tr>
<td>S. rimosus</td>
<td>pSRM</td>
<td>43</td>
<td>yes</td>
<td>900</td>
<td>ND</td>
<td>Regulatory proteins</td>
<td>Chardon-Loriaux et al. (1986)</td>
</tr>
<tr>
<td>S. ambofaciens</td>
<td>pSAM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leblond et al. (1990, 1996)</td>
</tr>
<tr>
<td>S. avermitilis</td>
<td>pSA1/pSA2</td>
<td>100/250</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Evans et al. (1994)</td>
</tr>
<tr>
<td>S. rimosus</td>
<td>pPZG101</td>
<td>387</td>
<td>ND</td>
<td>9500</td>
<td>yes</td>
<td>Methylenomycin; spore formation</td>
<td>Gravious et al. (1994)</td>
</tr>
<tr>
<td>S. coelicolor</td>
<td>SCP1</td>
<td>350</td>
<td>yes</td>
<td>7000</td>
<td>ND</td>
<td>ND</td>
<td>Kinashi (1994); Kinashi & Shimaji-Murayama (1991)</td>
</tr>
<tr>
<td>S. lasaliensis</td>
<td>pKSL</td>
<td>520</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Lasalocid and echinomycin</td>
<td>Kinashi (1994)</td>
</tr>
</tbody>
</table>

ND, Not determined.

M., Mycobacterium; R., Rhodococcus, S., Streptomyces.

† Other linear plasmids have been identified in *M. avium, M. xenopi, M. celatum and M. branderi* (Picardeau & Vincent, 1997; this study).

‡ Formerly Nocardia opaca.

§ pBL1 was isolated from a plasmidless strain after its mating with *S. bambergiensis* S712 harbouring the 640 kb plasmid PSB1.

|| pSAM1 is found as either a linear or a circular molecule.
myces comprises many antibiotic-producing species, accounting for over 70% of naturally occurring antibiotics (Berdy, 1980). Most of the antibiotic biosynthesis genes have been found to be chromosomal. However, some of these genes are located on linear plasmids (Hayakawa et al., 1979; Kinashi, 1994; Kinashi et al., 1987).

Streptomycetes, Rhodococcus and Mycobacterium spp. contain plasmids of both circular and linear topology (Kinashi, 1994; Zotchev et al., 1992). However, it is interesting that while the chromosomes of both Streptomyces and Rhodococcus species appear linear (Crespi et al., 1992; Lin et al., 1993), the chromosome of the Mycobacterium species investigated so far is circular (Philipp et al., 1996; Picardeau & Vincent, 1997). The linearity of the chromosome of streptomycetes and nocardioforms could derive from the integration of linear plasmids (Gravius et al., 1994; Lin et al., 1993). Among prokaryotes, only a few phages have the same structure as the Streptomyces linear plasmids (Hinnebusch & Tilly, 1993). As suggested by Chang et al. (1996), Streptomyces linear plasmids may occupy an evolutionarily intermediate position between circular plasmids and linear phage replicons. Little information is available on extrachromosomal elements of other genera belonging to the order Actinomycetales. The study of their basic genetics has been relatively neglected, and thus it will not be surprising if linear plasmids are identified in other actinomycetes.

In actinomycetes, almost all the extensively studied linear replicons have been found to be transmissible plasmids (Table 1). These plasmids may have played an important role in the evolution of the catabolic pathway for some compounds and for the dissemination of antibiotic biosynthesis genes. Some of these plasmids can integrate into the chromosome (Gravius et al., 1994; Kinashi et al., 1992). To date, it is unknown whether mycobacterial plasmids, including both circular and linear molecules, are capable of conjugative transfer. It is relevant that mycobacteria are not competent for transformation and their cell walls are considered as a barrier. However, there is evidence that recombination occurs in nature. Recently, intragenic transfer of mercury resistance between Mycobacterium fortuitum and M. smegmatis has been observed in mating experiments (Gavigan et al., 1997). However, the conjugal fertility was not attributed to any identified plasmids. Sequence homologies were found between plasmids from rapidly growing and slow-growing mycobacteria (Gavigan et al., 1997) and between plasmids from Rhodococcus species and plasmid pAL5000 from M. fortuitum (DeMot et al., 1997; Kulakov et al., 1997). Further evidence of genetic exchanges is also supported by the existence of homologous insertion sequences within mycobacteria and related micro-organisms (Kato et al., 1994; Picardeau et al., 1997). Moreover, conjugative transfer of a shuttle plasmid from E. coli to M. smegmatis has been reported (Lazrak et al., 1990). Although plasmids are suggested to play a role in genetic exchanges, no experimental evidence has been obtained in mycobacteria. It could be of interest to investigate the conjugative ability of the mycobacterial linear plasmids. Genetic flux may have occurred between members of these genera, which are common throughout nature.

Further studies of mycobacterial linear plasmids will allow the development of new genetic tools, the utilization of these plasmids as epidemiological markers and a better understanding of genetic exchange in actinomycetes.

ACKNOWLEDGEMENTS

We thank C. Chen and I. Saint Girons for interest and helpful advice, and J. Tricas for critical reading of the manuscript. M.P. is the recipient of a fellowship from Fondation Roux, Institut Pasteur.

REFERENCES

Received 8 December 1997; revised 16 March 1998; accepted 1 April 1998.