 Targets for pSAM2 integrase-mediated site-specific integration in the *Mycobacterium smegmatis* chromosome

Asunción Seoane, Jesús Navas and Juan M. García Lobo

Author for correspondence: Juan M. García Lobo. Tel: +34 42 201948. Fax: +34 42 201945. e-mail: jmglobo@medi.unican.es

An improved integrative cassette from plasmid pSAM2 has been constructed containing plasmid *int* and *attP* genes but excluding the *xis* gene, which should result in increased stability by suppression of the excision reaction. This cassette was included in both suicide and thermosensitive plasmids and used for integration in *Mycobacterium smegmatis*. Suicide plasmids containing this cassette integrated at a single site (*attB1*) in the *M. smegmatis* chromosome. The sequence of the *attB1* site has been determined and was identified as a putative *tRNA^{Pro}* gene. Thermosensitive plasmids containing the cassette integrated both at the same *attB1* site and at other different sites, often giving rise to simultaneous integration at two sites. A second integration site (*attB2*) has been sequenced, which was located in the region encoding 16S rRNA of one of the two *rrn* operons of *M. smegmatis*.

Keywords: *Mycobacterium smegmatis*, plasmid pSAM2, integrase, site-specific recombination

INTRODUCTION

Genetic manipulation is a key procedure for the study of mycobacterial biology and for the engineering of the genus to produce either new vaccines or other attenuated strains. Homologous recombination in mycobacteria is a process which is not fully understood, and seems to work better in fast-growing than in slow-growing pathogenic species. Its use for genetic analysis of this genus is also hampered by the high rates of illegitimate recombination (McFadden, 1996). Site-specific recombination in mycobacteria has not been well studied either. However, this kind of RecA-independent process is simpler than homologous recombination and does not usually require extensive sequence homology between the recombinating partners. A single recombinase is sufficient with the assistance of some accessory proteins that are ubiquitous in bacteria. Site-specific recombination may therefore provide a useful approach to the genetic manipulation of mycobacteria.

Mycobacteriophages such as L5 have integrases similar to λ-integrase which have been successfully used for site-specific gene integration in mycobacteria (Lee et al., 1991). Integrative plasmids from *Streptomyces* are capable of autonomous replication but they can also integrate into the bacterial chromosome through a site-specific recombination event (Pernodet et al., 1984). The integrative functions of plasmid pSAM2 have been well characterized (Boccard et al., 1989a; Kuhstoss et al., 1991; Smokvina et al., 1991). A gene that encodes an integrase belonging to the λ-integrase family has been located in pSAM2 (Boccard et al., 1989b). Two identical 58 bp *att* sequences have been found in the plasmid (*attP*) and in the *Streptomyces ambofaciens* chromosome (*attB*). The *attB* site overlaps a putative gene encoding a tRNA^{Pro}, conserved in many actinomycetes, including mycobacteria (Mazodier et al., 1990). It is not known whether the complete tRNA gene is needed for integration or whether a part of it could be sufficient. The use of the integrative functions of plasmid pSAM2 has already been exploited for *Streptomyces* vector construction (Smokvina et al., 1990; Kuhstoss et al., 1991). In addition, the presence of a sequence similar to pSAM2 *attB* in the chromosome of mycobacteria suggests the use of this plasmid for the construction of mycobacterial integrative vectors (Eiglmeier et al., 1991). Integration mediated by the pSAM2 integrase has been demonstrated in *Mycobacterium smegmatis* (Martín et al., 1991) and shown to be site specific. Here, with the aim of improving both the stability and frequency of the integration of pSAM2-based plasmids

The GenBank accession numbers of the sequences reported in this paper are AF004309 (*attB1*), AF004310 (*attP*), AF004311 (*attB1*), AF004312 (*attB2*), AF004313 (*attL2*), AF004314 (*attB2*), and AF004315 (*attP*).
into the *M. smegmatis* chromosome, we have developed new integrative plasmids and have analysed their integration sites in the *M. smegmatis* chromosome.

METHODS

Plasmid constructions. A 1.4 kb MscI–BamHI DNA fragment from the plasmid pTSN39 (Martin et al., 1991) containing the *int* gene and the *attP* site of pSAM2 was ligated to the EcoRI (Klenow filled)/BamHI sites of the vector pUC18. The resulting plasmid was called pLAS3. The kanamycin-resistance gene from Tn903 obtained from Pharmacia (Kanblock) was inserted as a *PstI* fragment to the *PstI* site of pLAS3. This 5.4 kb plasmid was called pLAS4 and was used as a suicide integrative vector for *M. smegmatis*. An *Int*- derivative of pLAS4 was obtained by introducing a frameshift mutation into its *int* gene by filling the *BglII* site as described by Boccard et al. (1989b). This *Int*+ plasmid was called pLAS4b.

A thermosensitive *Mycobacterium–Escherichia coli* shuttle plasmid, carrying the *int–attP* integrative cassette from pLAS4, was also constructed. The thermosensitive plasmid pCG63 (Guilhot et al., 1992) was linearized with *BamHI* (Klenow filled)/SphI and then ligated to a 1.6 kb *PvuII–SphI* fragment from pLAS3 containing the pSAM2 integrative cassette. The resulting plasmid was called pLAS633. An *Int*– derivative of pLAS633, pLAS633b, was constructed as described above for pLAS4. A restriction and genetic map of these plasmids is shown in Fig. 1.

Isolation of integration events. Purified DNA (0.1 μg) of either pLAS4 or pLAS4b was used to electrotransform competent *M. smegmatis* mc²155 cells. Transformants growing at 37 °C on plates containing kanamycin at 50 μg ml⁻¹ should carry the plasmid integrated in the chromosome. Integration of the thermosensitive plasmid pLAS633 was done as described by Guilhot et al. (1994) with slight modifications. Briefly, pLAS633 was electrotransformed into competent *M. smegmatis* mc²155 cells and stable transformants were selected on plates containing kanamycin at 30 °C. Independent transformants were analysed for the presence of the plasmid and grown in 5 ml kanamycin-supplemented 7H9 medium for 48 h at 30 °C. Dilutions were plated on kanamycin-containing plates, which were incubated for 24 h at 30 °C and then shifted to 42 °C until colonies developed. Colonies obtained from these plates should carry pLAS633 integrated in the chromosome.

Isolation of chromosomal DNA and Southern blot hybridization. Total DNA from mycobacteria was purified basically as described by Ausubel et al. (1990). Chromosomal DNA to be used as a sequencing template was further purified in CsCl gradients. Total DNA was separated in agarose gels after treatment with restriction endonucleases and blotted on nylon membranes. Probes were labelled with digoxigenin and hybridization detected by a luminescent assay using the DIG DNA labelling and detection kit (Boehringer Mannheim).

DNA sequencing. Plasmid and chromosomal DNA sequences were determined with the *Taq* polymerase based fmol sequencing system (Promega), using the primers indicated in the text. Samples of 1.5 pmol primer end-labelled with [γ-³²P]ATP and polynucleotide kinase were mixed with either 6 μg chromosomal DNA or 100 ng plasmid DNA. The thermocycling programme included a denaturing step at 95 °C for 2 min, and then 30 cycles each at 95 °C for 30 s, 50 °C for 30 s and 70 °C for 1 min. The sequences obtained were compared to those in GenBank using the BLAST server at the National Centre for Biotechnology Information.

RESULTS

Plasmid integration in the chromosome of *M. smegmatis*

The suicide plasmid pLAS4 was introduced by electroporation into *M. smegmatis* mc²155. The number of colonies obtained was around 150 per μg plasmid DNA. Since this plasmid was unable to replicate in mycobacteria, we assumed that kanamycin-resistant trans-

Fig. 1. Restriction and genetic maps of the plasmids pLAS4 and pLAS633.
Fig. 2. Hybridization analysis of pLAS4 integration in the M. smegmatis chromosome. The complete pLAS4 was labelled and used as a probe. Sizes of the fragments were 2.6, 1.5 and 1.3 kb. (See Fig. 1 for the location of the restriction sites in pLAS4.) The 1.5 kb fragment contained the attP site. This fragment did not appear in the colonies carrying the plasmid integrated, suggesting that integration occurred through the attP site. The six clones analysed produced the same hybridization pattern (lanes 2-7), indicating that there was a single integration site in the chromosome. Lane 1, plasmid pLAS4 digested with PvuII and XbaI.

Formants arose as a result of IntpSAM2-mediated integration in the chromosome. This was confirmed by the lack of kanamycin-resistant transformants when the same technique was repeated with the plasmid pLAS4b, an Int^- derivative of pLAS4.

To improve the integration frequency we performed a similar experiment with the plasmid pLAS633, containing a thermosensitive mycobacterial replicon. The plasmid was introduced into M. smegmatis mc^155, and kanamycin-resistant transformants were selected at 30 °C, a temperature allowing pLAS633 replication. Colonies able to grow in the presence of kanamycin at 42 °C were selected as described in Methods. With this procedure we routinely obtained around 2000 kanamycin-resistant colonies per ml culture. Experiments similar to those described above were performed with plasmid pLAS633b, an Int^- derivative of pLAS633. In this case, however, no kanamycin-resistant colonies could be obtained after the shift to 42 °C.

Hybridization analysis of the integration sites

The colonies obtained in the above experiments were checked for the absence of free replicating plasmids by electrophoretic analysis of plasmid lysates and by hybridization of total DNA, with negative results. Total DNA from six colonies obtained from independent experiments that should carry pLAS4 integrated into the chromosome was digested with PvuII and XbaI, blotted and hybridized with pLAS4. The results, shown in Fig. 2, indicated that the six colonies analysed were identical.

In addition, we found that all colonies contained two of the pLAS4 restriction fragments but the third fragment, containing the attP site, was not present and was replaced by two new fragments formed as a result of the integration event. These results demonstrated that the plasmid was integrated into the chromosome and that integration probably occurred as a result of IntpSAM2-mediated site-specific recombination.

In a similar way, total DNA from nine colonies obtained in the integration experiment with pLAS633 was digested with PstI and hybridized against a 1.1 kb EcoRI–BamHI fragment from pLAS3, containing the int–attP region (identical to pLAS633). The probe hybridized to a 2.1 kb PstI fragment of pLAS633. This fragment did not hybridize in any of the recombinant clones, suggesting that the plasmid was indeed integrated into the chromosome. Nevertheless, the nine colonies analysed...
were not identical. At least four different hybridization patterns could be observed, indicating that more than one integration site was being used in the chromosome. In some cases only two hybridization bands were present, suggesting a single integrative event, while in other cases there were four hybridizing bands, suggesting the presence of two copies of the plasmid at different chromosomal positions (Fig. 3).

To show that the complete plasmid was integrated in the chromosome of these colonies, chromosomal DNA from two recombinants was digested with Smal and probed with pLAS633. The results (Fig. 4.) indicated that the whole plasmid was integrated into the chromosome. Analysis of fragment sizes indicated again that the plasmid was probably integrated through the attP site.

DNA sequence of the integration sites

The nucleotide sequence of pLAS4 around the attP site was verified using as sequencing primer the oligonucleotide TAGTCACGCAGATAGACAC, mapping at the 3' side of attP, according to the sequence reported for pSAM2 attP by Boccard et al. (1989b). The second chain was sequenced with the oligonucleotides AGTGCTACTTACGCCCGGAGTGGACGAG and AGAGGAGCACTTGCCCAA, deduced from the sequence obtained with the first primer (Fig. 5). The same primers were used to determine the sequence of the attL and attR sequences in the clones carrying the integrated plasmids.

Chromosomal fragments containing the integrated plasmid pLAS4 were cloned taking advantage of the absence of KpnI restriction sites in this plasmid. Chromosomal DNA was digested with KpnI, and the fragments were self-ligated and used to transform E. coli cells to kanamycin resistance. With this method a 7 kb plasmid was obtained, and was used to sequence the pLAS4...
chromosome junctions using the primers described above. The sequences obtained corresponding to the attR1 and attL1 sites are shown in Fig. 5.

The sequence at the attB1 site was deduced from the attL1 and attR1 sequences on the basis of the previously described integration mechanism of pSAM2. The sequence was compared to DNA sequences in GenBank. A region of attB1 was found to be identical to the tRNAPro from S. ambofaciens and similar to other bacterial tRNAPro genes. In addition, the analysis of attB1 with the program tRNAsearch from the PCGENE package revealed that the region between position 87 and position 160 (74 bases) of attB1 could be a tRNAPro with the anticodon CGG.

In contrast, integration sites of pLAS633 were determined by direct sequencing of chromosomal DNA, due to the lack of restriction enzymes appropriate for the self-ligation approach. Chromosomal DNA was purified from the colonies analysed in Fig. 3. An examination of the sequences revealed that integration in colony 8 had occurred in the previously described attB1 site. However, integration in colonies 1, 2 and 3 occurred at a new site which was identical in all three cases. The attR1 and attL2 sequences obtained from this site, and the sequence attB2 deduced from them, are shown in Fig. 5. Comparison with sequences in GenBank revealed that the sequence attB2 was identical to a region of the M. smegmatis gene encoding the 16S rRNA (Rogall et al., 1990). Sequencing of DNA from colonies 4, 5, 6, 7 and 9 produced mixed sequencing ladders, confirming that they carried at least two plasmid copies in the chromosome and precluding the identification of other integration sites.

Stability of the Integrated Plasmids

Loss of the integrated plasmids was investigated through the loss of the kanamycin-resistance marker after growth in a nonselective medium. Three clones carrying each of the integrated plasmids were grown for 56 generations at either 37 °C (pLAS4) or 42 °C (pLAS633) and then plated on an antibiotic-free medium. Two hundred colonies from each clone were replicated onto kanamycin plates. All the replicas grew in the presence of kanamycin, indicating that integration was stable, and plasmid loss was lower than 0.5% after serial passage in a drug-free medium.

DISCUSSION

In this study we have demonstrated that IntpSAM2-mediated site-specific recombination was active in M. smegmatis if we introduced a plasmid carrying an integrative cassette containing only the integrase gene and the attP site; attB sequences were present in the M. smegmatis chromosome, and any accessory protein necessary for the recombination process was provided by the host.

A different integrative behaviour was observed depending on the type of plasmid used to harbour the integrative cassette. Single insertions at an unique chromosomal location were observed for suicide integrating plasmids. This integration site coincided with the previously described pSAM2 attB. Double insertions involving at least three different integration sites were found when the integrative cassette was placed in a temperature-sensitive plasmid. This difference probably resulted from the time that integrase had to react in the mycobacterial cells. Non-replicating plasmids are expected to be diluted within the population, if not lost, as a result of degradation by the restriction systems of the host. As a result, the level of expression attained by the integrase will be high enough to produce only single, highly specific integrative events at the attB1 site. However, if thermosensitive plasmids carrying the integrative cassette were allowed to grow for some time at the permissive temperature, the integrase had a longer time for expression and to act in the cells, producing multiple integrative events involving more than one integration site. We have sequenced one of the additional sites and found it in one of the two rRNA operons present in the M. smegmatis chromosome. This site was located precisely in the middle of the 16S rRNA gene, and was called attB2. Integration at the canonical attB1 site was presumably favoured by the existence of 43 bp of sequence in common between attB1 and attP sites. Although only three common base pairs were observed between the sites attP and attB2, these could be enough to facilitate recombination at the attB2 site as previously demonstrated for integration of the bacteriophage #C31 (Kuhstoss & Rao, 1991).

The existence of 43 bp of homology between the attB1 and attP sites prevented determination of the exact location of the crossing-over in the IntpSAM2 recombination reaction at attB1. However, the observation of recombination at attB2, with only 3 bp of sequence homology with attP, allowed us to localize the crossing-over site to these 3 bp, located in the S' end of attP. If is assumed that the same site was used in the recombination at attB1, then the crossing-over site in attB1 could also be precisely located. This position was coincident with the first nucleotide of the anticodon loop of the tRNA as described for other site-specific recombination systems that use tRNA genes as targets. The mycobacteriophage L5 integrates in the chromosome of M. smegmatis through a tRNA Gly gene adjacent to a tRNAPro gene (Lee et al., 1991). Interestingly, this gene was slightly different from the tRNAPro gene used for pSAM2 integration.

Plasmid integration at the 16S RNA gene of M. smegmatis should result in some inactivation of one of the two rRNA operons present in this species (Bercovier et al., 1986). However, no evident differences in growth rate were observed between clones carrying plasmid pLAS633 integrated at attB2 and clones with insertions at attB1.

Integrations of suicide and thermosensitive plasmids were both stable. Excision of pSAM2 has been observed in Streptomyces lividans (Simonet et al., 1987) and S. ambofaciens (Kuhstoss et al., 1989). The increased
stability of both pLAS4 and pLAS633 integrations in the
M. smegmatis chromosome can probably be explained by the absence of the pSAM2xis gene in these plasmids.
The results reported here represent a new useful tool for
the integration of genes into the mycobacterial chromo-
some and provide further insight into the understanding
of the IntpSAM2 mechanism of site-specific recom-

ACKNOWLEDGEMENTS

We acknowledge that A. Seoane and J. Navas made equal
contributions to this work. We are grateful to C. Martin and
B. Gicquel for generously providing plasmid pTSN39 and
valuable methodological information, and to Ian Williams for
the correction of the manuscript. The work described herein
was performed under contract no. BIO2 CT92 0520 with the
European Union and cofinanced with grant PB93-0386 from
the Spanish DGICYT to J.M.G.L.

REFERENCES

Ausbub, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman,

surprisingly small number of ribosomal RNA genes in relation to
the size of their genome. Biochem Biophys Res Commun 136,
1136–1141.

Boccard, F., Smokvina, T., Pernodet, J. L., Friedmann, A. &
Guerineau, M. (1989a). Structural analysis of loci involved in
pSAM2 site-specific integration in Streptomyces. Plasmid 21,
59–70.

Boccard, F., Smokvina, T., Pernodet, J. L., Friedmann, A. &
Guerineau, M. (1989b). The integrated conjugative plasmid
pSAM2 of Streptomyces ambofaciens is related to temperate
bacteriophages. EMBO J 8, 973–980.

integration of foreign DNA into the chromosome of Mycobacter-

mutants of the Mycobacterium plum pAL5000. FEMS Microbiol

Guilhot, C., Otal, I., Van Rompaya, I., Martin, C. & Gicquel, B.
(1994). Efficient transposition in mycobacteria: construction of
Mycobacterium smegmatis insertional mutant libraries. J Bacteri-
ol 176, 535–539.

function of the streptomyces bacteriophage pC31. J Mol Biol
222, 897–908.

integration in Streptomyces ambofaciens: localization of int-
egration functions in S. ambofaciens plasmid pSAM2. J Bacteriol
171, 16–23.

cloning vectors that integrate site-specifically in Streptomyces
spp. J. Biol 1, 205–211.

Site-specific integration of mycobacteriophage L5: integration-
proficient vectors for Mycobacterium smegmatis, Mycobacterium
tuberculosis, and bacille Calmette–Guérin. Proc Natl Acad Sci
USA 88, 3111–3115.

21, 205–211.

Marti, C., Mazodier, P., Mendiola, M. V., Gicquel, B., Smokvina,
Mol Microbiol 5, 2499–2502.

Mazodier, P., Thompson, C. & Boccard, F. (1990). The chromo-

different strains of Streptomyces ambofaciens: free and integrated

phylogeny and definition of species at the molecular level within

Simonet, J. M., Boccard, F., Pernodet, J. L. & Guerineau, M.
(1987). Excision and integration of a self-transmissible replicon of
Streptomyces ambofaciens. Gene 59, 137–144.

Smokvina, T., Mazodier, P., Boccard, F., Thompson, C. J. &

Received 21 February 1997; revised 13 June 1997; accepted 18 June 1997.