Genes for D-arabinitol and ribitol catabolism from *Klebsiella pneumoniae*

H. Heuel, A. Shakeri-Garakani, S. Turgut and J. W. Lengeler

The enzymes for catabolism of the pentitols D-arabinitol (Dal) and ribitol (Rbt) and the corresponding genes from *Klebsiella pneumoniae* (dal and rbt) and *Escherichia coli* (atl and rtl) have been used extensively in experimental evolutionary studies. Four dal and four rbt genes from the chromosome of *K. pneumoniae* 1033-5P14 were cloned and sequenced. These genes are clustered in two adjacent but divergently transcribed operons and separated by two convergently transcribed repressor genes, dalR and rbtR. Each operon encodes an NAD-dependent pentose dehydrogenase (dalD and rbtD), an ATP-dependent pentulose kinase (dalK and rbtK) and a pentose-specific ion symporter (dalT and rbtT). Although the biochemical reactions which they catalyse are highly similar, the enzymes showed interesting deviations. Thus, DalR (313 aa) and RbtR (270 aa) belong to different repressor families, and DalD (455 aa) and RbtD (248 aa), which are active as a monomer or as tetramers, respectively, belong to different dehydrogenase families. Of the two kinases (19.3% identity), DalK (487 aa) belongs to the subfamily of short 0-xylulokinases and RbtK (0-ribulokinase; 535 aa) to the subfamily of long kinases. The repressor, dehydrogenase and kinase genes did not show extensive similarity beyond local motifs. This contrasts with the ion symporters (86.6% identity) and their genes (82.7% identity). Due to their unusually high similarity, parts of dalT and rbtT have previously been claimed erroneously to correspond to ‘inverted repeats’ and possible remnants of a ‘metabolic transposon’ comprising the dal and rbt genes. Other characteristic structures, e.g. a secondary attL site and chi-like sites, as well as the conservation of this gene group in *E. coli* C are also discussed.

Keywords: D-arabinitol, ribitol, dal, rbt, Klebsiella pneumoniae, enteric bacteria

INTRODUCTION

The pentitols ribitol (adenitol; Rbt) and D-arabinitol (D-arabitol; Dal) are used by 85% of *Klebsiella* strains and by 10% of *Escherichia coli* strains, e.g. *E. coli* C, but not *E. coli* K-12 and B (Reiner, 1975). Their metabolism in both organisms comprises similar catabolic steps but separate and inducible genes and enzymes. Metabolism starts with an H+ symporter for transport and proceeds as summarized in Fig. 1. The corresponding genes are named dal and rbt in *Klebsiella*, but atl and rtl in *E. coli*. They are controlled by repressors DalR and RbtR and the inducers D-arabinitol and D-ribulose, respectively (references in Hartley, 1984b; Mortlock, 1984).

The genetics of pentitol catabolism in enteric bacteria is of interest for several reasons. (i) The *dal* and *rbt* genes are adjacent and oppositely oriented, perhaps indicating a gene duplication and inversion which occurred during their evolution (Charpentier & Mortlock, 1984; Neuberger & Hartley, 1979; Scangos & Reiner, 1978). (ii) The *dal* and *rbt* genes are flanked by long (about 1400 bp) inverted repeats and are perhaps part of a ‘metabolic transposon’ (Link & Reiner, 1982). (iii) The *dal* and *rbt* genes are replaced in Dal- Rbt- strains by the non-homologous *gat* genes for galactitol metabolism (genotypic exclusion), i.e. these genes map at identical positions but appear to be mutually exclusive (Link & Reiner, 1983; Reiner, 1975; Woodward & Charles, 1983). (iv) Pentitol catabolism has been used extensively (for a review see Mortlock, 1982) as a model for studying the acquisition of new metabolic capacities, in particular...
H. HEUEL and OTHERS

Fig. 1. Metabolic pathways for D-arabinitol and ribitol in enteric bacteria. The metabolic pathways for D-arabinitol (Dal) and ribitol (Rbt) as found in enteric bacteria are shown together with the enzymes and transporters, repressors and inducers, and the corresponding genes. The genes are called dal and rbt in Klebsiella pneumoniae, but att and rtl in E. coli. rpeA encoding d-ribulose-5-phosphate epimerase is not one of the dal or rbt genes.

experimental evolution in chemostats involving gene duplications and amplifications (Hartley, 1984a; Mortlock, 1984; Wu et al., 1986).

Despite their importance in evolutionary studies, for most dal and rbt genes only partial sequences are available; neither their exact number nor their nature are known, nor have comparisons for all genes and gene products been presented. Furthermore, contradictory results concerning gene location within the operons of Klebsiella have been published (Charnetzky & Mortlock, 1974c; Wu et al., 1985). Different nomenclature for the genes of different Klebsiella strains has added to the confusion. In this study we present the complete DNA sequence of the dal and rbt genes from K. pneumoniae and describe their location within two operons. We also show that the dal and rbt genes, although encoding enzymes catalysing similar enzymic reactions, are non-homologous, except for the transport systems, and are not flanked by long inverted repeats. Finally, we propose an amended genetic nomenclature for both systems. rbtB and dalB (Charnetzky & Mortlock, 1974c) are renamed rbtR and dalR (for repressor), rbtC and dalC (Charnetzky & Mortlock, 1974c) are renamed rbtDP and dalDP (for promoter) and rtlABC and attABC (Reiner, 1975) now correspond to rtdKR and attDKR to comply with official genetic nomenclature.

METHODS

Bacterial strains, plasmids and culture conditions. Strain KAY2026 (Sprenger & Lengeler 1984) used in this study as the source of the dal and rbt genes is a phage P1-sensitive Arg^- derivative of Klebsiella pneumoniae (formerly Aerobacter aerogenes) 1033-5P14 (Tanaka et al., 1967). Escherichia cloi C (att rlt), HB101, mutants BL21 (DE3) and JM109 of E. coli K-12, and plasmids pSU18, pBluescript II SK (+) (Ausubel et al., 1990), and pHEX3 and pHEX5 (Heuel et al., 1997) have all been described. Minimal and complex media, and MacConkey indicator plates containing 1% carbon source have been described previously (Lengeler, 1975).

Transport and enzyme tests. Transport tests using [14C]-labelled D-arabinitol, d-mannitol and ribitol were done as described previously taking samples between 0 and 60s (Heuel et al., 1997). D-Arabinitol and ribitol dehydrogenases were tested in cell extracts also as described previously (Lengeler & Lin, 1972). To test the inducibility of the dal and rbt genes, cells were grown exponentially in minimal medium with glycerol as carbon source. For induction, D-arabinitol or ribitol (0.2%) were added and the cells were harvested after one further generation. They were washed twice in minimal medium before being tested.

Isolation of plasmid DNA, restriction analysis and cloning procedures. All manipulations with recombinant DNA were carried out by standard procedures as described by Ausubel et al. (1990). Preparation of plasmid DNA was done by phenol extraction (Sambrook et al., 1989) or by using the JetStar DNA purification system (Genomed), while the isolation of chromosomal DNA from KAY2026 was according to Neumann et al. (1992). Restriction enzymes from various commercial sources were used according to the recommendations of the suppliers. Oligonucleotides for sequencing or PCR were purchased either from TIB Molbiol Syntheselabor or from Life Technologies. DNA amplification by PCR was done according to Saiki et al. (1988) with Tag polymerase from Boehringer Mannheim and an Air Thermo-Cycler 1605 from Idaho Technology.

DNA sequencing and sequence analysis. To sequence the dal genes cloned into pHHL104 and the rbt genes cloned into pFCK1 (Fig. 2), known restriction sites were used to obtain smaller clones, the ends of which could be sequenced after subcloning. Where needed, longer fragments were shortened by exonuclease III deletion. Finally, specific DNA primers were used to complete the sequences flanking restriction sites. All DNA sequences were determined on both strands by the dyeoxy chain-termination method with the T7 sequencing kit from Pharmacia. Computer analysis was done with the GenMon 4.3 program from the Gesellschaft für Bio-technologische Forschung (Braunschweig, Germany) and the BLAST programs and database services provided by the National Center for Biotechnology Information (Bethesda, MD, USA).

T7 RNA polymerase-dependent overexpression and primer extension analysis. T7 RNA polymerase-dependent overexpression of the dal gene products and of rbtT was done according to a protocol described previously (Nobelman & Lengeler, 1996) using derivatives of medium-copy-number plasmids pHX3 and pHX5 (Heuel et al., 1997) and strain BL21 (DE3). The original high-copy-number expression vectors of Tabor & Richardson (1985) or pBluescript II SK (+) (Ausubel et al., 1990) were exceedingly unstable and could not be used. Primer extension experiments were performed according to Ausubel et al. (1990). To determine the transcription initiation sites of dalDP and dalRP, total cellular RNAs were prepared from HB101(pPHHL101 (dalDKT) and from HB101(pPHHL102) (dalR). The cells were inoculated into 50 ml of 2x TY plus chloramphenicol (25 µg ml^-1) to an OD_{600} of 0.1 and harvested when the cultures reached an
OD_660 of 0.5. After centrifugation, the cells were washed, resuspended in 400 μl RNA buffer, lysed and treated as described by Ausubel et al. (1990) to isolate total RNAs. Primer extension reactions were also performed according to Ausubel et al. (1990) using a 31 bp primer (see Fig. 4) for both strands. Primers (50–100 ng) were labelled with [γ-32P]ATP and T4 polynucleotide kinase. To remove labelled ATP, a Microspin Sephadryl column (Pharmacia) was used. A total of 10–50 μg RNA was mixed with 17.5 ng labelled primer and annealed at 65 °C in hybridization buffer for 90 min. The oligonucleotide primers were extended in the reaction mixture (45 μl) containing 5 U avian myeloblastosis virus reverse transcriptase (Boehringer Mannheim) by incubation for 1 h at 42 °C. After extraction with phenol, precipitation with ethanol and resuspension in 5 μl stop solution, according to Ausubel et al. (1990), the cDNAs synthesized were separated by electrophoresis on a 6% sequencing gel. The size markers were generated by running a dideoxy nucleotide chain-termination reaction with the same primer and plasmid DNA template, including either dalDKT or dalR DNA fragments.

RESULTS AND DISCUSSION

Cloning of the dal and rbt genes from the chromosome of K. pneumoniae

Previous studies with genes and DNA from two different strains of Klebsiella (Charnetzky & Mortlock, 1974a, b, c; Hartley, 1984b) and from E. coli C (Link & Reiner, 1983) indicated that the dal and rbt (atl and rtl) genes were contiguous. Hartley and co-workers originally transferred the genes from K. pneumoniae 1033-3P14, by means of P1-transduction, into the chromosome of E. coli K-12 where the genes inserted at a similar place (near 46 min) as in E. coli C (Rigby et al., 1976). Using a secondary att site near the pentitol-specific genes and a phage λ derivative, Neuberger & Hartley (1979) cloned the dal and rbt genes onto phage λ p rbt dal. The phage contained rbtDK and dalDK on a 10-9 kbp insert as identified by growth and enzyme tests; it probably also contained rbtR and dalR because the clones conferred control properties (inducibility) identical to those of parental strain 1033-3P14. The gene order was reported to be dalKD-dalR-rbtR-rbtDK (Fig. 2). This contradicts the order reported by Charnetzky & Mortlock (1974c) given as dalKD-rbtB-dalB-rbtDK. It is, however, equivalent to the rtl gene order as determined by P1-transduction for E. coli C (Scangos & Reiner, 1978).

Because these discrepancies could be due to chromosomal rearrangements that might have occurred during cloning into phage λ and because neither all dal (atl) nor all rbt (rtl) genes encoding D-arabinitol and ribitol transport and catabolism had been cloned and identified, we wanted to reclone all genes and map them completely. Hence, chromosomal DNA was isolated from K. pneumoniae KAY2026 (Sprenger & Lengeler, 1984), one of the strains used by Lin, Hartley and others in their evolutionary studies (references in Mortlock, 1982). The DNA was treated with HindIII before being cloned into the medium-copy-number plasmid pSU18 and transformed into E. coli HB101. This mtlA1 mutant lacks the mannitol-specific phosphotransferase system (IIMt) as well as the atl and rtl genes and hence the capacity to grow on D-mannitol, D-arabinitol and ribitol. Transformants were first plated on MacConkey indicator plates containing D-arabinitol or D-mannitol. IImt, negative strains can be suppressed to a Dal' Mtl' phenotype provided a DalT transporter (dalT or atlT), which also transports free D-mannitol, and a D-arabinitol dehydrogenase (dalD or atdD), which also converts D-mannitol to D-fructose, are expressed constitutively (Tanaka et al., 1967; Lengeler, 1975; Aulkemeyer et al., 1991; Heuel et al., 1997). Among several thousand transformants containing HindIII DNA fragments, one Dal*' Mtl' (strong) Mtl+ (weak) but Rtl' colony was found. dalT and dalD were subcloned and located on a 473 kbp fragment. The fragment was reisolated and religated into the polynucleotide site of pSU18. The subclones were transformed into strain JM109 and the transformants plated on LB-Cam plates (Lengeler, 1975), which were supplemented with 1 mM IPTG and 0.02% X-Gal. From white colonies, plasmids pHH101 and pHH103 (Fig. 2) were obtained. Based on their restriction maps, which could be compared to the known maps of dal genes (Hartley, 1984b; Wu et al., 1985; Heuel et al., 1997), it could be concluded that on both plasmids dalD, dalK (encoding a D-xylulose kinase) and dalT had been cloned, but in the opposite direction. After transformation into HB101, all transformants from both plasmids had the same Dal* Mtl' phenotype. This result implies that the dal genes are expressed constitutively in both clones, i.e. that no DalR-dependent repression occurs. Because in pHH103 the dal...
H. HEUEL and OTHERS

Table 1. Gene products of the dal and rbt operons

<table>
<thead>
<tr>
<th>Gene product</th>
<th>Function</th>
<th>No. of aa</th>
<th>Observed molecular mass (kDa)</th>
<th>Calculated molecular mass (Da)</th>
<th>Inducer or major substrate</th>
<th>Type or family</th>
<th>Identical residues (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DalR</td>
<td>Repressor</td>
<td>313</td>
<td>34.9†</td>
<td>34 940</td>
<td>d-Arabinitol</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RbtR</td>
<td></td>
<td>270</td>
<td>-</td>
<td>29 700</td>
<td>d-Ribulose</td>
<td>LacI/GalR</td>
<td></td>
</tr>
<tr>
<td>DalD</td>
<td>NAD dehydrogenase</td>
<td>455</td>
<td>46.5†</td>
<td>50 050</td>
<td>d-Arabinitol</td>
<td>Long (monomer)</td>
<td>None</td>
</tr>
<tr>
<td>RbtD</td>
<td></td>
<td>248</td>
<td>27.0†</td>
<td>27 280</td>
<td>Ribitol</td>
<td>Short (tetramer)</td>
<td></td>
</tr>
<tr>
<td>DalK</td>
<td>ATP kinase</td>
<td>487</td>
<td>54.0 (110)‡</td>
<td>53 570</td>
<td>d-Xyulose</td>
<td>Hexokinase</td>
<td>19.3</td>
</tr>
<tr>
<td>RbtK</td>
<td></td>
<td>535</td>
<td>60.0 (112)‡</td>
<td>58 850</td>
<td>d-Ribulose</td>
<td>Hexokinase</td>
<td></td>
</tr>
<tr>
<td>DalT</td>
<td>Transporter</td>
<td>425</td>
<td>-</td>
<td>46 750</td>
<td>d-Arabinitol</td>
<td>Ion symporter</td>
<td>86.6</td>
</tr>
<tr>
<td>RbtT</td>
<td></td>
<td>427</td>
<td>42.5§</td>
<td>46 970</td>
<td>Ribitol</td>
<td>Ion symporter</td>
<td></td>
</tr>
</tbody>
</table>

* Local similarities, e.g. for helix-turn-helix motifs or NAD- and ATP-binding motifs, are not considered.
† Purified monomer.
‡ Long and short dehydrogenases, according to Persson et al. (1991a, b), active as monomers or as tetramers, respectively.
§ Purified monomer and dimer in parentheses.

Table 1 continued:
<table>
<thead>
<tr>
<th>Gene product</th>
<th>Function</th>
<th>No. of aa</th>
<th>Observed molecular mass (kDa)</th>
<th>Calculated molecular mass (Da)</th>
<th>Inducer or major substrate</th>
<th>Type or family</th>
<th>Identical residues (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DalR</td>
<td>Repressor</td>
<td>313</td>
<td>34.9†</td>
<td>34 940</td>
<td>d-Arabinitol</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RbtR</td>
<td></td>
<td>270</td>
<td>-</td>
<td>29 700</td>
<td>d-Ribulose</td>
<td>LacI/GalR</td>
<td></td>
</tr>
<tr>
<td>DalD</td>
<td>NAD dehydrogenase</td>
<td>455</td>
<td>46.5†</td>
<td>50 050</td>
<td>d-Arabinitol</td>
<td>Long (monomer)</td>
<td>None</td>
</tr>
<tr>
<td>RbtD</td>
<td></td>
<td>248</td>
<td>27.0†</td>
<td>27 280</td>
<td>Ribitol</td>
<td>Short (tetramer)</td>
<td></td>
</tr>
<tr>
<td>DalK</td>
<td>ATP kinase</td>
<td>487</td>
<td>54.0 (110)‡</td>
<td>53 570</td>
<td>d-Xyulose</td>
<td>Hexokinase</td>
<td>19.3</td>
</tr>
<tr>
<td>RbtK</td>
<td></td>
<td>535</td>
<td>60.0 (112)‡</td>
<td>58 850</td>
<td>d-Ribulose</td>
<td>Hexokinase</td>
<td></td>
</tr>
<tr>
<td>DalT</td>
<td>Transporter</td>
<td>425</td>
<td>-</td>
<td>46 750</td>
<td>d-Arabinitol</td>
<td>Ion symporter</td>
<td>86.6</td>
</tr>
<tr>
<td>RbtT</td>
<td></td>
<td>427</td>
<td>42.5§</td>
<td>46 970</td>
<td>Ribitol</td>
<td>Ion symporter</td>
<td></td>
</tr>
</tbody>
</table>

Genes have been cloned against the lacZp promoter of pSU18, the result also implies that the fragment should contain a dalDp promoter (Fig. 2).

In a parallel approach, the rbt genes were isolated after cloning BamHI fragments into the newly constructed medium-copy-number vector pHEX3 (Heuel et al., 1997). Among several thousand HB101 transformants plated on MacConkey ribitol plates was one Rbt+ Dal- colony. Based on restriction analysis of the new plasmid, pFCK1, a 7-23 kb BamHI fragment had been cloned (Fig. 2) which, analogous to previous studies (Wu et al., 1985), should contain rbtR (repressor), rbtD (ribitol dehydrogenase) and rbtK (D-ribulose kinase). Again, as for the dal genes, a new promoter-distal gene, rbtT, encoding a ribitol-specific ion symporter was also found (Heuel et al., 1997). To clone the missing gene, dalR, which should map between rbtR and dalD (Fig. 2), the terminal sequences of the BamHI fragment from pFCK1 and of the HindIII fragment from pHHL104 were determined. These were used to devise PCR primers which allowed the synthesis of a DNA fragment carrying dalR flanked by HindIII and BamHI sites using chromosomal DNA as a template. The primers used were primer 1 (5' GCCATAGATCACAAAAGAGCAATT- ACCC 3') starting 31 bp before the HindIII restriction site and primer 2 (5' GGTTTGTCGCCCTGGTGTCG- GCAGG 3') starting 50 bp after the BamHI restriction site. PCR yielded a 1.2 kb HindIII-BamHI fragment which was cloned into pHEX5 to yield pHHL102. The 47 kb HindIII fragment of pHHL101 was isolated next and cloned into the HindIII site of pHHL102. The new plasmid, pHHL104, carried dalRDKT on a 5-9 kb HindIII-BamHI insert (Fig. 2). The correct insertion of the dal genes on pHHL104 was ascertained by restriction analysis using NdeI, SphI and XhoI, three restriction enzymes with single, asymmetrically located cutting sites within the dal genes. Cells of HB101 transformed with pHHL104 exhibited a Dal+ (strong) phenotype but remained Mtl-. This is the expected phenotype for a dalR+ strain because D-mannitol is not an inducer for the D-arabinitol-specific DalR repressor. The restriction map of xp rbt dal (Hartley, 1984b) corresponds almost exactly to our map of the 10.93 kbp HindIII-BamHI fragment covering the rbt and dal genes (Fig. 2). Because we isolated the fragment directly from the chromosome of the Klebsiella strain used by these authors, this map should correspond to the genuine map.

Sequencing of the dal and rbt genes from K. pneumoniae and identification of their gene products

We sequenced the entire 10.93 kbp fragment covering the region from orf1 to dhnA completely on both strands, except for rbtR and rbtD. First, the sequence data revealed the new genes dalT and rbtT encoding a D-arabinitol- and a ribitol-specific transporter (Heuel et al., 1997), respectively, and second, proved the gene order to be as proposed by Hartley (1984b) and as summarized in Fig. 2. In particular, the dal and rbt genes are adjacent, arranged in a symmetrical but divergent way. The operons are separated by a control region (2.2 kbp) encoding the DalR and RbtR repressors. Because dalR and dalDKT are transcribed from opposite strands, and correspondingly for the rbt genes, dalR and rbtR are transcribed convergently as indicated.

Many of the gene products from the dal and rbt genes have been purified and characterized (references in Hartley, 1984b and Wu et al., 1985). The corresponding properties are summarized in Table 1. The complete peptide sequence for RbtD, and the partial peptide sequences, in particular the amino-terminal sequences, for DalD, DalK and RbtK are available. Furthermore, RbtT (42 kDa) has been made visible in the T7 RNA
polymerase-dependent overexpression system (Heuel et al., 1997).

DNA sequence analysis and protein comparison

After complete sequencing of the *dal* and *rbt* genes, including the regulatory genes, sequence alignment and comparisons at the DNA and peptide level could be done. Due to previously unresolved DNA compressions, the published sequences had to be corrected in numerous places. These corrections, however, do not alter previous major conclusions. On the other hand, the comparisons revealed some new and unexpected results (Fig. 2 and Table 1).

dalR and rbtR encoding repressors DalR and RbtR

DalR and *rbtR* are transcribed convergently from promoters *ddKp* and *ddR*, respectively (Fig. 2). The secondary att. site (nt 5777-5921), used by Hartley and co-workers (Neuberger & Hartley, 1979) to clone the *dal* and *rbt* genes onto phage λ, is located within the intergenic sequence of 209 bp. The RbtR repressor (270 aa), which recognizes the molecular inducer D-ribulose, belongs to the LacI/GalR family. It contains the typical amino-terminal helix-turn-helix motif (aa 5-25) and other characteristic motifs in the central and carboxy-terminal parts (Weickert & Adhya, 1992). The DalR repressor (313 aa), on the other hand, binds D-arabinobitol as the molecular inducer and belongs to the DeoR repressor family (van Rooijen & de Vos, 1990). Characteristic members of this group are DeoR (deoxygenase), GatR (galactitol), GntR (d-glucitol) and SorC (l-sorbose metabolism) in enteric bacteria. All contain a common inducer-binding motif near the carboxy-terminal end and an amino-terminal helix-turn-helix motif (26-45). Neither *dalR* and *rbtR* at the DNA level, nor *DalR* and *RbtR* at the peptide level showed any significant similarity.

dalD and rbtD encoding D-arabinobitol (DalD) and ribitol dehydrogenase (RbtD)

In both operons, the promoter-proximal genes *dalD* and *rbtD* encode pentose-specific and NAD-dependent dehydrogenases. Against expectation, however, neither *dalD* and *rbtD* nor the corresponding proteins showed any similarity at the DNA and peptide level beyond local motifs which identified the gene products as members of the dehydrogenase family. Thus, DalD (455 aa) with affinity to D-arabinobitol (K_{M}^{app} 24 mM) and D-mannitol (K_{M}^{app} 70 mM), but not to ribitol, xylitol and D-glucitol, belongs to the subfamily of long (≥ 450 aa) dehydrogenases (Persson et al., 1991a, b). These contain a typical NAD-binding (aa 9-17) and substrate-binding (205-211) motif also conserved in the D-mannitol-1-phosphate dehydrogenase of, e.g. *E. coli* K-12. Long dehydrogenases are active as monomers as has also been shown for DalD (Hartley, 1984b). RbtD (248 aa), by contrast, belongs to the subfamily of short dehydrogenases and acts as a tetramer. Substrates are (in decreasing order) ribitol (K_{M}^{app} 11 mM), L-arabinobitol (267 mM) and xylitol (1000 mM), but not d-arabinobitol and D-mannitol (Hartley, 1984b). An NAD-binding motif (21-27) was found as expected.

dalK and rbtK encoding D-xylulose (DalK) and D-ribulose kinase (RbtK)

DalK and *rbtK* encode ATP-dependent kinases for D-xylulose and D-ribulose, respectively (Fig. 3). As for the dehydrogenase genes, *dalK* and *rbtK* did not show extended similarities. The D-xylulose kinase DalK (487 aa) is active as a dimer (about 110000 Da) and resembles the xylB-encoded D-xylulokinase from *K. pneumoniae* (484 aa; 52.9% identical residues). For comparison, the XylB kinases from *K. pneumoniae* and *E. coli* share 81.3% identical residues. Among the many pentoses, pentitols and hexitols, only D-xylulose [K_{M}^{app} 0.8 mM; V_{max} 150 μmol min^{-1} (mg protein)^{-1}] is a substrate for DalK (Hartley, 1984b). It has been claimed that XylB accepts D-arabinobitol and produces D-arabinobitol 5-phosphate (Scangos & Reiner, 1979). The three kinases belong to the prokaryotic D-xylulokinase group of the hexokinase family as defined by Bork et al. (1993). Based on three-dimensional crystal structures, hexokinases comprise characteristic structures: in DalK...
Fig. 4. Mapping of the transcription initiation sites of \(\text{dalR} \) (a) and \(\text{dalD} \) (b) by primer extension analysis. Radiolabelled primers complementary to the 5' end of the non-coding strand of \(\text{dalR} \) (5' CCATCGGCGCAGCACCTGATGAACGCCG 3') or \(\text{dalD} \) (5' CCAACGCTATGCGCGGATGAAAAGAACC 3') were used to direct cDNA synthesis by reverse transcription from total RNAs of cells of strain HBlOl containing either pHHLlOlA, C, G and T showing the sequencing ladders with primers complementary DNA is also given. This was derived from lanes A, C, G and T showing the sequencing ladders with primers labelled at 5' positions by T4 polynucleotide kinase. An asterisk indicates the initiation site, namely an A residue, 50 bp upstream of the putative ATG codon of \(\text{dalR} \) and 21 bp upstream of the putative ATG codon of \(\text{dalD} \).

(Fig. 3) these correspond to two phosphate-binding sites (aa 2–22 and 251–266) and an adenosine binding site (388–417), all three involved in ATP binding, two connect or linker structures (230–248 and 421–441) and a putative substrate-binding site (68–86).

The kinase encoded by \(\text{rbtK} \) (535 aa) also acts as a dimer (about 112 000 Da). Substrates are D-ribulose \(K_{M_{\text{app}}}^\text{app} \) 0.4 mM; \(V_{\text{max}} \) 71 \(\mu \text{mol min}^{-1} \) (mg protein)\(^{-1}\) and to a lesser extent D-arabinitol and ribitol \(K_{M_{\text{app}}}^\text{app} \) 140 and 220 mM, respectively) but not D-xylulose (Hartley, 1984b).

Based on sequence alignments, RbtK corresponds to a typical prokaryotic hexokinase, in particular to the group of L-ribulose-, D-gluconate- and glycerol kinases (Bork et al., 1993). Curiously, its closest relative is the hydrophilic part of a large (715 aa) and allegedly membrane-bound protein from \(\text{Saccharomyces cerevisiae} \) (accession no. Z48785). RbtK shares \(25\% \)–\(53\% \) identical residues with the kinases, the characteristic phosphate 1 and 2 sites (aa 8–28 and 290–305), the connect 1 and 2 motifs (269–287 and 468–488), and the adenosine-binding site (435–464), the latter preceded by a helix motif (411–423) (Fig. 3). The total DalK and RbtK molecules share \(19\% \)–\(3\% \) identical residues.

Operons \(\text{dal} \) and \(\text{rbl} \) are not flanked by inverted repeats

It has been claimed repeatedly that \(\text{dal} \) and \(\text{rbl} \) genes are sandwiched between rather long (0.4–1.4 kbp) inverted repeats. It has been speculated that these could be the remnants of a metabolic transposon (Hartley, 1984b) and perhaps could be involved in genotypic exclusion between the \(\text{atl} \) and \(\text{rbl} \) genes and the \(\text{gat} \) genes in \(\text{E. coli} \) (Link & Reiner, 1982). We have shown recently (Heuel et al., 1997) that the \(\text{dal} \) and \(\text{rbl} \) operons of \(\text{K. pneumoniae} \) contain previously unidentified genes, \(\text{dalT} \) and \(\text{rblT} \) that are located proximal to genes \(\text{dalK} \) and \(\text{rblK} \), respectively (Fig. 2). The genes encode D-arabinitol- and ribitol-specific transporters of unusually high similarity (86.6% identical amino acids) that is reflected at the DNA level (82.7% identical bases). The postulated inverted repeats correspond to parts of both genes (see IR in Fig. 2), but not to short inverted repeats as they are characteristic of transposable elements. The pronounced similarity starts exactly 6 bp before the ribosome-binding site of \(\text{dalT} \) and \(\text{rblT} \) within intragenic sequences which otherwise did not show any similarity. It ends abruptly within a TTC codon for \(\text{dalT} \) and a TTT codon for \(\text{rblT} \) located 42 and 48 bp before the corresponding stop codons, hence 14 and 16 aa before the end of the peptides, respectively. These residues are parts of the terminal cytoplasmic loop of the permeases. At 58 bp downstream from \(\text{rblT} \), \(\text{hna} \) begins (Fig. 2), a gene found in all \(\text{atl rbl} \) (\(\text{dal rbl} \)) and \(\text{gat} \) strains of \(\text{E. coli} \) and \(\text{K. pneumoniae} \) tested thus far (unpublished results). \(\text{dalT} \) on the other side is followed by an ORF not present on the chromosome of \(\text{E. coli} \) K-12.

Regulatory sequences involved in transcription control and size of the complete \(\text{dal} \) and \(\text{rbl} \) operons

Sequence alignments have revealed putative promoter, CRP-binding and ribosome-binding motifs as well as putative initiation and stop codons, \(\text{DalD}, \text{DalK}, \text{RbtK} \) and \(\text{RbtD} \) have been purified to homogeneity. Their amino-terminal sequences have been used to define putative ribosome-binding sites and initiation codons (references in Hartley, 1984b; Wu et al., 1985).

In the case of the \(\text{dalR}_{\text{p}} \) and the \(\text{dalD}_{\text{p}} \) promoters, the transcription initiation bases were determined directly by primer extension analysis as described in Methods and in the legend to Fig. 4. These are an A residue located 50 bp upstream of the \(\text{dalR} \) initiation codon and an A residue located 21 bp upstream of the \(\text{dalD} \) initiation codon. Promoter \(\text{dalD}_{\text{p}} \) contains typical \(-10 \) (TACAGT) and \(-35 \) (TTATT)T sequences, the latter preceded immediately by a CRP-binding consensus motif (TGTTGA\(\text{N}_{\text{p}} \)GGCTCT) with an imperfect symmetry (Fig. 5). Four short palindromes (AATT\(A \)) interspersed between these sequences are possibly involved in \(\text{DalR} \) binding as operators. Similar structures are not found in front of \(\text{dalR} \) and in \(\text{dalR}_{\text{p}} \). Consistent with these results it was observed that the \(\text{dal} \) operon in \(\text{KAY2026} \) was inducible by external D-arabinitol as tested by \(\text{DalT} \) activity [1 and 46 nmol transport min\(^{-1} \) (mg protein)\(^{-1}\) for uninduced and induced cells, respectively] and that deletion of \(\text{dalR} \) produced fully constitutive clones [16 nmol transport min\(^{-1} \) (mg protein)\(^{-1}\) for uninduced cells]. Induction was repressed in the presence of glucose (Knott, 1982).
Pentitol catabolism in Klebsiella pneumoniae

Fig. 5. Regulatory sequences involved in dal gene control. The intergenic sequences located between dalD and dalR are shown. Underlined (under the non-coding strand) and in bold type are the initiation codons, transcription initiation sites (+1), as well as putative −10 and −35 binding sites for promoters dalDp (labelled D) and dalRp (labelled R). For dalDp, a putative CRP-binding site (CRP) and short palindromes (asterisks), which may correspond to operator sites, are also shown.

Fig. 6. Intergenic sequences separating the dal and rbt genes. The ends of dalR and rbtr are shown together with the deduced peptide sequences and stop codons. dalR and rbtr are separated by 209 bp. This includes a secondary attachment site for phage λ (underlined sequence, attλ), the core of which is indicated (asterisks).

dalT is followed by a short intergenic sequence (48 bp) and an ORF (orf1) of about 1 kbp length. orf1 did not show similarity to any sequence in the sequence databases. Deletion of orf1, as a HindIII–SphI fragment from pHHL101 (Fig. 2), caused no visible change in the Dal phenotype of transformants and preliminary Northern hybridization studies gave no indication for the presence of orf1-specific mRNA in pHHL101 transformants. These results seem to rule out orf1 as a member of the dalDKT operon.

Repressors DalR and RbtR showed no similarity. In accordance with this result, there was no sequence similarity between the intergenic sequences separating dalR and dalD, and rbtR and rbtD, respectively, which carry the corresponding repressor-binding sites. Putative −10 and −35 consensus sequences for promoters rbtDp and rbtRp have been postulated (Wu et al., 1985). Neither these nor a putative CRP-binding sequence(s) in front of rbtDp have been identified and characterized by direct tests. The expression of the rbt genes is, however, strongly reduced during growth on glucose (Neuberger & Hartley, 1979). Early attempts to follow rbtD-specific mRNA synthesis by identifying polysomes engaged in RbtD synthesis through RbtD-specific antibodies, indicated a dramatic shift in the mid-exponential phase of growth, i.e. a fivefold increase in RbtD activity paralleled by an increase in corresponding polysomes (Hartley, 1984b). It remains to be shown which mechanism underlies this pattern.

Conclusions

As stated above, the dal and rbt genes have been considered as models for the natural evolution of new operons and metabolic pathways by gene duplication and for metabolic transposons. The present results corroborate previous doubts voiced by Hartley (1984b) on this too simplistic view. Thus, dalR, D and K do not share extensive similarity with rbtR, D and K, respectively, and the corresponding repressors, dehydrogenases and kinases belong to different protein families. This argues against evolution by gene or operon duplication followed by diversification and argues for modular evolution (‘gene swapping’) in which the various genes have been assembled in a mosaic-like way into their present positions. The only area of extensive similarity covers dalT and rbtT. Similarity is so high (82.7% identical bases and 86.6% identical amino acid residues) over the entire length of the genes/peptides that it almost certainly indicates a recent origin from a common ancestor, i.e. true homology. It is these DNAs (Fig. 2) which have been considered previously as inverted repeats and the remnants of a putative metabolic transposon (Link & Reiner, 1982, 1983; Neuberger & Hartley, 1979).

The evolution of the catabolic pathways for d-arabinitol and ribitol must have been closely linked among the enteric bacteria. Thus, based on biochemical studies, both catabolic pathways are highly similar in Klebsiella (Fig. 1) and in E. coli C (Reiner, 1975), and based on genetic studies the operons are very similar in both organisms and are located at a similar place in the chromosome (Scangos & Reiner, 1979). We cloned the att and rtl genes from E. coli C and were able to show that they map in both organisms at an identical location,
that is between the attP2 site and the dhnA gene (Fig. 2). This location may explain why Rigby et al. (1976) were able to transduce the dal and rbt genes from K. pneumoniae to E. coli K-12 by means of phage P1. Partial sequencing of the att and rlt genes revealed the expected high similarity with the dal and rbt genes (about 82% identical bases) and the same operon structure (unpublished results). We were also able to confirm the presence of a secondary attachment site for phage λ located between the dal and rbt genes (Fig. 6), which allowed the original cloning of these genes into phage λ derivatives (Neuberger & Hartley, 1979). Finally, we were able to confirm the presence of chi-like recombination sites (GCCTGCC) within dalK (nt 1921–1927) and rbtK (7974–7980) (see also Fig. 2). These apparently became active in the selection of strains overproducing RbtD during continuous culture on xyitol and caused amplification of dalDR and rbtRD (Neuberger & Hartley, 1979). These results strongly indicate the presence of a natural mechanism for interspecies horizontal gene transfer of the pentitol-specific genes and enzymes within enteric bacteria.

ACKNOWLEDGEMENTS

We thank E. Placke for help in preparing the manuscript. For financial support through SFB171 (H. H. and S. T.) and a Graduierten-stipendium (A. S.-G.) we thank the Deutsche Forschungsgemeinschaft and the Verband der Chemischen Industrie for general financial support.

REFERENCES

Received 20 November 1997; revised 12 February 1998; accepted 16 February 1998.