Biological functions of UDP-glucose synthesis in *Streptococcus mutans*

Yoshihisa Yamashita, Yuichi Tsukioka, Yoshio Nakano, Kiyotaka Tomihisa, Takahiko Oho and Toshihiko Koga

Author for correspondence: Toshihiko Koga. Tel: +81 92 642 6350. Fax: +81 92 642 6354. e-mail: toshidha@mbox.nc.kyushu-u.ac.jp

A gene encoding glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) was isolated from *Streptococcus mutans*. A cell extract of *Escherichia coli* expressing the cloned gene exhibited glucose-1-phosphate uridylyltransferase activity. The enzyme catalyses the conversion of D-glucose 1-phosphate and UTP into UDP-D-glucose. Rabbit antiserum against the serotype-c-specific antigen did not react with autoclaved extracts from mutant cells in which the cloned gene was insertionally inactivated. The glucose content of the cell-wall preparation purified from the mutant was very much lowered, whereas there was no observable decrease in the content of rhamnose. When the mutant strain was grown in an acidic environment, its cell viability was much lower than that of the wild-type. These results suggest that UDP-D-glucose functions not only as an immediate precursor of the serotype-c-specific antigen of *S. mutans* (as a glucose donor for side-chain formation), but is also important for the organism's viability in environmental conditions of low pH.

Keywords: *Streptococcus mutans*, UDP-glucose, glucose-1-phosphate uridylyltransferase, polysaccharide antigen, acid tolerance

INTRODUCTION

Serotype-specific polysaccharide antigens of *Streptococcus mutans* are composed of a backbone structure of 1,2- and 1,3-linked rhamnosyl polymers with glucose side-chains (Wetherell & Bleiweis, 1975; Linzer et al., 1986; Pritchard et al., 1986) and their serological detection has been used extensively in classification of cariogenic streptococci (Loesche et al., 1986). These polysaccharide antigens have received increasing attention because *in vitro* stimulation of human monocytes with the serotype-f-specific polysaccharide antigen of *S. mutans* was reported to induce the release of inflammatory cytokines such as tumour necrosis factor alpha and interleukin-1β (Soell et al., 1995), and shown to provoke nitric oxide production in the rat aorta (Martin et al., 1997). However, the biosynthetic pathway of these polysaccharide antigens has not been elucidated. We have recently cloned two loci related to the dTDP-1-rhamnose synthesis pathway and demonstrated that four genes (*rmlA, rmlB, rmlC* and *rmlD*) are involved in dTDP-1-rhamnose synthesis from glucose 1-phosphate in *S. mutans* (Tsukioka et al., 1997a, b). Rhamnose is not detected in cell-wall preparations from mutants in which any one of the four *rml* genes is insertionally inactivated. Furthermore, rabbit antiserum against *S. mutans* serotype-c-specific antigen does not react with autoclaved extracts from these mutants. These findings suggest that dTDP-rhamnose is used as an immediate precursor for the synthesis of the backbone of the serotype-c-specific antigen of *S. mutans*.

Glucose-1-phosphate uridylyltransferase (EC 2.7.7.9), which catalyses a reaction converting D-glucose 1-phosphate and UTP to UDP-D-glucose, is widely distributed in animals, plants and micro-organisms. The UDP-D-glucose produced is then used as a glucosyl donor in the biosynthesis of various carbohydrates (Ginsburg, 1964; Markovitz, 1977; Schnaitman & Klena, 1993; Sundararajan et al., 1962; Weissborn et al., 1994). It is possible that UDP-D-glucose is a nucleotide sugar used as a glucosyl donor for side-chain formation of the serotype-specific antigen in *S. mutans*. There is, however, no information concerning the mechanism of glucose side-chain formation of the antigen. Several reports have suggested that bacterial UDP-D-glucose synthesis is involved in osmotolerance and thermo-tolerance (Böhringer et al., 1993; Giaever et al., 1988;...
Acid tolerance of S. mutans plays a key role in demineralization of human dental enamel. We have previously shown that a mutation in the gene encoding a diacylglycerol kinase homologue leads not only to the loss of acid tolerance but also to the loss of osmotolerance and thermotolerance (Yamashita et al., 1993). Little is known, however, about the role that UDP-D-glucose synthesis may play in the organism’s tolerance of environmental stresses.

In the present study, we cloned the gene from S. mutans which encodes a glucose-1-phosphate uridylyltransferase, and analysed the function of the protein encoded by this gene.

METHODS

Bacterial strains and culture conditions. S. mutans strains, Escherichia coli strains and plasmids used in this study are listed in Tables 1 and 2. Streptococcus pneumoniae WU2 was kindly provided by J. Yother, Department of Microbiology, University of Alabama at Birmingham, AL, USA. The other bacteria used in this study were obtained as previously described (Tsukioka et al., 1997a). Strains of S. mutans and E. coli were maintained and grown routinely as described previously (Yamashita et al., 1993). Antibiotics were used at the following concentrations: 150 mg erythromycin l-1 or 50 mg ampicillin l-1 for E. coli; 10 mg erythromycin l-1 for S. mutans. Bacillus subtilis was grown anaerobically in GAM broth (Nissui Medical, Tokyo, Japan) at 37 °C.

Bacterial strains and plasmids used in this study are listed in Tables 1 and 2. Streptococcus pneumoniae WU2 was kindly provided by J. Yother, Department of Microbiology, University of Alabama at Birmingham, AL, USA. The other bacteria used in this study were obtained as previously described (Tsukioka et al., 1997a). Strains of S. mutans and E. coli were maintained and grown routinely as described previously (Yamashita et al., 1993). Antibiotics were used at the following concentrations: 150 mg erythromycin l-1 or 50 mg ampicillin l-1 for E. coli; 10 mg erythromycin l-1 for S. mutans. Bacillus subtilis was grown anaerobically in GAM broth (Nissui Medical, Tokyo, Japan) at 37 °C.

In the present study, we cloned the gene from S. mutans which encodes a glucose-1-phosphate uridylyltransferase, and analysed the function of the protein encoded by this gene.

Table 1. E. coli and S. mutans strains used

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype or relevant characteristic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM109</td>
<td>F' recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi Δ(lac-proAB)</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>S874</td>
<td>lacZ2286 rpsL150 Δ(sbcB-rfb)86 upp-12 relA1</td>
<td>Jiang et al. (1991)</td>
</tr>
<tr>
<td>JC7623-16</td>
<td>recBrecCbcD galU::Tn5-16</td>
<td>Weissborn et al. (1994)</td>
</tr>
<tr>
<td>S874-16</td>
<td>As S874 but with galU::Tn5-16</td>
<td>This study</td>
</tr>
<tr>
<td>KD300</td>
<td>S874-16 carrying plBluescriptII KS+</td>
<td>This study</td>
</tr>
<tr>
<td>KD301</td>
<td>S874-16 carrying plBluescriptII KS+</td>
<td>This study</td>
</tr>
<tr>
<td>S. mutans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xc22</td>
<td>Serotype c wild-type strain</td>
<td>Koga et al. (1989)</td>
</tr>
<tr>
<td>Xc24</td>
<td>Em' strain Xc carrying P15A replicon and Em' gene inserted into ORF3, immediately upstream of rnlA</td>
<td>Tsukioka et al. (1997a)</td>
</tr>
<tr>
<td>Xc31</td>
<td>Em' strain Xc carrying P15A replicon and Em' gene inserted into rnlB</td>
<td>Tsukioka et al. (1997a)</td>
</tr>
<tr>
<td>MT8148</td>
<td>Serotype c strain</td>
<td>Ohta et al. (1989)</td>
</tr>
<tr>
<td>MT703</td>
<td>Serotype e strain</td>
<td>Hamada & Slade (1976)</td>
</tr>
<tr>
<td>OMZ175</td>
<td>Serotype f strain</td>
<td>Brathall (1970)</td>
</tr>
</tbody>
</table>
The samples (10 μl) were electrophoresed for 60 min at room temperature at 25 mA per gel in a 12% (w/v) resolving gel and a 4.8% (w/v) stacking gel, and the gels were stained with Coomassie brilliant blue.

Table 2. Plasmids used

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Relevant characteristic</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBluescriptII KS*</td>
<td>Ap*; plasmid cloning vector</td>
<td>Stratagen</td>
</tr>
<tr>
<td>pYT6</td>
<td>pBluescriptII KS* containing 3.3 kb XbaI fragment of Xc chromosomal DNA</td>
<td>This study (Fig. 1)</td>
</tr>
<tr>
<td>pMG1</td>
<td>pBluescriptII KS* containing gluA</td>
<td>This study (Fig. 1)</td>
</tr>
<tr>
<td>pResEmNot</td>
<td>Em'/P15A replicon</td>
<td>Shiroza & Kuramitsu (1993)</td>
</tr>
<tr>
<td>pYT31</td>
<td>pMG1 containing pResEmNot ligated into HincII site of gluA</td>
<td>This study</td>
</tr>
<tr>
<td>pJD366</td>
<td>pJY4164 containing 3.2 kb HindIII fragment of S. pneumoniae WU2 chromosomal DNA</td>
<td>Dillard & Yother (1994)</td>
</tr>
</tbody>
</table>

TTGAAG-3' and 5'-AGGTGTCCACTTGACGAACA-3') and pJD366, which carries cspU (Dillard & Yother, 1994), were used for amplification of a 0.8 kb digoxigenin-labelled PCR probe (probe 1). Hybridization with probe 1 was carried out overnight at 25°C in the presence of 50% formamide. To confirm appropriate insertional inactivation of the gluA gene and to detect gluA-specific hybridization signals in the chromosomal DNA of various bacterial species, a set of primers (5'-AGCTGTCATCCCTGCGGC-3' and 5'-CCGAGTTTCTTTGAGTCG-3') was designed and a digoxigenin-labelled PCR probe (probe 2) was amplified using the primers and pMG1.

Insertional inactivation of the gluA gene. pResEmNot, containing an erythromycin resistance cassette (Shiroza & Kuramitsu, 1993), was digested with NotI and blunt-ended with T4 DNA polymerase. The linearized 1.6 kb pResEmNot was ligated into the HincII site in the gluA gene of pMG1. The resultant plasmid, designated pYT31, was digested with BssHII and the digested plasmid DNA was introduced into S. mutans Xc by homologous recombination. The transformants were screened on a mitis-salivarius agar plate containing 10 μg erythromycin ml⁻¹ and three independent transformants which appeared on the agar plate were isolated. The appropriate insertion of pResEmNot in the gluA gene was confirmed by Southern blot analysis of XbaI digests with probe 2. Hybridization with probe 2 was carried out overnight at 42°C in the presence of 50% formamide. The XbaI-digested chromosomal DNA from all three transformants showed a 4.9 kb fragment which hybridized with probe 2, while that of Xc hybridized to a 3.3 kb fragment (data not shown). One of these three transformants was designated Xc31 and tested for further characterization. The phenotype of the other transformant was very similar to that of Xc31 (data not shown).

SDS-PAGE. Expression of the gluA gene in E. coli S874-16 was confirmed by SDS-PAGE (Laemmli, 1970). E. coli strain KD301 or KD300 was grown at 37°C in 5 ml Luria–Bertani broth containing 50 mg ampicillin 1⁻¹ and gene expression was induced with 0.3 mM IPTG to OD₆₅₀ approx. 1.0 (within 2 h after addition of IPTG). The cells were harvested by centrifugation at 10000 g for 20 min at 4°C, washed twice with ice-cold 50 mM Tris/HCl buffer, pH 7.0, containing 10 mM MgCl₂ and 1 mM EDTA (buffer A), and resuspended in the same buffer (1 g, wet wt, ml⁻¹). The cell suspension was sonicated on ice at 30°C, pulsed power eight times for 15 s with a sonicator (Cell Disruptor model W-225R; Heat Systems). The cell extract was centrifuged at 18000 g for 30 min at 4°C and the supernatant was passed through a Sephadex G-25 prepacked PD10 column (Pharmacia LKB Biotechnology) using buffer A containing 20% (v/v) glycerol as the eluent. Control extracts from the cells of KD300 were prepared in the same manner as the cell extracts from KD301. The protein-containing fraction was collected and glycerol was added to a final concentration of 50% (v/v). The resultant crude enzyme extract was stored at −20°C until used.

Preparation of crude enzyme extracts. E. coli KD301 was grown at 37°C in 200 ml Luria–Bertani broth containing 50 mg ampicillin 1⁻¹ and gene expression was induced with 0.3 mM IPTG to OD₆₅₀ approx. 1.0 (within 2 h after addition of IPTG). The cells were harvested by centrifugation at 10000 g for 20 min at 4°C, washed twice with ice-cold 50 mM Tris/HCl buffer, pH 7.0, containing 10 mM MgCl₂ and 1 mM EDTA (buffer A), and resuspended in the same buffer (1 g, wet wt, ml⁻¹). The cell suspension was sonicated on ice at 30°C, pulsed power eight times for 15 s with a sonicator (Cell Disruptor model W-225R; Heat Systems). The cell extract was centrifuged at 18000 g for 30 min at 4°C and the supernatant was passed through a Sephadex G-25 prepacked PD10 column (Pharmacia LKB Biotechnology) using buffer A containing 20% (v/v) glycerol as the eluent. Control extracts from the cells of KD300 were prepared in the same manner as the cell extracts from KD301. The protein-containing fraction was collected and glycerol was added to a final concentration of 50% (v/v). The resultant crude enzyme extract was stored at −20°C until used.

Enzyme analysis. Glucose-1-phosphate uridylyltransferase activity was determined by measuring the conversion of UTP to UDP-glucose by HPLC essentially as described by Marolda & Valvano (1996). The reaction mixture (300 μl) of 50 mM Tris/HCl buffer, pH 8.0, containing 12 mM MgCl₂, 24 mM α-D-glucose 1-phosphate, 6 mM UTP, 1.8 U inorganic pyrophosphatase (Boehringer) and an appropriate amount of the crude enzyme extract, was incubated at 37°C. Aliquots (30 μl) of the reaction mixture were withdrawn at timed intervals of up to 10 min. The aliquot was immediately mixed with 10 μl 50 mM potassium phosphate buffer, pH 3.0, to stop the reaction, and the diluted solutions were stored at 4°C until HPLC analysis. Samples (100 μl) were analysed by HPLC using a TSKgel QAE-25W column (0.46 × 25 cm; Tosoh). The chromatogram was developed with a linear gradient of 50–600 mM potassium phosphate (pH 4.0, 20 ml) delivered at a flow rate of 1.0 ml min⁻¹ at 30°C and the A₄₂₅ of the effluent was monitored. From the integrated peak areas of the HPLC chromatogram, the molar amount of UDP-glucose formed was calculated. One unit of enzyme activity is defined as the amount of the enzyme catalysing the synthesis of 1 μmol UDP-glucose min⁻¹. To calculate specific activity, the protein concentration in the crude enzyme extract was determined by the method of Bradford (1976) with bovine serum albumin as a standard.

Immunological methods. Lyophilized cell suspensions (20 g 1⁻¹) of S. mutans strains were suspended in phosphate-buffered...
saline (10 mM, pH 6.8) and autoclaved at 121 °C for 15 min. After being autoclaved, the suspensions were centrifuged at 10000 g for 20 min and the supernatants were collected and used for Rantz-Randall extracts (Rantz & Randall, 1955). The serotype c antigen was extracted with 5% (w/v) trichloroacetic acid from a cell wall preparation of \textit{S. mutans} MT8148 and then the extracted serotype antigen was purified by chromatography on DEAE-Sephadex 25A and Sephacryl S-300 columns as described by Linzer \textit{et al.} (1976). Rabbit antisera against whole cells of strain MT8148 (serotype c) were kindly provided by T. Ooshima, Osaka University Faculty of Dentistry, Japan, and S. Alaluusua, University of Helsinki, Finland. These antisera were absorbed with whole cells of \textit{S. mutans} MT703 (serotype e). Immunodiffusion was performed in 1% (w/v) Noble agar in saline (Ouchterlony, 1958).

Analysis of cell-wall sugar components. Bacteria were grown overnight at 37 °C in 40 ml brain heart infusion broth (Difco), collected by centrifugation and washed three times with distilled water. The cells were resuspended in 1 ml cold distilled water, transferred to a chilled 2 ml microcentrifuge tube containing 0.1 mm diameter glass beads (GM-10; Nippon Rikagaku Kikai) and were disrupted with a Mini-Bead Beater homogenizer (Biospec Products) for 20 min. The glass beads were removed by decantation and the undisrupted cells were separated by centrifugation at 450 g for 20 min. The crude cell walls were obtained by centrifugation at 8000 g for 30 min and washed once with distilled water. The cell walls were treated with RNase (10 mg l\(^{-1}\)) and DNase (10 mg l\(^{-1}\)) at 37 °C for 2 h and with Pronase E (100 mg l\(^{-1}\)) at 37 °C for 24 h. After being washed twice with distilled water, the cell wall preparations were treated with trypsin (100 mg l\(^{-1}\)) at 37 °C for 2 h. The purified cell walls were collected by centrifugation at 8000 g for 30 min, washed twice with distilled water and lyophilized.

Component sugars in the purified cell wall preparations were analysed by HPLC with fluorescence labelling. The lyophilized cell wall preparation (1 mg) was resuspended in 0.5 ml distilled water, and 40 μl of trifluoroacetic acid was added to 10 μl suspension. The mixture was heated at 100 °C for 3 h and dried at 50 °C. Free amino groups were acetylated by adding 50 μl of a mixture of pyridine/methanol/water (3:6:2, by vol.) and 2 μl acetic anhydride. The solution was left standing for 30 min at room temperature. After the hydrolysed solution had been dried at 50 °C, 10 μl coupling reagent (670 g 2-amino isopropylidine 1° in acetic acid) was added. The suspension was heated at 90 °C for 20 min, the excess reagents were removed by evaporating, and then 10 μl reducing reagent (60 g borane–dimethyldimethylenamine 1° in acetic acid) was added. The mixture was reduced at 90 °C for 35 min and dried under a stream of nitrogen gas at 50 °C for 10 min. The dried sample was dissolved in 1 ml distilled water, and 5 μl of the solution was analysed by HPLC with a PALPAK type A column (Takara Shuzo). D-Glucose, L-rhamnose, N-acetylgalactosamine and N-acetylmuramic acid were also coupled with 2-amino isopropylidine as described above and the resultant pyridylaminogalactose, pyridylaminolactose, pyridylaminohexosamine and pyridylaminonyluramic acid were used as standards. The buffer used was a mixture of 0.7 M boric acid (pH 9.0) and acetonitrile (9:5:0.5). The flow rate was 0.3 ml min\(^{-1}\) and the column was operated at 65 °C.

An excitation wavelength of 310 nm and an emission wavelength of 380 nm were used to detect the pyridylaminosugar. Pyridylaminelabeled D-fucose (10 μl, 1 μmol 1°) was used as a standard for quantification of the pyridylaminosugars. The total hexose content in the purified cell-wall preparation was quantified by the anthrone/sulfuric acid method (Morris, 1948). The hexosamine content in the purified cell-wall preparation was determined by the colorimetric method of Strominger \textit{et al.} (1959).

Determination of UDP-D-glucose concentration in cells. The intracellular UDP-D-glucose concentrations of strain Xc and its derivatives were determined by using UDP-D-glucose dehydrogenase and NAD. The cells were grown in 45 ml Todd–Hewitt broth to OD\(_{550}\) 0.7, harvested by centrifugation at 7000 g for 10 min at 4 °C and washed twice with distilled water. The cells were resuspended in 400 μl distilled water and transferred to 0.5 ml microcentrifuge tubes containing 0.5 g 0.1 mm diameter glass beads. The bacterial cells were disrupted with a Mini-Bead Beater homogenizer for 5 min. The supernatant which was obtained by centrifugation at 20000 g for 30 min at 4 °C was separated into two equal portions. One of the portions was boiled for 90 s, cleared by centrifugation at 20000 g for 15 min and used to determine the UDP-D-glucose concentration as described by Keppler & Decker (1974). The other portion was used for determination of the protein concentration by the method of Bradford (1976).

Evaluation of tolerance of the mutant to environmental stress. Tolerance of \textit{S. mutans} Xc31 toward environmental stress was evaluated by monitoring growth in Todd–Hewitt broth containing 50 mM sodium acetate buffer at appropriate pH values or various concentrations (0–9 M) of NaCl. Temperature sensitivity was determined from 37 to 45 °C.

Strain Xc24 (Tsukioka \textit{et al.}, 1997a), which was totally defective in the serotype antigen due to the insertion of an erythromycin resistance gene into the rmlB gene, was also examined to determine the role of the serotype antigen in environmental stress tolerance of \textit{S. mutans}. In addition to the wild-type strain Xc, strain Xc22 (Tsukioka \textit{et al.}, 1997a), in which the erythromycin resistance gene was inserted into the gene immediately upstream of rmlA and in which serotype-specific polysaccharide antigen was not affected, was used an erythromycin-resistant control strain. To initiate the growth experiments, overnight cultures of each strain were inoculated into fresh Todd–Hewitt broth and the growth was monitored by measuring OD\(_{550}\). Except for Xc24, the culture was grown at 37 °C to OD\(_{550}\) 0.7 and 150 μl culture broth was then inoculated into 3 ml Todd–Hewitt broth with the indicated modification to evaluate cell viability in conditions of low pH and high osmotic pressure. When thermotolerance was evaluated, 300 μl culture was used as inoculum. The growth was evaluated by measuring OD\(_{550}\). Inocula of Xc24 were taken from cultures grown to OD\(_{550}\) 0.4 because Xc24 grown in the broth exhibited aggregation and about 70% increase in OD\(_{550}\) was obtained by sonication. When OD\(_{550}\) increase had ceased in the experimental cultures, the culture broth was sonicated at 20% pulsed power three times for 5 s with a sonicator (Cell Disruptor model W-225R) and final OD\(_{550}\) values for Xc24 were measured.

RESULTS

Cloning and nucleotide sequencing of the \textit{S. mutans} gluA gene

Southern blot analysis revealed that the 3.3 kb \textit{XbaI} fragment of the \textit{S. mutans} Xc chromosomal DNA hybridized to probe 1. An \textit{S. mutans} clone bank constructed with \textit{XbaI}-digested \textit{S. mutans} Xc chromosomal DNA and pBluescriptII KS\(^{+}\) was screened for the gene by colony hybridization. A plasmid designated...
pYT6 containing the target 3.3 kb XbaI fragment was obtained (Fig. 1).

Nucleotide sequence analysis of the fragment revealed the presence of four ORFs. Their locations, extents and directions are shown in Fig. 1. The amino acid sequence deduced from the nucleotide sequence of the second ORF demonstrated significant homology to glucose-1-phosphate uridylyltransferase encoded by the cps3U gene (Dillard et al., 1995) (Table 3) and therefore ORF2 was designated gluA (Fig. 1). The first ORF encoded a putative amino acid sequence showing 55.9% identity with the carboxyl-terminal end of an NAD(P)H-dependent dihydroxyacetone phosphate reductase of B. subtilis, which is required for phospholipid synthesis (Morbidoni et al., 1995) and was designated gpsA. Two other ORFs, ORF3 and ORF4, on the opposite strand were also identified downstream of the gluA gene. No proteins homologous to the predicted gene products of these two ORFs were identified in a search of the PIR and SWISS-PROT protein databases.

The region downstream of the gluA gene contained an inverted repeat structure (positions 1764–1783) followed by a poly(T) sequence possibly acting as a transcription terminator for ORF3. The gluA gene was preceded by a putative 5' GGAG 3' ribosome-binding site located 8 bp upstream of the initiation codon found at nucleotide position 855. The predicted translational product of the gluA gene is a protein of 306 amino acids with a molecular mass of 33903 Da. The ATG translational initiation codon of the gluA gene was identified at 1 bp behind the TAA stop codon of the gpsA gene and a putative promoter sequence for the gluA gene was not identified in the upstream region of the gluA gene, suggesting polycistronic transcription of gpsA and gluA.

Expression of the gluA gene in E. coli

To characterize the product of the gluA gene, the fragment containing the gene was subcloned into pBluescriptII KS+ (Fig. 1). The resultant plasmid (pMG1) was introduced into E. coli strain S874-16. SDS-PAGE followed by Coomassie brilliant blue staining (Fig. 2) demonstrated distinct expression of the gluA gene in E. coli S874-16 harbouring pMG1 (lane 1) in the presence of IPTG as compared with the same transformant grown in the absence of IPTG (lane 2) and with KD300 (lane 3) as a control strain. The apparent molecular mass estimated by SDS-PAGE was around 41 kDa.

Enzyme activity of the gluA gene product

The gluA gene product was prepared from KD301 (E. coli S874-16 harbouring pMG1). The activity of glucose-1-phosphate uridylyltransferase was assayed by HPLC. The enzyme preparation from KD301 showed a specific activity of 1.01 ± 0.04 U (mg protein)^−1 (mean ± SD, n = 3). The activity was significantly higher than that of the cell extract from KD300 used as a control: 0.011 ± 0.002 U (mg protein)^−1.

Characterization of the function of the gluA gene in S. mutans

To analyse the function of the gluA gene in S. mutans, the gene was insertionally inactivated by homologous recombination. The gene was interrupted by pRes-
EmNot (Shiroza & Kuramitsu, 1993) at the HincII site and one of the resultant mutants was designated Xc31. The intracellular concentration of UDP-D-glucose in Xc31 grown in Todd-Hewitt broth was lower than 0.1 nmol (mg protein)$^{-1}$, whereas that of UDP-D-glucose in Xc grown in the broth was 11 ± 3 nmol (mg protein)$^{-1}$ (mean ± sd, n = 3). The concentrations of UDP-D-glucose in Xc22 and Xc24 were not significantly different from that in the parental strain Xc. The Rantz–Randall extracts from strains Xc and Xc31 were analysed by immunodiffusion with serotype c antiserum (Fig. 3). Serotype antiserum reacted with the serotype c antigen purified from S. mutans MT8148 and with Rantz–Randall extract from strain MT8148, but not with Rantz–Randall extracts from MT703 (serotype e) and OMZ175 (serotype f), indicating that the serotype antiserum used in the present study does indeed possess serotype c specificity (Fig. 3). The serotype-c-specific antiserum reacted with the extract from strain Xc but not with that from Xc31 (Fig. 3). The sugar compositions of the cell wall preparations isolated from strain Xc and the mutant strain were analysed by HPLC (Fig. 4). The ratio of rhamnose to glucose in the cell wall preparations from Xc was nearly 2. In contrast, glucose was barely detectable in the cell-wall preparation from the mutant strain Xc31. No significant difference in hexosamine content of the purified cell-wall preparations was observed between Xc and Xc31 (data not shown).

Environmental stress tolerance of the mutant

The mutant strain Xc31 barely grew in medium of pH below 5.6 and showed apparent deficiency of aciduricity as compared with the control strains Xc22 and Xc when the culture in exponential phase was inoculated (Table 4). Strain Xc24 showed an overall reduction in growth compared with Xc and Xc22 in an acidic medium, but it grew better than Xc31. Xc31 also showed obvious growth inhibition but grew better than Xc24 at temperatures at or above 43 °C, while Xc and Xc22 grew relatively well at 44 °C (Table 5). In contrast, Xc31, Xc and Xc22 did not greatly differ from each other in their growth in the presence of various concentrations of NaCl (0–0.9 M), whereas the growth of Xc24 was drastically inhibited by NaCl (Table 6).

Southern blot analysis

Fragments reactive to probe 2 were evident in all of the streptococci tested, as well as in L. casei, Enterococcus faecalis, B. subtilis and C. bifermentans, and a faint band was detected in Staphylococcus aureus (Fig. 5). Two distinct hybridization bands were detected in Streptococcus pyogenes and S. pneumoniae (Fig. 5, lanes...
The Todd-Hewitt broth was prepared three times, and each value (mean ± SD) of the starting pH
was obtained from independent triplicate samples using each preparation. Growth of each strain
was determined as the increase of OD₅₅₀. The values were obtained by subtraction of the OD₅₅₀ at
initiation of the culture from that at stationary phase. Each value represents the mean ± SD for
triplicate cultures from three independent colonies.

<table>
<thead>
<tr>
<th>pH</th>
<th>Xc31 (gluA inactive)</th>
<th>Xc24 (rmlB inactive)</th>
<th>Xc22 (ORF3 inactive)</th>
<th>Xc (wild-type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.59 ± 0.06</td>
<td>1.156 ± 0.050</td>
<td>0.842 ± 0.063</td>
<td>1.277 ± 0.024</td>
<td>1.283 ± 0.039</td>
</tr>
<tr>
<td>5.97 ± 0.06</td>
<td>0.591 ± 0.144</td>
<td>0.737 ± 0.052</td>
<td>1.166 ± 0.043</td>
<td>1.155 ± 0.037</td>
</tr>
<tr>
<td>5.75 ± 0.08</td>
<td>0.235 ± 0.113</td>
<td>0.678 ± 0.071</td>
<td>1.086 ± 0.083</td>
<td>1.096 ± 0.092</td>
</tr>
<tr>
<td>5.60 ± 0.08</td>
<td>0.129 ± 0.097</td>
<td>0.612 ± 0.080</td>
<td>1.051 ± 0.088</td>
<td>1.049 ± 0.076</td>
</tr>
<tr>
<td>5.41 ± 0.06</td>
<td>0.035 ± 0.018</td>
<td>0.374 ± 0.118</td>
<td>0.878 ± 0.142</td>
<td>0.912 ± 0.104</td>
</tr>
<tr>
<td>5.24 ± 0.07</td>
<td>0.014 ± 0.010</td>
<td>0.177 ± 0.038</td>
<td>0.490 ± 0.215</td>
<td>0.463 ± 0.191</td>
</tr>
</tbody>
</table>

Table 4. Effect of pH on growth of S. mutans strains

Cultures were grown in Todd–Hewitt broth containing 50 mM sodium acetate buffer. The indicated
pH value was the starting pH of each Todd–Hewitt broth after addition of sodium acetate buffer.
The Todd–Hewitt broth was prepared three times, and each value (mean ± SD) of the starting pH
was obtained from independent triplicate samples using each preparation. Growth of each strain
was determined as the increase of OD₅₅₀. The values were obtained by subtraction of the OD₅₅₀ at
initiation of the culture from that at stationary phase. Each value represents the mean ± SD for
triplicate cultures from three independent colonies.
Table 5. Effect of temperature on growth of S. mutans strains

Each strain was cultured at the indicated temperature in Todd–Hewitt broth. Growth of each strain was determined as described for Table 4. Each value represents the mean ± SD for triplicate cultures from three independent colonies.

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>Growth (increase in OD₅₅₀) of strain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xc31</td>
</tr>
<tr>
<td>37</td>
<td>1.65±0.049</td>
</tr>
<tr>
<td>43</td>
<td>0.569±0.083</td>
</tr>
<tr>
<td>44</td>
<td>0.117±0.028</td>
</tr>
<tr>
<td>45</td>
<td>0.024±0.016</td>
</tr>
</tbody>
</table>

Table 6. Effect of NaCl concentration on growth of S. mutans strains

Cultures were grown in Todd–Hewitt broth containing the indicated concentration of NaCl. Growth of each strain was determined as described for Table 4. Each value represents the mean ± SD for triplicate cultures from three independent colonies.

<table>
<thead>
<tr>
<th>NaCl concn (M)</th>
<th>Growth (increase in OD₅₅₀) of strain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xc31</td>
</tr>
<tr>
<td>0</td>
<td>1.176±0.052</td>
</tr>
<tr>
<td>0.4</td>
<td>0.980±0.074</td>
</tr>
<tr>
<td>0.6</td>
<td>0.648±0.130</td>
</tr>
<tr>
<td>0.7</td>
<td>0.285±0.094</td>
</tr>
<tr>
<td>0.8</td>
<td>0.059±0.026</td>
</tr>
<tr>
<td>0.9</td>
<td>0.017±0.012</td>
</tr>
</tbody>
</table>

Fig. 5. Southern blot hybridization of chromosomal DNA from various bacterial species using probe 2 (see Methods). Lanes: 1, Streptococcus mutans Xc; 2, S. cricetus HS1; 3, S. rattus FA1; 4, S. sobrinus 6715; 5, S. downei MFe28; 6, S. salivarius HT9R; 7, S. milleri NCTC 10703; 8, S. mitior ATCC 12396; 9, S. oralis ATCC 10557; 10, S. gordonii ATCC 10558; 11, S. agalactiae IID1625; 12, and 13, S. pyogenes T29; 14, S. pneumoniae WU2; 15, Enterococcus faecalis SS499; 16, Eubacterium limosum GA15456; 17, Lactobacillus casei ATCC 393; 18, Bacillus subtilis 168; 19, Staphylococcus aureus IFO10732; 20, Micrococcus luteus GIFU8717; 21, Mycobacterium smegmatis RIMD1332001; 22, Clostridium bifermentans KZ1012. Lanes M contain standard markers with their sizes indicated in kb. DNA was digested with the following enzymes: lane 1, XbaI; lane 12, HindIII; lane 14, BglII; lane 21, BamHI; lanes 13, 16 and 20, PstI; all other lanes, EcoRI. Hybridization with probe 2 was carried out overnight at 25 °C in the presence of 50% formamide.

enzyme activity. The enzyme extract from KD301 expressing the gluA gene exhibited significant glucose-1-phosphate uridylyltransferase activity compared with that of KD300, suggesting that gluA encodes the glucose-1-phosphate uridylyltransferase of S. mutans. Based on SDS-PAGE analysis, the protein product of gluA has an
The apparent molecular mass of 41 kDa. This size is larger than the size of 35-3 kDa predicted from the sequence analysis. The difference could be due to protein secondary structure causing slower than expected migration in the gel. Such a difference in molecular mass has also been noted in glucose-1-phosphate uridylyltransferases of other bacteria, including GalU of E. coli (Weisborn et al., 1994) and HasC of S. pyogenes (Crater et al., 1995). The HasC protein is involved in hyaluronic acid synthesis in S. pyogenes and the amino acid sequence of the protein has 85.2% identity with that of the gluA gene product (Table 3).

Serotype-specific polysaccharide antigens of S. mutans have been reported to have a poly-<i>L</i>-rhamnose backbone with <i>D</i>-glucose side-chains (Linzer et al., 1986; Pritchard et al., 1986). Insertional inactivation of the <i>gluA</i> gene of <i>S. mutans</i> resulted in loss of serotype-c-specific antigenicity of the autoclaved extract (Fig. 3) and intracellular UDP-glucose in the <i>gluA</i> mutant cells (Xc31) was scarcely detected. Furthermore, HPLC analysis of cell wall preparation from Xc31 showed a dramatic decrease in glucose content but not in rhamnose content (Fig. 4). These findings suggest that the serotype-c-specific antiserum used in this study might recognize the glucose side-chains of the polysaccharide antigen, and lack of incorporation of glucose into the branches of the rhamnose backbone might lead to loss of serotype-c-specific antigenicity of Xc31. Moreover, the inactivation of the <i>gluA</i> gene apparently has no effect on the synthesis of the core rhamnose moiety. It may be concluded that UDP-D-glucose is an immediate precursor for glucose side-chain formation of the serotype-c-specific antigen of <i>S. mutans</i>. Recently, the <i>S. mutans</i> galactose operon comprising genes for galactose metabolism (galactokinase, galactose-1-phosphate uridylyltransferase and UDP-glucose-4-epimerase) was cloned and characterized (Ajdic et al., 1996). UDP-D-glucose is theoretically synthesized from galactose via this pathway. However, the extract from Xc31 grown in the presence of 0.5% (w/v) galactose did not react with the antiserum (data not shown), suggesting that the galactose metabolism pathway does not complement the <i>gluA</i> gene function in Xc31.

Southern blot analysis showed that two <i>gluA</i>-specific probe-reactive fragments were positioned at 6.2 kb and 10 kb in the BglII-digested chromosomal DNA of <i>S. pneumoniae</i> WU2 (Fig. 5, lane 14). This indicates that two copies of the homologous gene exist in the chromosomal DNA of <i>S. pneumoniae</i> WU2, since there is no restriction site for BglII within the <i>cps3U</i> gene (Dillard et al., 1995). Two probe-reactive fragments were also identified in <i>S. pyogenes</i> chromosomal DNA (Fig. 5, lanes 12 and 13). The BLAST program was used to search the <i>S. pyogenes</i> genome sequencing database for homology to the <i>gluA</i> gene. The database can be found at the WorldWide Web site of the University of Oklahoma’s Advanced Center for Genome Technology (URL: http://dna1.chem.uoknor.edu/strep.html) and the sequence data were registered in the various contigs in ‘random’ order. Two genes homologous to <i>gluA</i> were found in different contigs. The arrangement of the flanking genes of the homologous gene in one contig was similar to that of the <i>gluA</i> gene, whereas the arrangement of the flanking genes found in the other contig resembled that of the flanking genes of the <i>hasC</i> and <i>cps3U</i> genes (Crater et al., 1995; Dillard et al., 1995). In addition to the major band, a weakly reactive fragment was observed in <i>S. milleri</i> (Fig. 5, lane 7), <i>S. gordonii</i> (Fig. 5, lane 10) and <i>C. bifermantans</i> (Fig. 5, lane 22). These minor bands might be derived from an occurrence of the restriction site within the <i>gluA</i> homologue gene in these bacteria. Streptococcus species other than <i>S. pneumoniae</i> and <i>S. pyogenes</i> examined in this study are likely to have a single copy of the gene encoding glucose-1-phosphate uridylyltransferase based on the results of Southern blot analysis (Fig. 5).

The observation that the lack of UDP-<i>D</i>-glucose in <i>E. coli</i> results in an increase in the basal level of the expression of the <i>B</i>-<i>gluA</i> gene (rpoS) and <i>BD</i>-dependent genes induced by osmotic pressure or during entry into stationary phase suggests that UDP-<i>D</i>-glucose serves as an intracellular signalling molecule controlling expression of the genes required for osmotolerance and thermotolerance in stationary phase (Bohringer et al., 1995; Giaver et al., 1988; Hengge-Aronis et al., 1991). In earlier work, we reported the isolation of a mutant defective in aciduricity, GSSTN1, in which a gene homologous to the <i>E. coli</i> <i>dgk</i> (diacylglycerol kinase) gene was partially inactivated (Yamashita et al., 1993). This mutant grew poorly in an acidic environment and was sensitive to high osmolarity and elevated temperatures, leading to speculation that the <i>gluA</i> gene product, glucose-1-phosphate uridylyltransferase, may also be involved in acid tolerance of <i>S. mutans</i>. Interestingly, we found that strain Xc31, a <i>gluA</i> null mutant, as well as GSSTN1, showed drastically reduced aciduricity (Table 5). Aciduricity is known to be one of the most important virulence factors of the organism. In this regard, it is possible that the inability of the <i>gluA</i> mutant to synthesize the serotype-c-specific polysaccharide is directly responsible for its reduced cell viability in an acidic environment. If the serotype-c-specific polysaccharide is really required for the maintenance of aciduricity, then a mutant that is totally unable to synthesize serotype-c-specific polysaccharide should exhibit the same phenotype as the <i>gluA</i> mutant. However, Xc24, which is a mutant defective in synthesis of serotype-c-specific polysaccharide (Tsukioka et al., 1997a) but has the same levels of intracellular UDP-<i>D</i>-glucose as the wild-type Xc, grew better than Xc31 in an acidic environment (Table 4), whereas Xc24 scarcely grew at elevated temperature and high osmolarity (Tables 5 and 6), suggesting that UDP-<i>D</i>-glucose synthesis may be required for the maintenance of aciduricity of <i>S. mutans</i>. It is also clear that Xc31 has a reduced cell viability at elevated temperatures, but this reduction was not as pronounced as that of Xc24. At the present stage, we do not have any data to confirm whether UDP-<i>D</i>-glucose or serotype-specific antigen is required for cell viability of <i>S. mutans</i> at elevated temperature. Growth
of Xc31 was slightly inhibited even in the absence of NaCl compared with that of Xc and Xc22. Inhibition of the growth of Xc31 at high osmolarity was probably due to a comprehensive growth defect, not a defect in osmotic tolerance. Indeed, Xc31 grew well in the presence of 0.6 M NaCl, despite the fact that Xc24 scarcely grew at that concentration of NaCl, suggesting that osmotolerance of S. mutans is not drastically affected by the null mutation of the glaA gene.

In the present study, we evaluated stress tolerance of S. mutans growing in the exponential phase and not the stationary phase. Two acid-tolerance responses induced at low pH were recognized in Salmonella typhimurium: an exponential-phase acid-tolerance response and a stationary-phase acid-tolerance response (Lee et al., 1994). Although induction of these two responses is σ^A independent, σ^B is required for a sustained induction of the exponential-phase acid-tolerance response (Lee et al., 1995). Considering that UDP-glucose is a potential intracellular signal molecule in the control of expression of the rpoS gene (Böhringer et al., 1995), it is possible that growth inhibition of Xc31 under acidic conditions may relate to unusual expression of the rpoS homologue in Xc31 cells. Meanwhile, UDP-D-glucose is thought to be a precursor of other cellular components such as glycosylphospholipids, which are important membrane constituents, and lipoteichoic acid anchors. It is possible that defects in such components might lessen the tolerance of S. mutans to conditions of acidity and elevated temperature. However, little information is currently available regarding regulation of the rpoS homologue and UDP-D-glucose metabolism in S. mutans. In addition, the mechanism of acid tolerance of S. mutans is at present ill-defined. Further studies are required to elucidate the details of the unique biological function of UDP-D-glucose synthesis in this organism.

ACKNOWLEDGEMENTS

We thank J. Yother for providing pJD366, A. C. Weissborn for providing E. coli JCN70-16, and T. Miki for providing Pla vir phase. We are grateful to K. Nakayama for helpful advice. We acknowledge the Streptococcal Genome Sequencing Project, and Bruce Roe, Sandy Clifton, Mike McShan and Joseph Ferretti. This work was supported in part by Grants-in-Aid for Developmental Scientific Research (A07557134 (T. K.) and (B)09470474 (Y. Y.) from the Ministry of Education, Science, Sports and Culture of Japan, the Takeda Science Foundation (Y. Y.) and the Uehara Memorial Foundation (T. K.).

REFERENCES

Received 12 November 1997; revised 12 January 1998; accepted 14 January 1998.