Peptides 14VIDLL18 and 96FEAAAL101 defined as epitopes of antibodies raised against amino acid sequences of enterotoxigenic *Escherichia coli* colonization factor antigen I fused to *Salmonella* flagellin

Maria G. Luna,† Luis C. S. Ferreira, Darcy F. Almeida and Anna Rudin

Author for correspondence: Maria G. Luna. Tel: +55 21 5876380. Fax: +55 21 5876476. e-mail: luna@uerj.br

Antibodies raised against four hybrid *Salmonella* flagellins carrying amino acid sequences derived from the fimbrial subunit of the colonization factor I antigen (CFA/I) of enterotoxigenic *Escherichia coli* (ETEC), i.e. hybrid flagellins Fla I (aa 1–15), Fla II (aa 11–25), Fla III (aa 32–45) and Fla IV (aa 88–102), were not able to inhibit the *in vitro* binding of CFA/I-expressing ETEC bacteria to enterocyte-like Caco-2 cells. However, one of the hybrid flagellins (Fla II) was recognized by a previously described anti-CFA/I subunit mAb (S-CFNI 17:8) which was able to block adhesion of CFA/I-expressing bacteria to Caco-2 cells and to bind to the amino acid sequence 15IDLQ19 of the CFA/I fimbrial subunit. Pepscan analysis of antibodies raised against the hybrid flagellins Fla II and Fla IV showed that they were specific for the sequences 14VIDLL18 and 96FEAAAL101, respectively, of the CFA/I fimbrial subunit. Thus, the discrepancy in the abilities of the anti-Fla II serum and the mAb S-CFA/I 17:8 to block binding might be ascribed to their slightly different fine specificity for epitopes.

Keywords: enterotoxigenic *Escherichia coli*, CFA/I fimbriae, flagellin, *Salmonella*, monoclonal antibodies

INTRODUCTION

Enterotoxigenic *Escherichia coli* (ETEC) is one of the most common causes of acute diarrhoea in children in developing countries and in travellers who visit ETEC-endemic areas (Black, 1990, 1993). Adherence of bacteria to the epithelial surface of the small intestine and delivery of toxins are the two most important events in ETEC pathogenesis. Colonization of the human small intestine by ETEC involves several antigenically different fimbrial or non-fimbrial adhesins collectively termed colonization factors (CFs), but individually called either colonization factor antigens (CFAs), coli surface (CS) antigens or putative colonization factors (PCFs) (Gaastra & Svennerholm, 1996). Since mucosal antibodies to CFs are protective against ETEC disease, these antigens have been included in vaccines (Holmgren & Svennerholm, 1996). However, protection conferred by immunization with CFs is restricted to those strains expressing homologous adhesins (Svennerholm et al., 1989).

The CFA/I fimbria is one of the most frequently found CFs in epidemiological studies and also one of the best characterized at the molecular level. It has a rigid structure with a diameter of 7 nm and is composed of many copies of a single 15 kDa subunit which shares extensive amino acid sequence similarity with the subunits of other CFs, for example CS1, CS2, CS4, CS17 and PCFO166 (McConnell et al., 1989; Gaastra & Svennerholm, 1996). The CFA/I fimbria is polar with a single receptor-binding domain located at the tip of the fimbrial rod (Bühler et al., 1991; Marron & Smyth, 1995).

In contrast to mAbs raised against intact fimbriae, mAbs against dissociated CFA/I subunits were shown to cross-react with several CFs and could inhibit the adhesion of ETEC expressing homologous and heterologous CFs to enterocyte-like Caco-2 cells and isolated human jejunal enterocytes (Rudin et al., 1994, 1996). One of these
mAbs, S-CFA/I 17:8, bound to a continuous epitope of the CFA/I subunit composed of the amino acid sequence 15IDLLQ19 (Rudin & Svennerholm, 1996). However, immunization with a synthetic peptide corresponding to the first 25 N-terminal amino acids of the CFA/I subunit did not generate antibodies with the required specificity to block the adhesion of CFA/I-expressing bacteria to Caco-2 cells (Rudin & Svennerholm, 1996).

Attenuated Salmonella strains can induce a broad immune response after oral administration and represent a convenient and low-cost alternative means of presenting heterologous antigens (Hoiseth & Stocker, 1981). Moreover, the insertion of heterologous linear epitopes in Salmonella flagellin has been shown to induce humoral immune responses against several antigens, such as cholera toxin (Newton et al., 1989), hepatitis B virus surface antigen (Wu et al., 1989), influenza virus haemagglutinin (McEwen et al., 1992) and streptococcal M protein (Newton et al., 1991). Purified hybrid Salmonella flagellins carrying linear epitopes of the CFA/I fimbria have also been shown to induce antibodies against the CFA/I fimbrial subunit after parenteral immunization of mice (Luna et al., 1997).

In this study we analysed mouse antisera against hybrid flagellins with CFA/I-derived amino acid inserts for inhibition of binding to Caco-2 cells. In addition, the epitope specificity of the CFA/I-specific antibodies raised against the hybrid flagellins was evaluated by the Pepscan technique.

METHODS

Bacterial strains and plasmid. The flagellin-negative strain Salmonella dublin arO A SL5928 was used as a carrier of plasmids encoding the hybrid flagellins (Newton et al., 1989). The plasmid pLS408 has a deletion of a 48 bp EcoRV fragment in the central hypervariable region of the fliC (H1-d) flagellin-encoding gene. Therefore, this plasmid contains a unique EcoRV restriction site between two codons of the flagellin gene, into which in-frame insertions of oligonucleotides encoding CFA/I sequences could be introduced. Construction and characterization of the Salmonella strains harboring the recombinant pLS408-derived plasmids were carried out as previously described (Luna et al., 1997). The flagellin encoded by plasmid pLS408 was referred to as Fla 30. The flagellins containing CFA/I-derived sequences were named Fla I (aa 1-15), Fla II (aa 11–25), Fla III (aa 32–45) and Fla IV (aa 88-102). For flagellin purification, the Salmonella strains were grown at 37 °C in Luria–Bertani broth (Difco) supplemented with 25 µg ampicillin ml–1.

The ETEC strains 258909-3 (CFA/I, O128:H?, 5T+’/LT+’) (Gotheors et al., 1985) and the corresponding CFA/I-negative mutant 258908-3M (Lopez-Vidal et al., 1988) were used in assays of inhibition of binding to Caco-2 cells and immune-electron microscopy. The ETEC strains were grown on Casamino acids/yeast extract agar plates (CFA agar) at 37 °C overnight (Evans et al., 1979).

Flagellin and CFA/I fimbriae preparations. The different flagellins were purified by acid cleavage, as described by Ibrahim et al. (1985). The hybrid flagellin preparations were analysed by SDS-PAGE before immunization to control for any possibility of degradation of the protein. Protein concentrations were determined by the Lowry method. The CFA/I fimbriae were purified essentially as described by Evans et al. (1979). Briefly, bacteria grown on CFA agar were homogenized with a blender and centrifuged at 12000 g for 20 min. The cell-free supernatant fraction was ammonium-sulphate-precipitated (at 20 and 40% saturation), and after centrifugation at 12000 g and dialysis, the pellet was further purified by gel filtration in a DEAE-Sephadex column or by ultracentrifugation in a CsCl gradient (density 1.3 g cm–3). The concentration of the fimbriae was determined by an inhibition ELISA using a highly purified lyophilized fimbrial preparation as a reference (Lopez-Vidal et al., 1988).

Antibody preparations. mAbs against CFA/I subunits, i.e. mAbs S-CFA/I 17:8 (144 µg IgG1 ml–1) and S-CFA/I 5:6 (150 µg IgG1 ml–1) had previously been produced against guanidine-hydrochloride-disassociated subunits of CFA/I fimbriae (Rudin et al., 1994). The anti-peptide antiserum was previously raised in rabbits against a synthetic CFA/I peptide consisting of the first 25 N-terminal amino acids of the subunit (Rudin & Svennerholm, 1996). Antisera against each of the modified flagellins were raised in female BALB/c mice after four intraperitoneal immunizations with 10 µg purified flagellin (Luna et al., 1997). The first dose was given in complete Freund’s adjuvant, and 3 weeks later a second dose was administered in incomplete Freund’s adjuvant. Ten days later two additional doses without adjuvant were given with a 4 d interval. The animals were sacrificed 1 week after the last immunization and blood was drawn by heart puncture. All sera were incubated with a CFA/I-negative strain (25890-3M) and heat-inactivated before use, as previously described (Rudin & Svennerholm, 1996). Immunization of BALB/c mice with isolated hybrid flagellins resulted in the production of specific IgG responses against CFA/I fimbrial subunits (Luna et al., 1997). The CFA/I-subunit-specific IgG titres generated with hybrid flagellins Fla II and Fla IV were higher than those generated with hybrid flagellins Fla I and Fla III (1/6400 versus 1/1600 respectively). No CFA/I-specific antibody titre was detected in antiserum raised against Salmonella flagellin without an insert (Fla 30) (Luna et al., 1997).

Agglutination tests. A 10 µl sample of a bacterial suspension (1010 c.f.u. ml–1) of each recombinant S. dublin strain expressing flagellin with or without an insert and of the flagellin-negative strain was mixed with the same volume of undiluted mAbs or antiserum on a glass slide at room temperature. The reaction was considered positive when agglutination was macroscopically visible within 2 min. The bacterial strains mixed with saline served as parallel negative controls.

Inhibition of adhesion to Caco-2 cells. Caco-2 cells were grown for 14–16 d in Dulbecco’s modified Eagle’s medium containing foetal calf serum (10%, v/v) and glutamine (1%, w/v) in eight-well chamber slides (Nunc) in 7% CO2 at 37 °C. A suspension of 1010 bacteria ml–1 in culture medium containing 0.5% D-mannose was mixed with an equal amount of diluted antiserum and incubated at room temperature for 20 min. The mixture was then added to the Caco-2 cells, washed with Eagle’s medium and incubated at 37 °C for 3 h. After five washes, cells were fixed in methanol, stained with 10% (v/v) Giemsa and examined by oil-immersion light microscopy to determine bacterial adherence. The percentage of epithelial cells with at least one adhering bacterium was determined by counting 10 randomly chosen microscopic fields with approximately 100 cells per field. Each antiserum was tested at least in duplicate and all assays were performed in a blind manner.
Protecting groups were removed from the amino acids by synthesis, the peptide was cleaved from the resin and the samples were negatively stained with molybdate (Sigma) and the grids were examined in an electron microscope (JEOL) at 80 kV.

Immunoelectron microscopy. Formvar-coated grids (400 mesh) were coated with suspensions of S. dublin expressing hybrid flagella for 2 min. The coated grids were placed on a drop with mAb diluted in 1% BSA/0.05% Tween/PBS for 15 min and subsequently on drops with gold (10 nm)-labelled goat anti-mouse IgG (BioCell Research Laboratories) diluted 1:30 in 1% BSA/0.05% Tween/PBS. After several washings with 1% BSA in PBS and a final wash with distilled water, the grids were examined in an electron microscope (JEOl) at 80 kV.

Peptide synthesis. The synthesis of the peptide corresponding to the first 25 N-terminal amino acids of the CFA/I subunit (VEKNITYTASVDPVIDLQADGNAL) was performed with a Model 430 A Peptide Synthesizer (Applied Biosystems) as previously described (Rudin & Svennerholm, 1996). After synthesis, the peptide was cleaved from the resin and the protecting groups were removed from the amino acids by acidic hydrolysis using anisole and ethanedithiol as scavengers. The peptide composition was confirmed by amino acid analysis, and purity was assessed by reverse-phase high-pressure liquid chromatography (Rudin & Svennerholm, 1996).

Epitope analysis by Pepscan. A Multipin non-cleaveable peptide kit and FMOC (9-fluorenylmethoxycarbonyl)-protected amino acids (Chiron Mimotopes) were used to synthesize sets of linear overlapping hexamer peptides corresponding to the N-terminal (aa 1–52), central (aa 85–114) and C-terminal (aa 121–147) parts of the CFA/I subunit protein by the Geysen pin method (Geysen et al., 1984). The peptides were synthesized on the tips of derivatized polyethylene pins in the configuration of 96-well microtitre plates and then activated with diisopropylcarbodiimide (Merck) and 1-hydroxybenzotriazole (Chiron Mimotopes), as described previously (Rudin & Svennerholm, 1996). The Geysen’s capture ELISA (Geysen et al., 1984) was utilized with minor modifications. After an initial blocking step, the peptides on the pins were incubated with antisera against hybrid flagellins (1/1000 dilution) at room temperature for 2 h. The pins were then washed and incubated with horseradish-peroxidase-conjugated goat anti-mouse IgG (1/2500 dilution) (Jackson ImmunoResearch) diluted in PBS/1% sheep serum to 0.1% Tween 20 for 60 min. Subsequently, the chromogenic substrate solution H2O2/ABTS [diammonium 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)] was added and the A492 measured after 25 min on a Labsystem Multiscan Plus. The pins were reused after effective removal of the antibodies by sonication in disruption buffer (1% PBS, 1% SDS and 0.1% 2-mercaptoethanol) at 65 °C for 10 min and hot methanol treatment.

Results

Anti-CFA/I mAbs, anti-CFA/I peptide antibodies and polyclonal anti-CFA/I antibodies react with hybrid flagellins

The mAbs S-CFA/I 17:8 and S-CFA/I 5:6, both obtained from mice immunized with dissociated CFA/I fimbrial subunits, were reacted with intact hybrid flagella expressed on the surface of S. dublin strain.
M. G. LUNA and OTHERS

Fig. 1. Electron micrograph of immunogold labelling of Fla II flagellum bearing the CFA/I-subunit-derived amino acid insert (aa 11–25) (a) and Fla 30 flagella without insert (b), expressed by recombinant S. dublin. Whole bacterial cells expressing flagella were labelled with mAb S-CFA/I 17:8 at a final concentration of 72 µg ml⁻¹ and negatively stained. Bars, 200 nm.

Table 2. Inhibition of binding of CFA/I-expressing bacteria to Caco-2 cells using antisera against S. dublin hybrid flagellins bearing inserted CFA/I amino acid sequences

mAb S-CFA/I 17:8 was used at a final concentration of 14.4 µg ml⁻¹; all anti-flagellin sera were used in a final dilution of 1:4. Values are means from two separate experiments.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Caco-2 cells with adherent CFA/I⁺ bacteria (% ± 1 SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>22.5 ± 2.5</td>
</tr>
<tr>
<td>mAb S-CFA/I 17:8</td>
<td>2.7 ± 0.45</td>
</tr>
<tr>
<td>Anti-Fla 30</td>
<td>21.1 ± 3.18</td>
</tr>
<tr>
<td>Anti-Fla I</td>
<td>20.5 ± 0.50</td>
</tr>
<tr>
<td>Anti-Fla II</td>
<td>20.6 ± 3.15</td>
</tr>
<tr>
<td>Anti-Fla III</td>
<td>24.0 ± 1.00</td>
</tr>
<tr>
<td>Anti-Fla IV</td>
<td>23.5 ± 1.67</td>
</tr>
</tbody>
</table>

SL5928 in agglutination tests or with purified hybrid flagellin in ELISA. Both of these mAbs had previously been shown to inhibit the CFA/I-mediated adhesion of ETEC bacteria to Caco-2 cells (Rudin et al., 1994). mAb S-CFA/I 17:8 reacted specifically with hybrid Fla II flagella and Fla II flagellin (bearing CFA/I aa sequence 11–25) in agglutination tests and ELISA, respectively, whereas no reaction was detected with mAb S-CFA/I 5:6 (Table 1). Rabbit antibodies raised against a synthetic linear peptide containing the first 25 N-terminal amino acids of the CFA/I fimbrial subunit recognized only hybrid Fla I and Fla II flagella and flagellins in agglutination tests and in ELISA, respectively. Mouse polyclonal antibodies generated against dissociated CFA/I fimbrial subunits reacted with hybrid Fla II, Fla III and Fla IV flagellins and flagella in ELISA and in agglutination tests, respectively. However, these anti-CFA/I subunit antibodies did not react with Fla I flagella in agglutination tests and only weakly with hybrid Fla I flagellin in ELISA. The agglutination tests strongly indicated that the amino acid sequence inserts corresponding to regions of the CFA/I fimbrial subunit were surface-exposed on all recombinant Salmonella strains. Further evidence for surface exposure of the inserted CFA/I amino acid sequence in Fla II flagella was obtained from immunogold labelling experiments with mAb S-CFA/I 17:8. Very strong labelling was observed along the flagellar shafts of the S. dublin strain expressing hybrid Fla II flagella after reaction with mAb S-CFA/I 17:8, whilst no labelling was detected when the
CFA/I B-cell epitopes in *Salmonella* flagellin

S. dublin strain expressing flagella without insert (Fla 30) was used (Fig. 1).

Anti-hybrid flagellin antibodies do not inhibit binding of CFA/I-expressing bacteria to Caco-2 cells

In a previous study we found that none of the anti-hybrid flagellin antisera could inhibit haemagglutination promoted by ETEC expressing CFA/I fimbriae (Luna et al., 1997). As a more physiological alternative to inhibition of haemagglutination we attempted to block the binding of CFA/I-expressing bacteria to Caco-2 enterocyte-like cells. No reduction in the numbers of Caco-2 cells with adhering bacteria was observed in experiments carried out with antisera from mice immunized with the four different hybrid flagellins (Table 2). As a positive control, mAb S-CFA/I 17:8 inhibited the adherence of CFA/I-expressing bacteria to Caco-2 cells by approximately 90%, confirming previously published results (Rudin et al., 1994).

Pepscan analysis defines the CFA/I epitope specificity of antisera raised with hybrid *Salmonella* CFA/I flagellins

To investigate whether the failure of the anti-Fla II antiserum to inhibit adhesion of CFA/I-expressing bacteria (Table 2) might be due to a different epitope specificity from mAb S-CFA/I 17:8, Pepscan analyses were performed to identify linear CFA/I epitopes recognized by the antibodies raised against the hybrid flagellins. In contrast to mAb S-CFA/I 17:8, which reacted specifically with the peptide sequence 151DLLQ18 (Rudin & Svennerholm, 1996), the antibodies raised against purified hybrid flagellin Fla II bound strongly only to peptides 13 and 14 having the amino acid sequence 14VIDLL18 in common (Fig. 2). Anti-Fla IV antiserum, which also possessed high antibody titres against CFA/I fimbrial subunits, was similarly submitted to Pepscan analysis. It reacted only with a short peptide sequence constituted by the hexapeptide 14FEAAAL18. Antiseras against the other hybrid flagellin constructs, Fla I and Fla III, failed to react with specific linear peptides. Higher concentrations of anti-Fla I and anti-Fla III antiseras were subsequently used, but the background increased dramatically and no specific reaction could be observed. Control non-immune serum showed a low background with no pre-existing specific antibodies to the peptides (data not shown).

DISCUSSION

Long-term protection against ETEC disease requires the induction of intestinal IgA against the various ETEC fimbriae to prevent colonization, which is the first event in ETEC pathogenesis (Holmgren & Svennerholm, 1996). Although the majority of the CFA fimbrial epitopes are conformational, a few linear epitopes have been identified after immunization of monkeys with isolated CFA/I fimbrial subunits (Cassels et al., 1992).
Antibodies against one linear epitope located in the N-terminal part of the CFA/I subunit have been shown to interfere with the adherence of fimbriated bacteria to Caco-2 cells (Rudin et al., 1994). However, the development of peptide-based vaccines has been hampered by the low immunogenicity of synthetic peptides, particularly if administered on mucosae.

An alternative means of presenting linear epitopes to the mucosal immune system could be to use live recombinant Salmonella strains expressing hybrid flagellins (Newton et al., 1989). Such engineered strains have been shown to elicit humoral, mucosal and cellular immune responses after oral or parenteral immunization of animals (McEwen et al., 1992; Newton et al., 1989, 1991; Wu et al., 1989; Verma et al., 1995a, b). The successful application of this epitope delivery system to fimbrial antigens would require the cloning and expression of epitope(s) close to the receptor-binding site. In addition, the induced antibodies would need to display the appropriate specificities to bind and neutralize the fimbrial subunit in its polymeric form.

Previous reports suggested that only the terminal structural subunit of the CFA/I fimbriae exposes a receptor-binding domain (Bühler et al., 1991; Marron & Smyth, 1995). This receptor-binding site probably includes the amino acids 14IDLQ18 since the mAb S-CFA/I 17:8, specific for this epitope, was very efficient in inhibiting adhesion of ETEC bacteria to Caco-2 cells and human enterocytes (Rudin & Svennerholm, 1996; Rudin et al., 1996). Thus, the binding of mAb S-CFA/I 17:8 to hybrid flagellin Fla II, as shown both by agglutination tests and by immunogold labelling, indicated clearly that the expressed epitope had the right conformation for the mAb to bind strongly and was surface-exposed on the recombinant flagella. In addition, antibodies raised against the hybrid flagellin could recognize the CFA/I subunit in ELISA or immunoblots (Luna et al., 1997). Therefore, it was surprising that the anti-Fla II antibodies were not able to block binding of CFA/I-expressing bacteria to the Caco-2 cells. However, this result was in line with previous experiments showing lack of inhibition of haemagglutination using these antisera (Luna et al., 1997).

Our findings using Pepscan analysis suggest that exposure of a sequence on the surface of the Salmonella flagellin does not ensure production of antibodies against all possible epitopes of that sequence. Thus, polyclonal antibodies against the Fla II insert (aa 11-25) reacted with only one linear epitope, composed of the sequence 14VIDLL18. The same epitope specificity was obtained in rabbits immunized with a synthetic peptide corresponding to the first 25 N-terminal amino acids of the CFA/I fimbrial subunit and, similarly to our results, no significant inhibition of Caco-2 cell binding was found using this anti-peptide antisera (Rudin & Svennerholm, 1996). Therefore, the different epitope specificity of the anti-Fla II serum compared with that of mAb S-CFA/I 17:8 could be an explanation for the lack of inhibition of binding of CFA/I fimbriated bacteria to the Caco-2 cells. Interestingly, the results obtained using two different ways (hybrid flagellin and synthetic peptide) of presenting the amino acid sequence in different animal species indicated that the sequence 14VIDLL18 is the major linear epitope when the CFA/I N-terminal peptide is presented to the immune system. With both immunization procedures, a minor change of the epitope specificity, in relation to the sequence recognized by the mAb S-CFA/I 17:8, seems to cause a significant alteration in the affinity of the antibodies to the native protein. Such different epitope specificities may also explain a previous report of antibodies raised against an epitope of hen egg-white lysozyme fused to E. coli flagellin, which failed to bind the same sequence in the native protein (Kuwajima et al., 1988).

Immunization of mice with the purified hybrid flagellin Fla IV (aa 88-102) also resulted in the generation of antibodies against a single linear epitope, the sequence 96FEAAAL103. As far as we know, this is the first report of B-cell epitope specificity analysis of antibodies raised against sequences inserted in Salmonella flagellin and, in both of the antisera tested, the same restricted epitope specificity was obtained. We hypothesize that the conformation of the recombinant flagellins might favour the selection and presentation of unique sequences in the insert by antigen-presenting cells. Additional fine-specificity analysis of antisera raised against hybrid flagellins fused to other antigens may demonstrate if such strong preference for single linear epitopes extends to other flagellin constructs.

The analysis of the epitope specificity of serum antibodies of mice immunized with purified hybrid flagellin Fla II suggests that attempts to develop oral live Salmonella vaccines would probably not generate a mucosal immune response able to block adhesion of CFA/I-expressing bacteria to enterocytes. In contrast, previous attempts based on the expression of linear epitopes in the Salmonella flagellin system have succeeded in generating antibodies able to bind the M protein of Streptococcus pyogenes and the haemagglutinin of the influenza virus, leading to partial protection upon challenge (Newton et al., 1991; McEwen et al., 1992). As regards the CFA/I fimbrial subunit, a different conformation of the insert fused to the flagellin might be necessary for the generation of protective antibodies. The incorporation of amino acid residues bordering the heterologous insert in flagellin has been shown to affect the host immune response to the heterologous antigen (Verma et al., 1995a). A similar approach may also be applied to the CFA/I subunit sequence as a way to modify the conformation of the insert and, consequently, the specificity of the antibodies directed against the flagellin insert.

Although most of the previous studies using the Salmonella flagellin expression system have demonstrated the generation of serum antibodies against the heterologous insert, the epitope specificities of the antibodies have not been elucidated. Our results suggest that the fine specificity of linear epitopes recognized by anti-
bodies raised against hybrid flagellin constructs may be important in terms of their interaction with the native protein.

ACKNOWLEDGEMENTS

The skilful assistance of Gudrun Wiklund in the purification of fimbrils and of Ella Olofsson in the production of mAbs is gratefully acknowledged, as well as the technical assistance of Marcelo M. Martins, Celso Pereira and Eduardo Camacho. We also thank Ann-Mari Svennerholm for support and valuable discussions, and Anna Helander for expert advice on the electron microscopy. This work was supported by the World Health Organization (WHO), the Swedish Agency for Research Cooperation in Developing Countries (SAREC), the Faculty of Medicine of Goteborg University, and by PADCT and FINEP. M.G.L. received a Fellowship from the Brazilian RHAE programme.

REFERENCES

Marron, M. B. & Smyth, C. J. (1995). Molecular analysis of the cso operon of enterotoxigenic Escherichia coli reveals that CsoA is the adhesin of CS1 fimbrils and that the accessory genes are interchangeable with those of the cfa operon. Microbiology 141, 2849–2859.

