Molecular and immunological characterization of OprL, the 18 kDa outer-membrane peptidoglycan-associated lipoprotein (PAL) of Pseudomonas aeruginosa

Antonio Lim, Jr,1 Daniel De Vos,1 Mathieu Brauns,1 Dimitris Mossialos,1 Ahmed Gaballa,1,2 Ding Qing1 and Pierre Cornelis1

Author for correspondence: Pierre Cornelis. Tel: +32 2 3590359. Fax: +32 2 3590390. e-mail: pcornel@vub.ac.be

1 Flanders Interuniversity Institute for Biotechnology, Department of Immunology, Parasitology and Ultrastructure, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium
2 Laboratorium Plantenfysiologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium

Immunological screening of a Pseudomonas aeruginosa cosmid library led to the identification of clones producing an 18 kDa outer-membrane protein. This protein reacted in Western blots with a polyclonal antiserum against outer-membrane proteins of P. aeruginosa and with a monoclonal antibody (MA1-6) specific for OprL, the peptidoglycan-associated outer-membrane lipoprotein (PAL). Sequencing of pOML7, a subclone expressing oprl, revealed an ORF of 504 bp encoding a polypeptide with a typical lipoprotein signal recognition sequence. Another ORF was found upstream of oprl, with homology to the TolB protein of Escherichia coli and Haemophilus influenzae. Downstream of oprl, a second ORF, of 321 bp, was found (orf2), encoding a protein with a signal peptide and with no homology with proteins of known biological function. After the stop codon of orf2, a rho-independent terminator sequence was detected which is part of the P. aeruginosa PA01 insertion element IS222. OprL showed homologies with all known PALS from Gram-negative bacteria, especially in the C-terminal part. mAb MA1-6 reacted with P. aeruginosa cells in immunofluorescence, and with E. coli cells expressing oprl, which had an abnormal, elongated morphology, an indication that production of the protein perturbed the division process.

Keywords: peptidoglycan-associated lipoprotein, Pseudomonas aeruginosa, OprL, TolB, IS222

INTRODUCTION

Pseudomonas aeruginosa is a ubiquitous micro-organism and an important nosocomial bacterial pathogen, especially among immunocompromised and cystic fibrosis patients (Bodey et al., 1985). Infections are difficult to treat, due to the bacterium's intrinsic resistance to several antibiotics (Hancock, 1986; Masuda et al., 1993). The outer membrane of this bacterium contains a limited number of major proteins (Hancock et al., 1990) which are recognized by antibodies present in the sera of patients previously exposed to the pathogen (Anwar et al., 1985; Aronoff & Stern, 1988; Hancock et al., 1984; Lam et al., 1983). Antibodies have indeed been detected against OprF, the 38 kDa porin, OprL (the peptidoglycan-associated lipoprotein: PAL, formerly protein H2), and the small lipoprotein OprI, in sera from cystic fibrosis patients (Hancock et al., 1984). The gene for OprF, a major structural protein (Woodruff & Hancock, 1989), has been cloned and sequenced (Duchene et al., 1988). The membrane topology and the main epitopes recognized by mAbs have been determined for OprF (Rawling et al., 1995; Wong et al., 1993, 1995). Mice immunized with recombinant OprF were partially protected when challenged with P. aeruginosa (Gilleland et al., 1992, 1993), and peptides corresponding to linear B-cell epitopes of OprF elicited antibodies recognizing whole P. aeruginosa cells (Gilleland & Gilleland, 1995). The gene for Oprl, the small outer-membrane lipoprotein, has also been cloned and sequenced (Cornelis et al., 1989). The product of oprl is very immunogenic and
can be used as a carrier for fused peptides to elicit antibodies without adjuvant (Cornelis et al., 1996). The same protein seems to confer some degree of protection against P. aeruginosa experimental infections in a mouse model (Finke et al., 1990, 1991). Mice fed with recombinant Salmonella dublin expressing the P. aeruginosa oprF gene developed both mucosal and humoral immunity (Toth et al., 1994). Hybrid glutathione S-transferase proteins containing the C-terminal domain of OprF fused with OprI also protect mice against experimental P. aeruginosa infections (von Specht et al., 1995). OprL is a PAL of about 20 kDa (Mizuno, 1979; Hancock et al., 1981). It is the last major outer-membrane protein from P. aeruginosa whose gene has not yet been cloned, although recently the oprL gene for the 18 kDa PAL from P. putida has been cloned and sequenced, together with the characterization of an oprL-negative mutant (Rodriguez-Herva et al., 1996; Rodriguez-Herva & Ramos, 1996). We describe here, for the first time, the cloning and molecular characterization of oprL, the gene coding for the PAL of P. aeruginosa, together with an immunological characterization of its product, OprL.

METHODS

Bacterial strains, plasmids and growth conditions. Bacteria were grown in Luria-Bertani (LB) broth or plates solidified with 1.5 % (w/v) agar at 37 °C. P. aeruginosa PA01 (ATCC 15692) was used throughout these experiments.

The following Escherichia coli strains were used: HB101 (supE44 thi-1 relA1 proA2 lacY1 galK2 rpsL20 xyl-5 endA1 gyrA96) (Bouyer & Roulland-Dussoix, 1969), and DH5α (supE44 ΔlacU169 (Δ80 lacZAM15 recA1 ΔendA1 gyrA96 thi-1 relA1) (Hanahan, 1983). As plasmid cloning vectors, cosmids pRG930 (Sm′ Sp′) (van den Eede et al., 1992) was used for the construction of the PA01 genomic library, and plasmid pBluescript (pBS) for the subcloning experiments (Stratagene). Antibiotics were added in the following concentrations: ampicillin, 100 μg ml⁻¹, streptomycin, 25 μg ml⁻¹; spectinomycin, 50 μg ml⁻¹.

Total P. aeruginosa extracts and outer membranes. Bacterial cell pellets, obtained after centrifugation from a 1·5 ml overnight culture, were lysed in 100 μl GTE (50 mM glucose, 25 mM Tris/HCl, pH 8, 10 mM EDTA) mixed with the same volume of twofold concentrated Laemmli sample buffer (Laemmli, 1970) by boiling the tube for 10 min, followed by sonication at 35 A (Braun Labsonic) for 1 min. The tube was further centrifuged for 30 s in a mini-centrifuge at 14,000 g and the supernatant kept at -20 °C until further use. Total outer membranes were obtained from bacterial pellet of 250 ml culture by the Sarkosyl differential membrane solubilization method (Filip et al., 1973) as previously described (Cornelis et al., 1989).

Polyclonal and monoclonal antibodies. A New Zealand White rabbit was immunized subcutaneously with 1 mg total outer membranes from P. aeruginosa PA01, prepared as previously described (Cornelis et al., 1989), and emulsified in complete Freund’s adjuvant. A second immunization was done 4 weeks later in incomplete Freund’s adjuvant. Blood samples were taken from the ear vein before the first immunization and 10 d after the second immunization. Immune serum was absorbed twice overnight at 4 °C with an equal volume of E. coli cell lysate (from a 50 ml culture, vol. of lysate: 1 ml). To generate monoclonal antibodies, five female F1 (BALB/c × C57Bl/6) mice between 6 and 10 weeks old were immunized intraperitoneally with 5 μg outer membranes (Holmahl et al., 1985).

Nine days later, the popliteal lymph nodes were aseptically collected and lymphocytes were extracted and fused with the NSO B myeloma cell line using standard techniques. Hybridomas were tested for their reactivity with total outer membranes from P. aeruginosa in ELISA. Positive clones were further tested by Western blotting of outer-membrane proteins (Towbin et al., 1979). Monoclonal antibody MA1-6, specific for OprL lipoprotein was a gift of Professor R. E. W. Hancock (Mutharia & Hancock, 1985).

Quantification of proteins and SDS-PAGE. Proteins were quantified using the Bradford (1976) method with a commercially available kit (Bio-Rad), using proteinase K to establish a standard curve. Around 15–20 μg outer-membrane proteins or 10 μl total cell lysate were resolved in 15 % polyacrylamide running gels in a mini-gel apparatus (Bio-Rad) at 100 V. The following molecular mass markers (Pharmacia) were used: phosphorylase b (94 kDa), bovine serum albumin (67 kDa), ovalbumin (43 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20 kDa) and α-lactalbumin (14 kDa).

Construction and screening of the genomic bank. Standard protocols for DNA manipulation were followed (Sambrook et al., 1989). Genomic DNA obtained from P. aeruginosa PA01 (20 μg) was partially restricted with HindIII, using increasing dilutions of the restriction enzyme in 100 μl volume. After 30 min, the reaction was stopped by addition of EDTA and 5 μl aliquots from each tube analysed by agarose gel electrophoresis (7 %, w/v). Tubes containing fragments averaging 30 kb were pooled and their DNA ligated to HindIII-restricted cosmids pRG930 (van den Eede et al., 1992). Packaging of ligated DNA and transformation of E. coli HB101 was done using a commercially available kit, following the recommendations of the manufacturer (Promega). Colonies were selected on LB agar plates with streptomycin and spectinomycin and transferred with sterile toothpicks to individual wells of 96-well microtitre plates containing 100 μl of the same medium. After incubation at 37 °C overnight, the clones were replicated using an alcohol-and-flame-sterilized replicator on agar plates. The plates were incubated overnight and an autoclave-sterilized nitrocellulose filter (Hybond C, Amer sham) was overlaid on top and allowed to absorb for 1 h at room temperature. The filter was then laid on 10 ml 1 % SDS (w/v) to lyse the cells and washed with running tap water to remove the debris. After blocking for 1 h with 3 % (w/v) BSA in PBS (pH 7·4) on a shaker, the filter was incubated with the E. coli-absorbed anti-PA01 outer-membrane proteins polyclonal rabbit serum (1:500 dilution) for 90 min on a shaker, washed with PBS/Tween 20 (0·2 %, v/v) and further incubated for 1 h with a 1:1000 dilution of protein A-horse-radish peroxidase conjugate (Amersham) in PBS. After washing, the blot was revealed with 4-chloro-1-naphthol (Janssen) as previously described (Cornelis et al., 1989). Positive clones were further reacted with mAbs SH2.2 (anti OprI) and SD6.3 (anti OprF) to discard clones expressing oprl or oprF.
with terminal transferase. Briefly, at the end of the PCR cycles, 1 µl of a mixture containing 4 mM of each dNTP, 8 mM CoCl₂, 1 × terminal transferase buffer (Sambrook et al., 1989) and 0.75 units terminal transferase ml⁻¹ was added to each tube. After incubation at 37 °C for 1 h, the reaction was terminated by adding the stop solution from the sequencing kit. The fragments were separated using a Bio-Rad electrophoresis system. Three internal primers were also used to complete the sequence: L1, a 23-mer (5'-GGCCGTTCAGCCTACCTGGTG-3') corresponding to the coding strand, and representing nucleotides 366 to 388 of the ORF of oprL, L2, a 22-mer (5'-AGAGCGGCTTCGTCGCTCAGGC-3') of the complementary strand, representing nucleotides 161 to 182 of the coding strand, and L3, a 17-mer (5'-AGGTCGGAGCTGTGC-3'), also of the complementary strand, representing nucleotides 211 to 227 of the coding strand. DNA sequences were analysed using PC Gene (Intelligenetics) and GCG (Genetic Computing Group, programs FASTA and PILEUP) software.

Immunofluorescence assays of bacterial cells. Cell pellets were obtained from 1·5 ml overnight cultures. After washing with PBS, cells were incubated for 1 h with 0·1% BSA (w/v), in PBS, to block unspecific binding sites. Then, 500 µl E. coli-absorbed anti-PA01 serum (1:500 in PBS) or mAb MA1-6 (1:1000 in PBS) was allowed to react for 2 h, followed by three washing steps with PBS/BSA. Cells reacted with anti-PA01 serum were further added with 500 µl sheep anti-rabbit Ig-FITC conjugate (1:1000 in PBS) and allowed to react for 1 h while cells treated with mAb MA1-6 were further incubated with FITC-labelled goat anti-mouse serum (1:1000 in PBS). After washing, each pellet was resuspended in 10 µl PBS/BSA and examined under normal and UV light using a Leitz Wetzlar microscope.

RESULTS

Construction and immunological screening of a P. aeruginosa cosmid bank

PAO1 DNA was partially cut with HindIII and ligated to the cosmid pRG930 (van den Eede et al., 1992). Twelve clones were selected at random and their plasmid DNA extracted for analysis of the size of their inserts after restriction with HindIII; the insert size was found to be between 28 and 35 kb. A total of 2200 clones were screened with a rabbit polyclonal antiserum raised against outer membranes from PAO1, after it had been absorbed against *E. coli* extracts. This antiserum recognized, in Western blots, four outer-membrane proteins, OprL (8 kDa), OprF (38 kDa) and OprD (45 kDa) (see Fig. 2a, lane 1). A total of 119 clones gave a positive reaction with the antiserum and 11 reacted with mAb SH2.2 against OprL. From the remaining clones, 16 were randomly selected and probed in Western blots with the anti-PAO1 antiserum; 13 clones showed the production of an immunoreactive outer-membrane protein of about 18 kDa (OprL) while the three other clones produced a 38 kDa immunoreactive outer-membrane, presumably OprF (results not shown).

Restriction analysis of the 13 clones mentioned above with HindIII, Psil and Sall indicated that they contained inserts ranging in size between 25 and 35 kb. Common bands were detected, indicating that overlapping fragments had been cloned (results not shown).

Subcloning and localization of oprl

One clone containing a 30 kb HindIII insert was restricted with HindIII and re-ligated, resulting in a positive clone, pOML1, containing a 8·5 kb HindIII fragment (Fig. 1). This clone was shown by Western blotting to produce an 18 kDa outer-membrane protein in *E. coli* HB101 (Fig. 2a, lane 3 shows the reaction with the polyclonal antiserum; Fig. 2b, lane 3 shows the reaction with the mAb MA1-6). Further subcloning was done in pBS (Fig. 1) and each clone was analysed for its immunoreactivity in Western blot using both the polyclonal antiserum and the mAb MA1-6 (results not shown).
A 2.2 kb KpnI–XhoI fragment was sub-cloned in pBS, resulting in clone pOML7, which produced the immunoreactive 18 kDa protein in E. coli DH5α (Fig. 2a, b, lane 5). Since the pOML7 fragment probably contained the complete gene, including the promoter sequences, it was sequenced, using subclones and internal primers as described in Methods.

Sequence analysis

The sequence of a 1200 bp fragment is shown in Fig. 3. The oprL coding region was found to be flanked by two other reading frames, one upstream, incomplete, and one downstream of oprL, complete (orf2). The ORF upstream of oprL was found to encode the 29 C-terminal amino acids of a putative protein which showed a high degree of homology with the TolB protein of E. coli HBlOl (Sun et al., 1986; Wu, 1990). The amino acids in italics represent the sequence corresponding to the PA01 published sequence (Kropinski et al., 1986; Gertman et al., 1994). Interestingly, the insertion IS222 from P. aeruginosa PA01 (Gertman et al., 1994), bringing a potential rho-independent terminator sequence in close proximity to the ORF2 sequence, was found to be present in the DNA fragment sub-cloned in pBS. The restriction sites for SalI, PstI and XhoI, while the double-underlined sequences represent potential ribosome-binding sites before oprL and orf2. Amino acids in italics represent potential secretory signal peptides in OprL and ORF2 proteins.
proximity, after the stop codon of orf2. Another hairpin was predicted to be formed, between bases 876 and 911, within the orf2 coding sequence, with a ΔG of -33 kcal mol$^{-1}$ (-138 kJ mol$^{-1}$); however the significance of this hairpin is not known. The putative product of orf2 did not show any homology with proteins having a known function but did show some degree of homology with the product of an ORF downstream of the oprL gene of P. putida (Rodriguez-Herva et al., 1996) and with the product of orfD, downstream of the Legionella pneumophila pal gene (Engleberg et al., 1991) (results not shown).

Comparison of P. aeruginosa OprL with other Gram-negative PALS

A comparison was made between the P. aeruginosa PAL and the known sequences of PALS from P. putida (Rodriguez-Herva et al., 1996), Haemophilus influenzae (Deich et al., 1988; Nelson et al., 1988), E. coli (Chen & Henning, 1987), Pasteurella multocida (Kasten et al., 1995), Brucella abortus (Tibor et al., 1994), and Legionella pneumophila (Engleberg et al., 1991). As could be expected, the highest homology was found with the P. putida PAL (96% identity) and was less pronounced for the other PALS (ranging from 57% identity for H. influenzae to 64% identity for L. pneumophila). As already observed and documented by others, the homology is highest in the C-terminal part of the PALS. Recently, it was proposed that the interaction of proteins with the peptidoglycan layer is dependent on the presence of an α-helical motif which is conserved at the C-terminal region of these proteins; this motif follows the proposed consensus sequence NxxLSxxRxxVxxL (Koebnik, 1995). Analysis of the amino acid sequence of OprL showed that indeed amino acids 113 to 128 of the mature lipoprotein contained the sequence NmaLgerRAkaVqry L.

Immunological characterization of OprL

Immunofluorescence experiments were performed using the mAb MA1-6 against OprL of P. aeruginosa. Intact, non-fixed, P. aeruginosa cells were intensely stained when mAb MA1-6 was used (not shown). mAb MA1-6 also gave a positive reaction with E. coli cells expressing oprL (Fig. 5d). In both cases the reaction resulted in the staining of elongated cells which were also clearly apparent in visible light (Fig. 5c). No fluorescence was observed when E. coli cells containing pBS alone were tested (Fig. 5b), furthermore these cells had a normal appearance when observed in visible light (Fig. 5a), confirming that the elongated cell phenotype was not a result of the treatment.

DISCUSSION

The gene coding for the PAL from P. aeruginosa has been cloned using an immunological screening approach. The production of an 18 kDa outer-membrane protein in E. coli was confirmed by Western blotting with both a polyspecific polyclonal antiserum and a previously characterized monoclonal antibody against OprL (Mutharia & Hancock, 1985). Expression of pal genes from other Gram-negative bacteria in E. coli has been confirmed in several reports, including Legionella pneumophila (Engleberg et al., 1991), Brucella abortus (Tibor et al., 1994) and Haemophilus influenzae (Deich et al.,
1988). The analysis of the P. aeruginosa oprL sequence confirmed that it encoded a protein of 168 residues with an N-terminal signal peptide typical of bacterial lipoproteins (Hayashi & Wu, 1990; Pugsley, 1993). The sequence, GJCSS, was found also in Oprf from P. aeruginosa (Cornelis et al., 1989). The oprL coding sequence was preceded by an incomplete ORF, corresponding to the C-terminal part of a protein showing strong homology with the C-terminal domains of the TolB proteins from E. coli (Levengood & Webster, 1989) and H. influenzae (Sen et al., 1996). Interestingly, tolB is localized upstream of the pal gene in E. coli and upstream of the gene for the P6 Pal protein in H. influenzae (Lazzaroni & Portalier, 1992; Sen et al., 1996). In E. coli, among the Tol proteins TolB in particular is in association with Pal at contact sites between the inner and the outer membranes, forming, with the other Tol proteins, a complex facilitating the uptake of colicins (Bouveret et al., 1995; Lazdunski, 1995). Other roles have not yet been assigned for these proteins except that tol and pal mutants are detergent-sensitive and release periplasmic proteins into the extracellular medium (Fognini-Lefebvre et al., 1987). A Tn5 mutant of P. putida with the transposon inserted in the oprL gene, and a gene-replacement mutant of oprL, were both found to be very sensitive to osmotic pressure and to SDS, deoxycholate and EDTA, suggesting that OprL is needed for the maintenance of cell envelope integrity (Rodriguez-Herva et al., 1996; Rodriguez-Herva & Ramos, 1996).

Downstream from oprL is an ORF which encodes a protein with a molecular mass of 11180 Da. Similar ORFs are found downstream from other pal genes but the biological role of the proteins they encode is, so far, not known (Vianney et al., 1996). The presence, downstream of this ORF, of the insertion element IS222 from P. aeruginosa PAO1 (Kropinski et al., 1994) is of interest. This insertion element brings with it a typical rho-independent terminator sequence, with a hairpin, followed by a stretch of T residues. It would be interesting to see whether this organization is conserved in other P. aeruginosa strains, since IS222 is mentioned as being specific for PAO1 (Kropinski et al., 1994).

Not surprisingly, OprL showed a very high identity with the PAL from P. putida (Rodriguez-Herva et al., 1996), and a high degree of homology at the C-terminal end with other PALs. It also had some homology with the C-terminal region of other outer-membrane proteins known to interact with peptidoglycan, such as OmpA from E. coli and OprF from fluorescent pseudomonads (De Mot et al., 1994; Koebnik, 1995). In all these proteins a motif supposed to interact non-covalently with peptidoglycan is conserved.

The mAb against OprL reacted with intact P. aeruginosa cells without prior treatment with EDTA, indicating that part of OprL is surface exposed. Such a surface exposure of PALs (or part of the protein) has been demonstrated in the case of H. influenzae (Green et al., 1987), Brucella spp. (Cloeckaert et al., 1990), and L. pneumophila (Engleberg et al., 1984). These results are also in agreement with those of Mutharia & Hancock (1983), who demonstrated the accessibility of OprL at the surface of P. aeruginosa cells by a colony blot technique. The same authors also stressed that treatment of cells with TBS containing 0-1 M NaCl was necessary to achieve recognition of OprL by mAb MA1-6. We used PBS with a similar ionic strength as the TBS used in their study.

In conclusion, we think that OprL, the last major constitutive outer-membrane protein from P. aeruginosa to be molecularly characterized, could be, along with OprP and OprR, an interesting target molecule for the development of a vaccine against P. aeruginosa.

ACKNOWLEDGEMENTS

This work was partly supported by a grant from the ‘Onderzoeksaard’ from the Vrije Universiteit Brussel. We wish to thank Dr R. E. W. Hancock from the University of British Columbia for generously giving us the mAb MA1-6 against OprL. A. Lim, Jr was supported by a grant from the Belgian Agency for Developing Countries (BADC). We wish also to thank Professor R. Hamers for interesting discussions and Dr N. Koedam for critical reading of the manuscript.

REFERENCES

Nelson, M. B., Apicella, M. A., Murphy, T. F., Vankeulen, H.,

