Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa

Gérard Michel, Sophie Bleves, Geneviève Ball, Andrée Lazdunski and Alain Filloux

Author for correspondence: Gérard Michel. Tel: +33 491164487. Fax: +33 491712124.
e-mail: michel@ibsm.cnrs-mrs.fr

Laboratoire d'ingénierie des Systèmes Macromoléculaires,
UPR9027, IBISM/CNRS, 31
Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

Protein secretion in Gram-negative bacteria is often dependent on the general secretory pathway (GSP). In Pseudomonas aeruginosa, this system requires at least 12 Xcp (Gsp) proteins, which are proposed to constitute a multiprotein complex localized in the bacterial envelope. Hitherto, little was known about the mutual interactions between Xcp proteins. In this study, mutants affected in the xcpZ gene encoding a bitopic inner-membrane protein were analysed to investigate the role of this protein in the architecture of the secretory machinery. The absence of XcpZ resulted in a decreased amount of XcpY. Reciprocally, XcpZ was not detectable in a xcpY mutant, demonstrating a mutual stabilization of these two proteins. These results strongly suggest that XcpZ and XcpY interact within the functional secretory apparatus.

Keywords: general secretory pathway, protein secretion, protein-protein interaction, protein stability, Pseudomonas aeruginosa

INTRODUCTION

Translocation of most of the Sec-dependent extracellular proteins across the outer membrane of Gram-negative bacteria occurs via the main terminal branch (MTB) of the general secretory pathway (GSP) (Pugsley, 1993). The MTB of the GSP machineries consists of a set of at least 12 specific proteins (Gsp proteins) and is widely disseminated in the bacterial species so far examined (Tommassen et al., 1992; Lazdunski et al., 1996).

The GSP has been shown to be the major pathway for the secretion of toxins and degradative enzymes in Pseudomonas aeruginosa (Filloux et al., 1990), and in this bacterium the Gsp proteins are named Xcp. The XcpA protein (referred to as GspO in other Gram-negative bacteria) has been reported to be identical to the peptidase PilD, which catalyses maturation and methylation of the type IV pilins (Nunn & Lory, 1991; Strom et al., 1993). Five other Gsp proteins, XcpT (GspG), -U (-H), -V (-I), -W (-J) and -X (-K) show homologies to PilA, the structural subunit of the type IV pilus in P. aeruginosa. Since XcpT-K also require XcpA/PilD for their maturation, they have been referred to as pseudopilins (Bally et al., 1992; Nunn & Lory, 1993; Bleves et al., 1998). These pseudopilins are presumably present in both membranes, as judged by fractionation studies (Bally et al., 1992; Pugsley & Possot, 1993). XcpQ (GspD) (Akrim et al., 1993) is the sole protein of the machinery located in the outer membrane, whereas the other Xcp proteins, XcpP (GspC), -R (-E), -S (-F), -Y (-L), -Z (-M) and -A are integrated in, or associated with, the inner membrane (Reeves et al., 1994; Sandkvist et al., 1995; Bleves et al., 1996; Thomas et al., 1997).

Whereas the function of XcpA has clearly been demonstrated, little is known about the functions of the other individual Gsp proteins. Recently, it has been shown that the purified outer-membrane protein XcpQ has a ring-shaped multimeric structure with a central opening, through which the exoproteins probably reach the extracellular medium (Bitter et al., 1998). In some cases, the membrane insertion of GspDs requires the chaperone activity of GspS (Hardie et al., 1996), but GspS homologues have not yet been found in all systems described so far, including the P. aeruginosa system.

Except for gspO, the gsp genes of unrelated bacterial species are usually not interchangeable (de Groot et al.,...
Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Relevant characteristics</th>
<th>Reference/source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Prototroph, cbl-2</td>
<td>B. Holloway¹</td>
</tr>
<tr>
<td>PA01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAO503</td>
<td>met-9011</td>
<td>B. Wretlind²</td>
</tr>
<tr>
<td>KS902/503</td>
<td>Isogenic xcpZ5 mutant from PAO503</td>
<td>Wretlind & Pavlovskis (1984)</td>
</tr>
<tr>
<td>KS910/503</td>
<td>Isogenic xcpY51 mutant from PAO503</td>
<td>Wretlind & Pavlovskis (1984)</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG1</td>
<td>supE, hsdAR, thiA(lac-proAB) F′(traD36 proAB' lacIq lacZAM15)</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBluescript</td>
<td>ApR</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pMMB67HE/EH</td>
<td>ApR, RSF replicon (IncQ), tac promoter</td>
<td>Fürste et al. (1986)</td>
</tr>
<tr>
<td>pLAFR3</td>
<td>Cosmid vector derived from pLAFR1, IncF1, TcR</td>
<td>Friedman et al. (1982)</td>
</tr>
<tr>
<td>pUCBM20</td>
<td>ApR</td>
<td>Boehringer</td>
</tr>
<tr>
<td>pYZ4</td>
<td>KmR, lacUV5p</td>
<td>Zhang & Broome-Smith (1990)</td>
</tr>
<tr>
<td>pHP43Tc</td>
<td>TcR, Ω interposon</td>
<td>Fellay et al. (1987)</td>
</tr>
<tr>
<td>pSB22</td>
<td>1.8 kb EcoRI/NotI fragment of pUEX383 carrying the xcpZ gene in pUCBM20</td>
<td>This study</td>
</tr>
<tr>
<td>pSB12</td>
<td>1.8 kb HindIII/EcoRI fragment of pSB22 carrying the xcpZ gene in pMMB67HE</td>
<td>This study</td>
</tr>
<tr>
<td>pSB51</td>
<td>800 bp EcoRI/HindIII fragment encoding ss-XcpZp in pMMB190</td>
<td>S. Bleves³</td>
</tr>
<tr>
<td>pGB1</td>
<td>1.8 kb HindIII/EcoRI fragment of pSB22 (expressing XcpZ) in pYZ4</td>
<td>This study</td>
</tr>
<tr>
<td>pGB2</td>
<td>2.3-kb Smal fragment of pHP43Tc inserted at the SacI site of pGB1 (expressing XcpZmc'-PhoA)</td>
<td>This study</td>
</tr>
<tr>
<td>pGB3</td>
<td>1.2 kb EcoRV fragment of pGB2 in pMMB190</td>
<td>This study</td>
</tr>
<tr>
<td>pGB4</td>
<td>1.2 kb KpnI/EcoRI fragment of pGB3 in pMMB67HE</td>
<td>This study</td>
</tr>
<tr>
<td>pGB5</td>
<td>2.6 kb Smal fragment of pPHO7 in the SacI site of pGB1 (expressing XcpZmc'-PhoA)</td>
<td>This study</td>
</tr>
<tr>
<td>pGB6</td>
<td>3.2 kb SalI fragment of pGB5 in pMMB190</td>
<td>This study</td>
</tr>
<tr>
<td>pSB31</td>
<td>1.4 kb SalI/Spbl fragment carrying the xcpY gene in pMMB67EH</td>
<td>This study</td>
</tr>
<tr>
<td>pSB72</td>
<td>800 bp EcoRI/HindIII fragment encoding ss-XcpYp in pMMB190</td>
<td>S. Bleves</td>
</tr>
<tr>
<td>pMYS</td>
<td>700 bp SalI/HindIII fragment encoding *XcpYc' in pMMB190</td>
<td>M. Bally⁴</td>
</tr>
<tr>
<td>pMY-PhoA</td>
<td>3.4 kb PstI fragment encoding *XcpYc'-PhoA on pMMB67HE</td>
<td>M. Bally</td>
</tr>
<tr>
<td>pLAFRY</td>
<td>1.6 kb EcoRI/HindIII fragment carrying xcpY in pLAFR3</td>
<td>M. Bally</td>
</tr>
</tbody>
</table>

*¹ Monash University, Australia; ² Huddinge Hospital, Sweden; ³ Université Catholique de Louvain, Belgium; ⁴ CNRS Marseille, France.

1991; Pugsley, 1996), suggesting highly specific interactions between the components of the GSP machineries. Yet, in the case of related species (Lindeberg et al., 1996), or for Gsp proteins having a high percentage of identity (Francetic & Pugsley, 1996), exchangeability can be observed, resulting in the formation of hybrid machineries with variable efficiencies. Cross-linking experiments have pointed out that PulG of *Klebsiella oxytoca* is able to multimerize in *Escherichia coli* (Pugsley, 1996). Moreover, the Xcp homologue of PulG, XcpT, has been shown to interact with three other pseudopilins, XcpU, -V and -W (Lu et al., 1997), and with XcpR (Kagami et al., 1998). An alternative way to identify protein–protein interactions is to study the stabilization of one protein by another. For example, Sandkvist et al. (1995) have shown that EpsE of *Vibrio cholerae* is associated with the cytoplasmic membrane and stabilized via interaction with EpsL, the Gsp homologue of *P. aeruginosa* XcpY. This approach has been extensively used in the case of membrane proteins which belong to complexes such as TorB/ExbB (Skare & Postle, 1991), SecE/SecY (Nishiyama et al., 1992), the *Aeromonas hydrophila* GSP components ExeA/ExeB (Howard et al., 1996) or the VirB T-complex transport machinery in *Agrobacterium tumefaciens* (Fernandez et al., 1996).

Despite some recent advances, specific interactions...
among most of the Xcp proteins have not yet been demonstrated. In this work, using xcpZ mutants, we investigated whether XcpZ stabilizes other Xcp proteins. Our findings support a model in which XcpZ and XcpY interact in the functional secretory apparatus in P. aeruginosa.

METHODS

Bacterial strains and plasmids. Bacterial strains and plasmids used in this study are listed in Table 1. P. aeruginosa strains were grown in tryptone soy broth (Difco) at 37 °C under agitation and on tryptic soy agar plates containing skim milk (Difco).

DNA manipulations. All plasmid constructions were isolated from E. coli TG1 after transformation. Plasmids were transferred to P. aeruginosa by electroporation essentially as described by Smith & Igleswki (1989). Transformants were isolated on PIA (Pseudomonas isolation agar) plates containing 300 µg carbenicillin ml−1 or 200 µg tetracycline ml−1. Pseudomonas chromosomal DNA was prepared according to Marmur (1961).

Protein analysis. Cells were harvested at late-exponential phase, and proteins were precipitated with 10% TCA and washed twice with 90% acetone. The proteins were then solubilized and separated by SDS-PAGE as described by Laemmli (1970).

Immunoblot analysis. To compare the composition of the cell extracts, the protein contents of equivalent amounts of cells (corresponding to 1 ml culture with an OD₆₀₀ of 0·1) were loaded on polyacrylamide gels. Proteins, separated by SDS-PAGE on 10·5 or 15·0% (w/v) polyacrylamide gels, were transferred to nitrocellulose membranes using a semi-dry blot apparatus (Bio-Rad) and incubated with appropriately diluted antisera. Each experiment was performed twice. Either alkaline phosphatase- or peroxidase-conjugated goat anti-rabbit IgG (Immunotech or Sigma, respectively) were used as secondary antibody. Proteins were revealed by detection of alkaline phosphatase activity or by chemiluminescence (Pierce). The XcpZ rabbit antiserum was raised against a purified recombinant protein obtained by using the pEX fusion system, and XcpY antibodies were raised against a purified glutathione S-transferase (GST)–XcpY fusion protein. Semi-quantitative estimation of the relative amounts of proteins detected by chemiluminescence on autoradiography films was carried out by densitometric analysis using a BioRad scanner.

Sequence of the xcp mutant genes and computer analysis. The xcpY₅₁ allele was amplified by PCR using chromosomal DNA from strain K910/503 as a template and primers OYG1 (5’ AAGAAGGAGGCGATGAGT 3’) and OYG2 (5’ TGGCGTCACTACCTTCTCTCA 3’). The PCR product was cloned into pUCB20 and the sequence analysis carried out by ESGS Company (France). The xcpZ5 and xcpZ₂₅ alleles were amplified by PCR using chromosomal DNA templates from strains K902/503 and K911/503, respectively, and primers OZG1 (5’ GAGAGATCCCTGGTGTAAGAGGATGTT 3’) and OZG2 (5’ ATAGAGATTACCGCGTCGTCGCCACCGGT 3’). Direct sequencing on PCR products was carried out by the IBSM sequencing laboratory. Characteristics of predicted mutant proteins were analysed on the Expasy World Wide Web molecular biology server using the ProtParam tool program (Guruprasad et al., 1990).

RESULTS AND DISCUSSION

The amount of XcpY is decreased in xcpZ mutants

Little is known about the mutual stabilization of components of the Xcp secretory machinery in P. aeruginosa, which we therefore decided to investigate. As a first step, to avoid any polar effect on the expression of other xcp genes, we focused on the influence of mutations in the last gene of the xcp operon, xcpZ. The effect associated with the lack of XcpZ was studied on four other Xcp proteins for which antibodies were available, i.e. XcpQ located in the outer membrane, XcpR peripherally associated with the inner membrane (M. Bally and others, unpublished), the pseudopilin XcpT and the bitopic cytoplasmic membrane protein XcpY (Bleves et al., 1996). Two different xcpZ mutants were used in this study, KS902/503 (xcpZ₅) and KS911/503 (xcpZ₂₅) (Wretlind & Pavlovskis, 1984). DNA sequencing (see Methods) revealed that the former mutation is a substitution of a thymine for a cytosine (C16T), introducing a stop codon near the 5’ end of the gene. The second mutation is a similar substitution at position 379 in the DNA sequence, generating a stop codon in the DNA encoding the C-terminal periplasmic domain of the protein. In this case, the predicted product should be 5·2 kDa smaller than the wild-type protein. However, the mutant XcpZ protein was not detected in Western blot experiments (data not shown).

Cells from the parent strain PAO503 and the two isogenic xcpZ mutants were grown to late-exponential phase and their proteins were separated by SDS-PAGE. Interestingly, immunoblotting analysis showed that the amount of XcpY was decreased by 25–50% in the two mutants as compared to the parent strain (Figs 1a, 2b). In contrast, the levels of XcpR (Fig. 1b), XcpQ (data not shown) and XcpT (data not shown) were not affected.

![Fig. 1. Amount of XcpY and XcpR in xcpZ mutants. Cell extracts from P. aeruginosa wild-type (PAO503) and isogenic mutants (xcpZ₅ and xcpZ₂₅) were analysed by Western blotting using anti-XcpY (a) or anti-XcpR (b) antibodies. Immunodetection was carried out by chemiluminescence. Proteins cross-reacting non-specifically with anti-XcpY and anti-XcpR antibodies are indicated by arrows on the right and were used as quantitative markers. The amount of XcpY protein is expressed as a percentage relative to that of the wild-type strain.](image-url)
Moreover, this decreased level of XcpY appeared not to be due to an increased level of proteases in the periplasm caused by the secretion defect in the xcpZ mutants since it was not significantly affected in other xcp mutants, such as an xcpQ mutant (data not shown). These results suggest that XcpZ stabilizes XcpY.

xcpZ expressed in trans in xcpZ mutants restores XcpY stability

To check whether the reduced amounts of XcpY in the xcpZ mutants were directly related to the absence of XcpZ, the wild-type xcpZ gene was expressed in trans in the two xcpZ mutants (Fig. 2a). In these strains, the amount of XcpY was restored to the wild-type level (Fig. 2b). This result demonstrates that the amount of XcpY is indeed dependent on the presence of XcpZ. The xcpY gene is located in a large operon (xcpR to -Z) and it is unlikely that the decreased level of XcpY is due to a feedback inhibition of its synthesis in the xcpZ mutants since other gene products encoded by this operon were not significantly affected. Moreover, we compared the activity of an xcpR-lacZ transcriptional fusion (Chapon-Hervé et al., 1997) in the xcpZ mutant and in the wild-type strain. No significant difference could be detected at the level of β-galactosidase activity in all strains tested (data not shown). Concomitantly with the stabilization of XcpY, the defect of the xcpZ mutants in elastase secretion was complemented by the introduction of the plasmid harbouring xcpZ (pSB12), showing that the function of the Xcp machinery was restored in both mutants (data not shown).

XcpY is reciprocally required for the stability of XcpZ

To further establish a possible interaction between XcpZ and XcpY, it was relevant to question whether XcpY could reciprocally stabilize XcpZ. The mutant KS910/S03 (xcpY51) provided an opportunity for studying such a relation. DNA sequencing revealed that this mutation xcpY51 is an insertion of 7 nucleotides, GCGCAGA, between nucleotide residues 809 and 810 of xcpY in the region encoding the C-terminal periplasmic domain of the protein. Computing parameters (Guruprasad et al., 1990) predicted an unstable product, 1.25 kDa larger than the wild-type protein and with a basic pl of 11.26 (compared to pl 5.22 for the wild-type protein). No mutant xcpY gene product was detected after SDS-PAGE and Western blot analysis of extracts from the xcpY51 mutant (Fig. 3b), possibly because it is unstable and proteolytically degraded. Interestingly, XcpZ could not be detected in the xcpY mutant, showing that XcpY and XcpZ stabilities are tightly related (Fig. 3a). However, it should be pointed out that in the xcpZ mutants, XcpY was still present, but in reduced amounts, whilst no XcpZ was detected at all in the xcpY mutant. These results could be explained by a greater instability of XcpZ in the xcpY mutant compared to that of XcpY in xcpZ mutants. Since the GspE and GspL homologues of V. cholerae have been shown to interact, XcpY could partly be stabilized via interaction with XcpR, even if XcpZ is not present. Introduction of pSB31 carrying xcpY in the xcpY51 mutant resulted in the recovery of a detectable level of XcpZ (Fig. 3a). It should be stressed that the optimal recovery of XcpZ was obtained when xcpY was not induced from the tac promoter. In these conditions, the amount of XcpY was similar to that obtained from the chromosomal xcpY copy (Fig. 3b). Upon induction with IPTG, high expression of XcpY resulted in its partial degradation (Fig. 3b) and in a diminished amount of XcpZ, (reduced to 66% of the control value) (Fig. 3a). Corroborating these data, IPTG induction of xcpY expression prevented full complementation of the
Fig. 4. Amounts of XcpY and XcpZ produced in E. coli. Western blot analysis of TG1 cell extracts containing xcpY (pLAFRY), xcpZ (pSB12) or both. Immunodetection was performed by chemiluminescence with anti-XcpZ (a) or anti-XcpY (b) as primary antibodies. To prevent production of too large an amount of proteins, gene expression was not induced with IPTG. The amount of XcpY and XcpZ proteins is expressed as a percentage relative to that of the TG1 strain containing both plasmids.

Fig. 5. (a) Amount of XcpY in the presence of various domains of XcpZ. The periplasmic domain of XcpZ was expressed as a truncated protein (ss'-XcpZp) from pSB51, whilst the membrane and cytoplasmic domains of XcpZ (XcpZmc') were expressed as a truncated protein from pGB4 in the P. aeruginosa xcpZ5 mutant. XcpY was analysed by Western blotting and the protein immunodetected by chemiluminescence. The amount of XcpY is expressed as a percentage relative to that of the wild-type strain. (b) Influence of various domains of XcpY on the amount of XcpZ. Plasmids carrying genes encoding ss'-XcpYp (pSB72), XcpYc' (pMY5), XcpYcm'-PhoA (pMY'-PhoA) and XcpY (pSB31) were introduced into the xcpY51 mutant strain. Expression of xcpY and derivatives was induced with 2 mM IPTG. Cell extracts were analysed by Western blotting and immunodetection was performed by chemiluminescence using anti-XcpZ antisera.

Separate protein domains of XcpZ or XcpY are not able to restore the stability of full-size XcpY or XcpZ, respectively

To investigate whether XcpY could be stabilized by the periplasmic domain of XcpZ alone, plasmid pSB51 encoding a mutant XcpZ protein (ss'-XcpZp), in which the cytoplasmic domain and the membrane anchor of XcpZ are replaced by the signal peptide of the P. aeruginosa elastase (LasB), was introduced in the xcpZ5 mutant strain. The truncated XcpZp protein could clearly be detected by immunoblotting (data not shown). However, expression of the periplasmic domain of XcpZ ('XcpZp') did not stabilize XcpY (Fig. 5a). The influence of membrane and cytoplasmic domains of XcpZ was also investigated. For this purpose, two constructs were engineered. The product of one construct, generated by the insertion of a stop codon in xcpZ5 (pGB4), could not be detected (data not shown) and did not stabilize XcpY (Fig. 5a). The other construct, pGB6 encoding a xcpZ'–phoA gene fusion, resulted in the synthesis of a protein of the expected size (54-6 kDa) which was revealed on immunoblots with antiserum directed against PhoA. As for pGB4, the presence of pGB6 did not stabilize XcpY (data not shown).

The influence of the XcpY domains on XcpZ was

cxpYS1 mutant as concluded from the size of the haloes around colonies on skim-milk plates, which is a measure of the extracellular proteolytic activity (data not shown). The high production level under these conditions may prevent membrane insertion of XcpY, resulting in aggregation and proteolysis of the protein in the cytosol. Moreover, the results obtained emphasize the fact that the wild-type stoichiometry between the two proteins is important for the assembly of a functional secretory machinery. Whereas the mutual stabilization of XcpZ and XcpY strongly suggests an interaction between these proteins, attempts to directly demonstrate such an interaction were carried out by chemical cross-linking or co-immunoprecipitation using XcpY antibodies. However, in our hands, no physical interaction between these proteins could be detected, suggesting that the interaction between XcpZ and XcpY might be a transient event, or that the proteins associate with a low affinity.

Mutual stabilization of XcpY and XcpZ in E. coli

To demonstrate that the variation in the levels of XcpY and XcpZ reflects a direct interaction between the two components, the corresponding genes were expressed, individually or together, in E. coli and in the absence of all the other xcp genes. The plasmids carrying xcpY (pLAFRY) and xcpZ (pSB12) were transformed or co-transformed in E. coli TG1. Cell extracts from the different strains were then analysed by SDS-PAGE and Western blotting for the presence of the XcpY and XcpZ proteins. It appears that the coexpression resulted in an increased level of each protein as compared to the level obtained when each gene was expressed individually (Fig. 4). This result is strongly in favour of a direct interaction between XcpY and XcpZ, resulting in an increased stability of these proteins within the complex they form.
expression of the truncated forms could result in proteins could be visualized by immunoblotting (data presented above suggest an interaction between XcpZ membrane segment fused to PhoA (XcpYcm'-PhoA necessary to promote a mutual stabilizing effect. interact, and therefore that the entire proteins might be domain of either XcpZ or XcpY that is responsible for relieved upon co-overexpression of XcpZ. Indeed PAO1 cells containing pSB12 (xcpZ) in addition to pLAFRY (xcpY) developed wild-type haloes on skim-milk plates (Fig. 6). Immunoblotting revealed that the level of XcpY produced in both cases was similar, indicating that the suppression of interference was due to XcpZ overexpression (data not shown).

Sandkvist et al. (1995) have shown that EpsE and EpsL from V. cholerae interact with each other, and it appears that XcpR and XcpY behave similarly within the Xcp system (M. Bally and others, unpublished). The interference phenomenon observed when XcpY is over-produced could be explained by the titration of XcpR with an excess of XcpY in areas of the membrane lacking an additional partner essential for the assembly of a functional Xcp machinery. On the basis of the data presented here, one could speculate that XcpZ is this additional partner. XcpZ would dock XcpY or the XcpY/XcpR complex to an appropriate membrane site for further assembly of the secretory machinery.

Thus, in this way, we could not identify a particular domain of either XcpZ or XcpY that is responsible for the stabilizing effect. Rather, these results suggest that expression of the truncated forms could result in misfolded protein domains, which cannot properly interact, and therefore that the entire proteins might be necessary to promote a mutual stabilizing effect.

Interference associated with XcpY overexpression is relieved upon co-overexpression of XcpZ

As already mentioned, the stoichiometry of the Xcp components appears to be an important parameter for the proper functioning of the secretory machinery. Overexpression of XcpY from plasmid pLAFRY in the wild-type P. aeruginosa strain PAO1 had a dominant negative effect on protein secretion, referred to as interference, as revealed by the reduced proteolytic activity on skim-milk plates (Fig. 6). Since the data presented above suggest an interaction between XcpZ and XcpY, the interference due to XcpY overexpression could possibly be alleviated by co-overexpression of XcpZ. Indeed PAO1 cells containing pSB12 (xcpZ) in addition to pLAFRY (xcpY) developed wild-type haloes on skim-milk plates (Fig. 6). Immunoblotting revealed that the level of XcpY produced in both cases was similar, indicating that the suppression of interference was due to XcpZ overexpression (data not shown).

Sandkvist et al. (1995) have shown that EpsE and EpsL from V. cholerae interact with each other, and it appears that XcpR and XcpY behave similarly within the Xcp system (M. Bally and others, unpublished). The interference phenomenon observed when XcpY is over-produced could be explained by the titration of XcpR with an excess of XcpY in areas of the membrane lacking an additional partner essential for the assembly of a functional Xcp machinery. On the basis of the data presented here, one could speculate that XcpZ is this additional partner. XcpZ would dock XcpY or the XcpY/XcpR complex to an appropriate membrane site for further assembly of the secretory machinery.

In conclusion, the data presented here argue in favour of a specific interaction between two proteins of a GSP secretory system, XcpZ and XcpY, which is an important addition to our understanding of the architecture of this machinery. The method used to show the interdependence between both proteins is very useful and will be further exploited when non-polar mutants in all xcp genes and antisera against all Xcp proteins become available.

ACKNOWLEDGEMENTS

The authors would like to thank Marc Bally for sharing unpublished data, and for providing plasmids pMYS and pLAFRY, and XcpZ and XcpR antisera; Wilbert Bitter for providing XcpQ antisera; Paul Sauve for oligonucleotide synthesis; Olivier Uderso for preparation of all media and buffers; and Jeanine Busutil for DNA sequencing. Sophie Bleves is supported by the Ministry of Research and Technology and the whole work was partly supported by the French cystic fibrosis foundation, AFEM (Association Française de Lutte contre la Mucoviscidose) and by the Biotech Framework IV grant number BI04 CT960119 from the European Union to Cell Factories Network.

REFERENCES

Tommassen, J., Filloux, A., Bally, M., Murgier, M. & Lazdunski, A.
