The pncA gene from naturally pyrazinamide-resistant Mycobacterium avium encodes pyrazinamidase and confers pyrazinamide susceptibility to resistant M. tuberculosis complex organisms

Zhonghe Sun, Angelo Scorpio and Ying Zhang

Author for correspondence: Ying Zhang. Tel: +1 410 614 2975. Fax: +1 410 955 0105. e-mail: yzhang@phnet.sph.jhu.edu

The antituberculosis drug pyrazinamide (PZA) needs to be converted into pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) in order to show bactericidal activity against Mycobacterium tuberculosis. M. avium is naturally resistant to PZA. To investigate whether this natural resistance to PZA is due to inability of the M. avium PZase to convert PZA to bactericidal POA, the M. avium PZase gene (pncA) was cloned by using the M. tuberculosis pncA gene as a probe. Sequence analysis showed that the M. avium pncA gene is 561 bp long, encoding a protein with a predicted size of about 198 kDa; but Western blotting showed that the M. avium PZase migrated as a 24 kDa band when expressed in M. bovis BCG and Escherichia coli. Sequence comparison revealed that M. avium PZase has 67-7% and 32-8% amino acid identity with the corresponding enzymes from M. tuberculosis and E. coli, respectively. Southern blot analysis with the M. avium pncA gene as a probe showed that M. terrae, M. gastri, M. marinum, M. fortuitum, M. xenopi, M. gordonae, M. szulgai, M. celatum and M. kansasii have close pncA homologues, whereas M. chelonea and M. smegmatis did not give significant hybridization signals. Transformation with the M. avium pncA gene conferred PZA susceptibility to PZA-resistant M. tuberculosis complex organisms, indicating that the nonsusceptibility of M. avium to PZA is not due to an ineffective PZase enzyme, but appears to be related to other factors such as transport of POA.

Keywords: pyrazinamide susceptibility, pyrazinamidase, pncA, Mycobacterium avium

INTRODUCTION

Mycobacterium avium, a slow-growing saprophytic mycobacterium, is an important opportunistic pathogen in immunocompromised conditions such as HIV infection (Ellner et al., 1991). Like many other mycobacteria, M. avium is naturally resistant to many antibiotics. The nonsusceptibility of mycobacteria to antibiotics has been suggested to be due to the impermeability of the mycobacterial cell wall (Jarlier & Nikaido, 1994). While M. avium has a similar lipid-rich cell wall structure to Mycobacterium tuberculosis (Jarlier & Nikaido, 1994), it is nevertheless resistant to some drugs that are active against M. tuberculosis, such as isoniazid and pyrazinamide (PZA). In a study by Heifets et al. (1986), M. avium was found to be resistant to at least 100 μg PZA ml⁻¹. In contrast, M. tuberculosis is uniquely susceptible to PZA, with a minimum inhibitory concentration (MIC) of 50–100 μg ml⁻¹ (McDermott & Timpsett, 1954); other mycobacteria or bacterial species are usually completely insensitive to PZA.

In M. tuberculosis, the susceptibility to PZA is correlated with the activity of a single amidase enzyme with both pyrazinamidase (PZase) and nicotinamidase activities (Konno et al., 1967). PZase in M. tuberculosis

Abbreviations: POA, pyrazinoic acid; PZA, pyrazinamide; PZase, pyrazinamidase.

The GenBank accession number for the M. avium pncA gene sequence determined in this work is U80820.
converts PZA to bactericidal pyrazinoic acid (POA) inside the bacterial cell (Bonicke & Lisboa, 1959; Scorpio & Zhang, 1996), and it is conceivable that loss of PZase activity could cause PZA resistance in this organism. Many studies have documented the correlation between defective PZase activity and PZA resistance in clinical isolates of *M. tuberculosis* (McClatchy et al., 1981; Trivedi & Desai, 1987; Miller et al., 1995). We have recently cloned the *M. tuberculosis* gene (*pncA*) encoding an enzyme with both PZase and nicotinamidase activity (Scorpio & Zhang, 1996) and have confirmed, by transforming resistant bacilli with a functional *M. tuberculosis pncA* gene, that defective PZase activity resulting from *pncA* mutations is the cause of PZA resistance in *M. tuberculosis* complex organisms (Scorpio & Zhang, 1996). Furthermore, we have shown that mutation in *pncA* is the major mechanism of PZA resistance in *M. tuberculosis* (Scorpio et al., 1997b; Sreevatsan et al., 1997). Interestingly, *M. bovis* and *M. bovis* BCG—a member of the *M. tuberculosis* complex—were found to have a single point mutation of C to G at nucleotide position 169 of the *pncA* gene compared with the *M. tuberculosis pncA* sequence, causing a substitution of histidine to aspartic acid at amino acid position 57 of the *PncA* sequence (Scorpio & Zhang, 1996; Scorpio et al., 1997a). This single point mutation in the *M. bovis pncA* gene is the cause of the defective PZase activity and natural resistance to PZA in *M. bovis* and BCG, and has been recently shown to be useful for rapid differentiation of *M. bovis* from *M. tuberculosis* (Scorpio et al., 1997a).

However, the correlation between presence of PZase activity and susceptibility to PZA does not hold for other mycobacterial species. For example, unlike *M. tuberculosis*, *M. avium* has PZase activity (Tarnok & Rohrscheidt, 1976) but it is not susceptible to PZA (Heifets et al., 1986). It was not clear whether the natural resistance of *M. avium* to PZA is due to insufficient ability of the *M. avium* PZase to potentiate the PZA activity, or to other potential differences between these organisms in properties such as cell wall permeability or the transport of PZA. To distinguish between the above possibilities, we cloned the *M. avium pncA* homologue by using the *M. tuberculosis pncA* gene as a probe and transformed the *M. avium pncA* gene into PZA-resistant strains of *M. tuberculosis* complex organisms. We found that the *M. avium pncA* gene conferred a high degree of PZA susceptibility upon PZA-resistant *M. tuberculosis* strains. Our result suggests that the nonsusceptibility of *M. avium* to PZA is not due to its having an inefficient PZase enzyme in terms of potentiating PZA activity, but rather to other factors such as the relative impermeability of the *M. avium* cell wall or the transport of PZA/POA.

METHODS

Mycobacterial strains and DNA. Mycobacteria were grown in 7H9 liquid medium with ADC (albumin-dextrose-catalase) enrichment (Difco) at 37 °C for 3–5 d for fast growers and 3–4 weeks for slow growers. The mycobacterial species *M. terrae*, *M. kansasi*, *M. gastri*, *M. marinum*, *M. fortuitum*, *M. chelonae*, *M. xenopi*, *M. gordonae*, *M. szulgai* and *M. celatum* were kindly provided by Dr. Salman Siddiqi, Becton Dickinson Diagnostic Instrument Systems Inc. Genomic DNA from various mycobacterial species was isolated using glass beads as described previously (Zhang et al., 1992).

PZase enzyme assay and PZA susceptibility testing. PZase activity was assayed according to Wayne (1974). Briefly, a heavy bacterial inoculum was overlaid on the surface of Dubos agar (Difco) in a test tube containing 100 μg PZA ml⁻¹. The inoculated tubes were incubated at 37 °C for 3–5 d, then 2 ml 1% ferrous ammonium sulfate was added to the tubes. After about 2 h incubation at 4 °C, the results were recorded. Positive PZase activity was indicated if a brownish band appeared on the agar surface. A positive culture (PZA-sensitive strain) was plated on the agar plate in the case of *M. tuberculosis* and *M. bovis*. Furthermore, we determined the susceptibilities to PZA of different bacterial species or strains were determined on 7H11 agar (Difco) plates in the case of *M. tuberculosis* and, on LB agar plates in the case of *Escherichia coli*. The agar media, which were adjusted to pH 5.5, were prepared and incubated as described previously (Zhang et al., 1997a). Two dilutions (about 10⁵–10⁶ bacterial cells) of stationary-phase bacterial cultures were spread onto the agar plates, which were then incubated at 37 °C for 1 d for *E. coli*, 3–5 d for fast-growing mycobacteria, or 3–4 weeks for slow-growing mycobacteria. The minimum inhibitory concentration (MIC) was determined using the absolute concentration method based on no bacterial growth on plates with the lowest concentration of PZA.

Cloning of the *M. avium pncA* gene. The *M. avium pncA* gene was cloned by screening an *M. avium* AZAPII phage library (NIH AIDS Reagent Program) as described by Sambrook et al. (1989) with a 32P-labelled 329 bp PCR product containing part of the *M. tuberculosis pncA* gene (Scorpio & Zhang, 1996) as a probe. The 329 bp *M. tuberculosis pncA* probe was obtained by PCR amplification (Saiki et al., 1988) using the following forward and reverse primers. The forward primer (5'ATCA-GAACCACCGCTGG3') was taken from 91–109 bp and the reverse primer (5'GCCGACCAATGATCGGTGG3') from 420–400 bp of the *M. tuberculosis pncA* coding sequence (GenBank accession number U93967; Scorpio & Zhang, 1996). A positive phage clone containing the *M. avium pncA* gene was isolated, amplified, and the phage DNA was extracted as described by Sambrook et al. (1989). To locate the *M. avium pncA* gene, the phage DNA was subjected to restriction enzyme mapping followed by Southern blot analysis with the 329 bp *M. tuberculosis pncA* PCR product as a probe. A 1.6 kb BamHI hybridizing fragment from the pncA-containing phage DNA was subcloned into pUC19. Standard molecular cloning techniques were carried out as described by Sambrook et al. (1989).

DNA sequence analysis. The complete *M. avium pncA* gene sequence was determined for both strands from the 1.6 kb BamHI-pUC19 construct by primer walking in an automatic DNA sequencer (ABI model 377) at Johns Hopkins Genetic Core Facility. The multiple sequence homology alignment among *M. avium*, *M. tuberculosis* and *E. coli* PncA sequences was performed using the CLUSTAL method.

Southern blotting analysis. Southern blotting analysis of mycobacterial genomic DNA was performed as described previously (Zhang et al., 1992). Briefly, genomic DNA from various mycobacterial species was isolated and digested with

3368
plasmid DNA and by assaying for enhanced PZase enzyme activity. Heifets et al. (1986) found that M. avium was naturally overexpressed and included as a control for comparison with the PZase enzyme was identified by restriction digestion of the plasmid DNA probe for the Southern blotting analysis was prepared by a PCR approach using primers derived from within the M. avium pncA gene. The forward primer (5'GCATACACGCCTCACCTGGGAC3') was taken from 87-107 bp, and the reverse primer (5'TGCCACCAGCACCAGGGTGTGTT3') from 474-455 bp of the M. avium pncA coding sequence. The 391 bp PCR fragment was labelled with [32P]dCTP using the Random Primers DNA Labelling System (Gibco-BRL) according to the manufacturer's protocol. The blot was probed with the 32P-labelled PCR fragment as a probe, washed under low stringency, and subjected to autoradiography.

Transformation of mycobacteria. The pncA plasmid construct for transformation of BCG and PZA-R (ATCC 35828, a PZA-resistant derivative of M. tuberculosis strain H37Rv) was made as follows. The 1-6 kb BamHI fragment containing the M. avium pncA gene was cloned into the KpnI site of the hygromycin mycobacterial shuttle vector p16R1 (Garbe et al., 1994) as described by Sambrook et al. (1989). The p16R1–1-6 kb M. avium pncA construct and the same vector harbouring the M. tuberculosis pncA gene on a 3.2 kb EcoRI–Pst I fragment, along with the vector control, were transformed by electroporation into the naturally PZA-resistant M. bovis BCG and PZA-R using the method described previously (Zhang et al., 1993). The PZA-R isolate has been shown in a previous study to contain a single G deletion at nucleotide position 288 of the M. tuberculosis pncA sequence (Scorpio & Zhang, 1996).

Western blot analysis. This was performed as described previously (Zhang et al., 1991). The rabbit polyclonal antibody used was raised against the purified M. tuberculosis PZase protein overexpressed in E. coli (unpublished data), and this antibody was found to cross-react with the M. avium PZase protein.

Overexpression of M. avium PZase protein in E. coli. The M. avium PZase protein was overexpressed by a PCR approach using the following primers. The forward primer (5'GCCTG-TTGTCGAGCAAACCG3') was taken from 93 bp upstream of the M. avium pncA gene start codon, and the reverse primer (5'TGTCGGATCCAGGGGCGCCA3') was taken from 23 bp downstream of the stop codon of the M. avium pncA gene. The PCR was performed as described by Saiki et al. (1988) with the cloned 1-6 kb BamHI-pUC19 construct as a template using the following parameters: 95 °C for 5 min, followed by 30 cycles of 95 °C 1 min, 55 °C 1 min and 72 °C 1 min. The PCR product containing the M. avium pncA gene was cloned into pCR2.1 vector using the TA Cloning Kit (Invitrogen). The recombinant E. coli clone overexpressing the PZase enzyme was identified by restriction digestion of the plasmid DNA and by assaying for enhanced PZase enzyme activity conferred by the insert DNA using the PZase assay as described above. The M. tuberculosis pncA gene was similarly overexpressed and included as a control for comparison with the M. avium pncA.

RESULTS

PZA susceptibilities of various mycobacterial species

Heifets et al. (1986) found that M. avium was naturally resistant to more than 100 μg PZA ml⁻¹, a concentration to which M. tuberculosis is susceptible; however, the exact MIC for M. avium was not determined. We therefore determined the MIC of M. avium along with those of some fast-growing mycobacteria (M. smegmatis, M. vaccae) and E. coli, to shed some light on the relationship between susceptibility to PZA and PZase activity. The MIC of PZA for M. avium was found to be about 500 μg ml⁻¹, whereas M. smegmatis, M. vaccae and E. coli were all resistant to more than 2000 μg PZA ml⁻¹. Thus the MIC for M. avium is intermediate between those for M. tuberculosis and fast-growing mycobacteria.

Cloning of the M. avium pncA gene

In a preliminary Southern blot analysis, genomic DNA from M. avium was found to hybridize with the M. tuberculosis pncA probe (data not shown). To clone the M. avium pncA gene, we screened an M. avium iZAPII DNA library using the 329 bp PCR product containing part of the M. tuberculosis pncA gene as a probe. Because the M. avium phage library was constructed by ligating into the vector 4–8 kb genomic DNA fragments which were sonicated, blunt-ended and added with EcoRI linker, the insert DNA can be released with EcoRI. The DNA from the identified positive phage clone was digested with EcoRI and a 5-8 kb EcoRI insert was obtained. Restriction mapping and Southern blotting analysis of the phage DNA localized the M. avium pncA gene on a 1.6 kb BamHI subfragment within the 5-8 kb insert using the M. tuberculosis pncA probe. This 1.6 kb BamHI fragment was subcloned into pUC19 for DNA sequence analysis.

Sequence analysis of the M. avium pncA gene

The M. avium pncA sequence was determined on both strands for the 1-6 kb BamHI pUC19 construct using universal forward and reverse primers as well as primers derived from within the 1-6 kb BamHI fragment. The M. avium pncA gene, which is located at 248 bp downstream from the S' end of the 1.6 kb fragment, was found to be 561 bp long; this would encode a polypeptide of 187 amino acids with a predicted molecular mass of 19785.91 Da. The predicted M. avium PncA protein is only one amino acid longer than the corresponding M. tuberculosis enzyme (186 amino acids, GenBank accession number U59967). Sequence comparisons showed that the M. avium PncA has about 67.7 % and 32.8 % amino acid identity with the corresponding M. tuberculosis and E. coli enzymes, respectively (Fig. 1).

Translation of both upstream and downstream regions of the pncA did not reveal significant open reading frames with homology to known proteins in the databases. It is noteworthy that the upstream and downstream DNA sequence of the M. avium pncA did not show any significant homology with the corresponding regions in M. tuberculosis (data not shown). In E. coli, pncA is located immediately downstream of the l-asparginase I gene (asnA) and forms an operon with asnA (Jerlstrom et al., 1989). However, the
upstream sequence of *M. avium* pncA did not have any significant homology to the *E. coli* ansA, indicating that the organization of the *M. avium* pncA and its upstream sequence is different from that in *E. coli*.

PZase expression in *M. avium*

To determine the level of PZase expression and investigate its possible regulation, we performed Western blot analysis with protein extracts of *M. avium* and *M. tuberculosis* grown under various conditions, i.e. acid pH (5.5) and with the enzyme substrates nicotinamide and PZA, using a rabbit polyclonal antibody raised against the *M. tuberculosis* PZase protein. Both *M. avium* and *M. tuberculosis* were found to constitutively express a very low amount of PZase protein, hardly detectable by Western blotting (data not shown). The level of PZase expression in *M. avium* was comparable to that in *M. tuberculosis*. Acid pH (5.5) or growth in presence of 50 μg ml⁻¹ of the PZase substrates nicotinamide and PZA did not significantly induce the production of PZase in *M. avium* or in *M. tuberculosis* as judged by Coomassie staining of SDS-PAGE gels and Western blotting (data not shown).

Presence of pncA homologues in other mycobacteria

To investigate whether there are pncA homologues in other mycobacteria, a Southern blot was performed with a portion of the *M. avium* pncA gene as a probe on BamHI-digested genomic DNA from a panel of mycobacterial species (Fig. 2). The *M. avium* pncA probe hybridized significantly with genomic DNA from *M. terrae* (6-4 kb, lane 4), *M. gastri* (1-6 kb, lane 5), *M. marinum* (1-6 kb, lane 6), *M. fortuitum* (1-2 kb, lane 7), *M. gordonae* (1 kb, lane 10), *M. szulgai* (6-2 kb, lane 11), *M. celatum* (3-8 kb, lane 12) and *M. kansasi* (1-8 kb, not shown); it hybridized less intensely with *M. xenopi* (6-4 kb, lane 9), and only poorly with DNA from *M. chelonae*. *M. smegmatis* did not give significant hybridization with the *M. avium* pncA probe (data not shown).

M. avium pncA confers PZA susceptibility to PZA-resistant *M. tuberculosis* complex organisms

Naturally PZA-resistant BCG and *M. tuberculosis* strains with acquired PZA-resistance lack or have
Table 1. Susceptibilities of mycobacterial strains to PZA

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC of PZA (µg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No plasmid</td>
</tr>
<tr>
<td>M. avium</td>
<td>500</td>
</tr>
<tr>
<td>BCG</td>
<td>>500</td>
</tr>
<tr>
<td>M. tb. PZA-R</td>
<td>>500</td>
</tr>
<tr>
<td>M. tb. H37Rv</td>
<td>50-100</td>
</tr>
</tbody>
</table>

*Data from Scorpio & Zhang (1996).

reduced PZase activity due to pncA mutations (Scorpio & Zhang, 1996; Scorpio et al., 1997a, b; Sreevatsan et al., 1997). To determine if the pncA gene from M. avium would be functionally expressed and confer PZA sensitivity, we transformed BCG and PZA-R, a PZA-resistant M. tuberculosis isolate (PZA-R) derived from strain H37Rv, with a hygromycin plasmid construct harbouring the 1.6 kb BamHI fragment containing the M. avium pncA gene. The M. avium pncA gene in the 1.6 kb BamHI fragment has 248 bp upstream sequence from the start codon, which should contain the promoter for the M. avium pncA. The M. tuberculosis pncA gene on a 3.2 kb EcoRI-PstI fragment (Scorpio & Zhang, 1996) which was cloned into the same hygromycin vector was used as a positive control, and the vector alone as a negative control. Interestingly, the M. avium pncA construct gave functional expression of PZase activity in both BCG and PZA-R, and conferred PZA susceptibility in both organisms. Both BCG and PZA-R are resistant to more than 500 µg PZA ml⁻¹, and transformation with the M. avium pncA gene made them susceptible to 50-100 µg PZA ml⁻¹ (Table 1). The above data indicate that the promoter of the M. avium pncA gene is recognized by the M. tuberculosis and M. bovis transcriptional and translational apparatus and that the M. avium PZase has the ability to potentiate PZA action. The level of PZA susceptibility conferred by the M. avium pncA gene was comparable to that conferred by the M. tuberculosis pncA construct (MIC 50-100 µg PZA ml⁻¹). Western blot analysis of the recombinant BCG strains revealed that the M. tuberculosis pncA gave a protein band of about 19.8 kDa as expected; however, the M. avium pncA produced a protein band with a size of about 24 kDa (Fig. 3), bigger than the 19.8 kDa predicted from the DNA sequence.

Investigation of anomalous mobility of the M. avium PZase protein on Western blots

Because the M. avium PZase migrated as a 24 kDa band on Western blots, as opposed to a 19-8 kDa band as expected, we wondered if this was due to glycosylation of the M. avium PZase. However, incubation of the protein extracts containing M. avium PZase with the enzyme Endo H (Sigma), which removes carbohydrates from glycoproteins, did not alter the mobility of this protein on Western blots (data not shown), indicating that the slower migration of M. avium PZase on SDS-PAGE gels is not due to glycosylation of this protein.

To obtain more direct evidence that the slower migration of M. avium PZase on SDS-PAGE gels is not due to glycosylation, we overexpressed the M. avium pncA gene as well as the M. tuberculosis pncA gene as a control in E. coli, a host that is not known to glycosylate proteins. Both the overexpressed M. avium and M. tuberculosis PZase proteins gave functional enzyme activity in E. coli (data not shown). The same migration pattern as in Fig. 3 was observed, i.e. the overexpressed M. avium PZase still migrated more slowly than the corresponding overexpressed M. tuberculosis enzyme included as a control on a Western blot (data not shown). This strongly suggests that the retarded mobility of the M. avium PZase is not due to glycosylation.

DISCUSSION

In this study, we have cloned and characterized the M. avium pncA gene encoding PZase. We have demonstrated that M. avium, which is naturally resistant to PZA, has a functional pncA gene that confers PZA susceptibility to PZA-resistant M. tuberculosis complex organisms. Sequence analysis showed that the M. avium
PZase has a high degree of homology (67.7% amino acid identity) with the \textit{M. tuberculosis} enzyme, a finding consistent with the strong hybridization of \textit{M. avium} \textit{pncA} with the corresponding \textit{M. tuberculosis} gene. Southern blot analysis indicated that there are close \textit{pncA} homologues in the following mycobacterial species: \textit{M. terrae}, \textit{M. gastri}, \textit{M. marinum}, \textit{M. fortuitum}, \textit{M. gordonae}, \textit{M. celatum}, \textit{M. xenopi}, \textit{M. szulgai} and \textit{M. kansasii}. However, \textit{M. chelonei} and \textit{M. smegmatis} did not produce significant hybridization with the \textit{M. avium} \textit{pncA} gene; the lack of significant hybridization in these organisms is probably due to poor homology of their \textit{pncA} genes with the \textit{M. avium} \textit{pncA}, rather than to the absence of a \textit{pncA} gene, since these mycobacteria have been shown to have functional PZase activity (Tarnok & Rohrscheidt, 1976; Koneman et al., 1988). It is interesting to note that \textit{M. celatum} gave strong hybridization signals with the \textit{M. avium} \textit{pncA} gene, a finding consistent with the similarity of these two organisms in terms of 16S rRNA sequence homology and biochemical properties used to identify the species (Butler et al., 1993). An unexpected finding is that \textit{M. xenopi}, which is taxonomically close to \textit{M. avium} and \textit{M. celatum} (Butler et al., 1993), gave a relatively weak hybridization signal with the \textit{M. avium} \textit{pncA} gene. On the other hand, \textit{M. fortuitum}, a fast-growing mycobacterium, produced a relatively strong hybridization signal. It is worth noting that unlike many other mycobacteria, \textit{M. kansasii} has an amidase with only nicotinamidase activity but no PZase activity (Tarnok & Rohrscheidt, 1976), yet it produced a 1.8 kb \textit{BamHI} fragment which hybridized with the \textit{M. avium} \textit{pncA} probe by Southern blot analysis. Work is under way to characterize the \textit{M. kansasii} nicotinamidase gene and to determine the genetic basis for the dissociation of PZase and nicotinamidase activities in the \textit{M. kansasii} enzyme.

A somewhat unexpected finding is that \textit{M. avium} PZase when overexpressed in BCG gave a higher molecular mass band (24 kDa) than that predicted from its DNA sequence (19.8 kDa) on Western blots; by contrast, the \textit{M. tuberculosis} PZase, which is only one amino acid shorter than the \textit{M. avium} PZase, gave a 19.8 kDa band as expected based on its DNA coding sequence. The retarded mobility of the \textit{M. avium} PZase cannot be due to glycosylation for two reasons: (1) overexpression of the \textit{M. avium} PZase in \textit{E. coli}, which is not known to glycosylate proteins, still gave the same mobility pattern as in BCG; and (2) digestion of the \textit{M. avium} PZase with Endo H, which removes carbohydrates from glycoproteins, did not change the mobility of the protein on Western blots. The possibility that the \textit{M. avium} PZase used an alternative upstream start codon and encoded a larger protein can also be excluded, because there is a stop codon immediately upstream of the start codon of the \textit{M. avium} \textit{pncA} gene. Very basic proteins such as histones with considerably more positively charged amino acids migrate more slowly on SDS-PAGE gels than expected from their molecular mass (Panyim & Chalkley, 1971). The \textit{M. avium} PZase has more overall positively charged amino acid residues than the \textit{M. tuberculosis} enzyme: 21 positively charged (with 32 negatively charged) versus 17 positively charged (with 34 negatively charged). The more positive overall charge of the \textit{M. avium} PZase is likely to be the cause of its slower migration on the Western blots.

In the present study, we have shown that the \textit{M. avium} \textit{pncA} gene conferred PZA susceptibility in \textit{M. tuberculosis} complex organisms. This is surprising because \textit{M. avium} itself is not susceptible to PZA (MIC 500 \mu g PZA ml\(^{-1}\) versus 50 \mu g PZA ml\(^{-1}\) in \textit{M. tuberculosis}); and the fact that the \textit{M. avium} \textit{pncA} conferred PZA susceptibility to resistant \textit{M. tuberculosis} strains suggests that the relative nonsusceptibility to PZA of the \textit{M. avium} species is not because it has an ineffective PZase enzyme. The low-level expression of the \textit{M. avium} PZase could not have contributed to its natural resistance to PZA, as its level of expression is comparable to that in susceptible \textit{M. tuberculosis} (data not shown). There are three possible reasons, which are not necessarily mutually exclusive, for the nonsusceptibility of \textit{M. avium} to PZA. The first possibility is that \textit{M. avium} has a more active efflux mechanism that pumps out POA than \textit{M. tuberculosis}. \textit{M. smegmatis} has been shown to have an efflux pump Lra (Takiff et al., 1996), and it is not clear whether \textit{M. avium} would also have a similar efflux mechanism involved in pumping out certain antibiotics including POA. Further studies will be necessary to determine whether the natural resistance of \textit{M. avium} to PZA is due to a more active efflux mechanism for pumping out POA. The second possibility is that \textit{M. avium}, unlike \textit{M. tuberculosis}, may not have a sensitive target for POA or have a target that is less susceptible to POA than that in \textit{M. tuberculosis}; however, because the target for POA in \textit{M. tuberculosis} has not yet been identified, this possibility cannot be addressed at this time.

The third possibility is that the cell wall of \textit{M. avium} may not take up PZA or its derivative POA as efficiently as that of \textit{M. tuberculosis}. Indeed, we have some data indicating that the \textit{M. avium} cell wall does not take up as much \(^{3}H\)POA as \textit{M. tuberculosis} under acid pH conditions (unpublished). This difference in the cell wall permeability of POA is consistent with the finding that \textit{M. avium} is less susceptible than \textit{M. tuberculosis} to certain antibiotics such as POA esters (Cynamon et al., 1995; Yamamoto et al., 1995) and aminoglycosides (Jarvier & Nikaido, 1994). Another example showing that significant differences exist among the cell walls of different mycobacteria in terms of their permeability to certain antibiotics is that the cell wall of \textit{M. chelonei} is much less permeable to the \(\beta\)-lactam antibiotic cephalosphorins than that of \textit{M. tuberculosis} (Jarvier & Nikaido, 1994). Our data on the differential permeability of mycobacterial cell walls to POA are consistent with these findings. It will be interesting to analyse further the relationship between cell wall permeability and susceptibility to PZA/POA using reagents that alter the cell wall permeability, and to identify the structural basis of the cell wall differences between \textit{M. avium} and \textit{M. tuberculosis} that may be involved in the uptake of POA.
ACKNOWLEDGEMENTS

This work was supported by a Faculty Development Award (to Y. Z.) from The Johns Hopkins School of Hygiene and Public Health, and in part by a grant from the American Lung Association. We thank Salman Siddiqi for provision of mycobacterial strains, and acknowledge the receipt of iZAPII M. avium phage DNA library from NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH. We also thank the reviewers of the paper for their constructive comments.

REFERENCES

Received 19 March 1997; revised 9 June 1997; accepted 30 June 1997.