Organization of the *Haemophilus ducreyi* 35000 chromosome

Marcia M. Hobbs, Mary Jean Leonardi, Franca R. Zaretzky, Ting-Hsien Wang and Thomas H. Kawula

Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7290, USA

A physical and rudimentary genetic map of the *Haemophilus ducreyi* strain 35000 genome was constructed. Pulsed-field gel electrophoresis was used to separate restriction fragments of *H. ducreyi* DNA digested with *SfiI*, *I-CeuI*, or *SfiI* plus *I-CeuI*. The sizes of the fragments were determined, and the circular chromosome was estimated to be 1757 kbp. The six *I-CeuI* fragments and four *SfiI* fragments were ordered into macrorestriction maps using Southern blot hybridization with random *H. ducreyi* clones as probes. It was shown that both *H. ducreyi* and the distantly related *Haemophilus influenzae* have six *rrn* operons marked by the locations of the *I-CeuI* sites. However, the two species displayed distinct *I-CeuI* restriction patterns. A second *H. ducreyi* strain, CIP542, displayed an identical *I-CeuI* pattern to that of *H. ducreyi* 35000, but *SfiI* digests of the two strains were distinct. The orientation of the six *rrn* operons was determined and thirteen identified *H. ducreyi* genes positioned on the map of strain 35000.

Keywords: *Haemophilus ducreyi*, chromosome map, *rrn* organization

INTRODUCTION

Haemophilus ducreyi is the Gram-negative etiological agent of the sexually transmitted disease, chancroid, and *H. ducreyi* infection is a cofactor for transmission of the human immunodeficiency virus (Nzila et al., 1991; Plummer et al., 1991; Peep et al., 1992; Le-Bacq et al., 1993). Considerable attention has been focused on identifying potential *H. ducreyi* virulence determinants (Spinola et al., 1990; Campagnari et al., 1991; Alfa, 1992; Castellazzo et al., 1992; Parsons et al., 1992; Spinola et al., 1992, 1993; Hollyer et al., 1994; Palme et al., 1994; Elkins et al., 1995) and on developing animal models of *H. ducreyi* infection (Purcell et al., 1991; Spinola et al., 1994; Totten et al., 1994; Hobbs et al., 1995). However, relatively little is known about the genomic structure and organization of this organism.

The development of pulsed-field gel electrophoresis (PFGE) techniques has dramatically influenced the field of physical chromosome mapping and the analysis of bacterial genomic organization. Combined with the identification of restriction enzymes with recognition sequences that occur infrequently in bacterial genomes, PFGE has become a reliable and efficient method for estimating genome sizes and constructing macrorestriction maps of bacterial chromosomes (Fonstein & Haselkorn, 1995). Here, we describe a macrorestriction map of the chromosome of the virulent *H. ducreyi* strain 35000 created using PFGE and Southern blot analysis. The circular chromosome was estimated to be 1752 kbp based on the sizes of the fragments generated from digesting whole chromosomal DNA with *I-CeuI*, *SfiI*, or *I-CeuI* plus *SfiI*. *I-CeuI*, an intron-encoded endonuclease from the chloroplast large rRNA gene of *Chlamydomonas engametos*, recognizes a 26 bp sequence present in the rRNA genes of a variety of bacterial species (Liu et al., 1993). Digestion of *H. ducreyi* 35000 DNA with *I-CeuI* indicated that this species, like the distantly related *Haemophilus influenzae*, has six *rrn* operons. We have placed thirteen identified *H. ducreyi* genes on the physical map, resulting in a rudimentary genetic map that may provide a basis for future genetic studies with this organism.

METHODS

Bacterial strains. *H. ducreyi* strain 35000 (ATCC 33922) was isolated in Winnipeg, Canada in the 1970s (Hammond et al., 1978). This isolate contains no antibiotic resistance plasmids, and a phenotypically cryptic plasmid reported in some *H. ducreyi* strains (Denere et al., 1982) was not observed. The virulence of this isolate has been demonstrated in several animal models of infection (Purcell et al., 1991; Spinola et al., 1994; Hobbs et al., 1995). *H. ducreyi* strain CIP542 (ATCC 33940) has been designated the type strain for the species (Skerman et al., 1980);
however, it is less virulent than _H. ducreyi_ 35000 in some animal models (Hammond et al., 1978; Hobbs et al., 1995) and in _in vitro_ adherence and cytotoxicity assays (Alfa, 1992; Lammel et al., 1993; Hollier et al., 1994). _H. influenzae_ (ATCC 33391) is the type strain for this species (Skerman et al., 1980). _Haemophilus_ species were grown on chocolate agar (Difco GC agar base, 1% (w/v) IsoVitaleX (Becton Dickinson, Cockeysville, MD, USA) 1% haemoglobin) or in BH broth supplemented with 1% IsoVitaleX and 50 μg haemin ml⁻¹ at 35 °C in a humidified atmosphere with 5% (v/v) CO₂. Recombinant _E. coli_ strains were grown on LB agar (Sambrook et al., 1989) at 37 °C.

PFGE and Southern hybridization. Genomic DNA was prepared in agarose blocks, digested with type I restriction enzymes and subjected to PFGE using a contour-clamped homogeneous electric field apparatus as described previously (Dempsey et al., 1991). Digestion with _I-Vel_ (New England Biolabs) was carried out with 0-5-1.0 units (U) of enzyme for 37 °C. Longer incubation periods or using more than 1 U of this intron-encoded endonuclease resulted in poor entry of the largest _I-Vel_ fragment into gels. Digests were separated in 1% (w/v) agarose gels cast with individual wells or one preparative well extending the width of the gel. Pulse times ranged from 4 to 200 s, and gels ran for 40-48 h.

Following PFGE, DNA was transferred to BA-S 85-supported nitrocellulose filters (Schleicher & Schuell) and cross-linked as described by Dempsey et al. (1991). Membranes containing DNA from preparative wells were cut into thin strips for Southern blot analysis. Southern blots were probed with plasmids from an _H. ducreyi_ 35000 library in 2ZAPII (Stratagene) or cloned _H. ducreyi_ genes sent by other investigators. _DraI_ -digested plasmids were labelled and Southern hybrids were detected using the reagents of the ECL Direct system (Amersham). The _gyrB_ oligonucleotide (Dempsey et al., 1991) was labelled with the ECL 3' Oligolabelling kit (Amersham); hybridization, washes and detection were performed according to the manufacturer's instructions.

Fragment sizing. Gels containing ethidium-bromide-stained DNA were photographed, and negatives were scanned using an LKB Hornrna Ultroscan XL Laser Densitometer. Fragment sizes were determined by comparing the distances migrated with those of size standards in a linear zone of resolution on each gel. DNA size standards were λ DNA concatemers, HindIII-digested λ DNA and _Saccharomyces cerevisiae_ YPH80 chromosomes (Megabase I, Gibco-BRL). The size of each restriction fragment was determined from at least three separate gels.

rRNA probe preparation. The following oligonucleotides were made using an Applied Biosystems 380A Synthesizer (Perkin-Elmer): 23Sf, 5'-GAGATAAGTGCTGAAAAGCATCTAAG-3'; 5Sr, 5'-CTGAGTTCGGCATGGGTTACGGTG-3'; duc16Sf, 5'-TGATTAAGTGAGATGAAAGCC-3'; duc16Sr, 5'-AGAGTACCTTTGAGATCGTCGCCT-3'. The rrs (23S) and rrf (5S) primer sequences were taken from the _E. coli_ rrsB gene and were predicted to amplify the region between bases 6234 and 6546 of _H. ducreyi_ 35000 DNA with I-Ceul, SfiI, or _I-Vel_ plus SfiI digestion patterns of _H. ducreyi_ 35000.

RESULTS

H. ducreyi genome size estimate

Like other _Haemophilus_ species, _H. ducreyi_ has a low G + C content of 39% (Kilian & Biberstein, 1984). Therefore, we screened restriction enzymes with GC-rich recognition sequences to generate chromosomal digests with relatively few fragments. _AseI_ (GGCCGGCC), _SfiI_ (GGCCNNGNNGGC) and _SgfI_ (GCGATGCC) produced 12, 4 and 14 fragments, respectively, while _NdeI_ (GCGGGC) did not cut _H. ducreyi_ 35000 DNA. The intron-encoded endonuclease _I-Vel_ (TAACCTATAAAGGTCCTAAAGTACGGA) yielded six fragments in chromosomal digests. The _I-Vel_ recognition sequence occurs in bacterial _rrl_ genes, and digestion with this enzyme has been used to determine the number of _rrn_ operons in many diverse bacterial genomes (Liu et al., 1993).

The _AseI_ and _SgfI_ restriction patterns each contained several unresolved doublet or triplet bands (data not shown) and were not analysed further in this study. The fragments generated from _I-Vel_, _SfiI_ or double digests were resolved by PFGE and used to determine the size and to construct a physical map of _H. ducreyi_ 35000 genome. The double digest yielded 10 fragments, as expected from the total number of sites for the two enzymes (see Fig. 2). Fragment sizes are given in Table 1. The size of the chromosome was estimated to be 1757 ± 54 kbp.

We compared _I-Vel_ and _SfiI_ digest patterns of _H. ducreyi_ 35000 DNA with _I-Vel_, _SfiI_, or _I-Vel_ plus _SfiI_

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Size (kbp) after digestion with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I-Vel</td>
</tr>
<tr>
<td>1</td>
<td>956 ± 10</td>
</tr>
<tr>
<td>2</td>
<td>256 ± 10</td>
</tr>
<tr>
<td>3</td>
<td>228 ± 7</td>
</tr>
<tr>
<td>4</td>
<td>129 ± 9</td>
</tr>
<tr>
<td>5</td>
<td>111 ± 7</td>
</tr>
<tr>
<td>6</td>
<td>73 ± 7</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total (kbp)</td>
<td>1753 ± 50</td>
</tr>
</tbody>
</table>

Values are means ± SD of two-five independent determinations from different gels.
Construction of the physical and genetic map

PFGE-separated I-Ceul and SfiI fragments of H. ducreyi 35000 DNA were ordered into macrorestriction maps by probing Southern blots with H. ducreyi DNA probes. Initially, we screened random H. ducreyi 35000 clones from a plasmid library in E. coli (the average insert size was 6–10 kbp) for use as mapping probes. Fewer than 25% of these anonymous clones hybridized to more than one fragment in one or both of the digests (data not shown). Thus, repetitive DNA elements were not sufficiently abundant to confound our analysis. Most of the random probes, and all of those used to construct the map, hybridized to a single fragment in each digest. The random probes used to link the fragments are shown in Fig. 3.

The overlaps of the I-Ceul and SfiI fragments were determined by comparing ethidium bromide-stained pulsed field gels and the corresponding Southern blots from individual and double digests (Fig. 2). SfiI digests of H. ducreyi 35000 DNA often contained a faint band of approximately 340 kbp. The size is consistent with a partial digestion product containing fragments S3 and S4. Indeed, the probe used for the Southern blot shown in Fig. 2 hybridized strongly to S3 and weakly to the partial product. The recognition sequence for SfiI is degenerate; the site between S3 and S4 may contain particular bases that are less efficiently cut than those present at the other three sites in the chromosome.

As the physical map evolved, we probed Southern blots with a small collection of cloned H. ducreyi genes obtained from other investigators or constructed in our laboratory. We also used an oligonucleotide probe derived from the gyrB gene of Neisseria gonorrhoeae (Dempsey et al., 1991; Stein et al., 1991). Table 2 lists the cloned gene probes and the fragments to which they hybridized. Each overlap shown in the combined physical and genetic map (Fig. 3) corresponds to the size of a fragment in the double digest and was established by Southern hybridization with at least one probe.

Orientation of rrr loci

The positions of the I-Ceul sites correspond to the locations of the six rrr operons in H. ducreyi. The gene order within rrr loci is rrr(16S)-tRNA-rrf(23S)-rrf(5S)-tRNA (Jinks-Robertson & Nomura, 1987). Honeycutt et al. (1993) described a method for determining the orientation of rRNA operons using sequences found upstream (rrs) and downstream (rrl and rrf) of the I-Ceul site as probes in Southern blots of I-Ceul-digested DNA. We designed oligonucleotide primers to amplify a 707 bp product based on the published H. ducreyi rrs sequence (Dewhirst et al., 1992). PCR using the rrs primers resulted in the amplification of an approximately 700 bp product from H. ducreyi 35000 genomic DNA, but yielded no product with E. coli K-12 chromosomal DNA as a template (data not shown). Another pair of primers, designed to amplify the region between the rrl and rrf genes, were based on the sequence in highly conserved portions of the E. coli tRNA genes (Brosius et al., 1981). The rrl and rrf primers generated two products with both H. ducreyi (~ 430 bp and ~ 610 bp) and E. coli (~ 300 bp and ~ 550 bp) templates (data not shown). The relative locations of the PCR products and the I-Ceul site within a rrr locus are shown in Fig. 4(a). Following the strategy of Honeycutt et al. (1993), we used the fragments amplified from H. ducreyi tRNA genes to probe Southern blots of I-
Table 2. Cloned gene probes and the fragments to which they hybridized

<table>
<thead>
<tr>
<th>Probe</th>
<th>Genotype and phenotype</th>
<th>Reference or source</th>
<th>Hybridizing fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLP14*</td>
<td>dnaK, J, heat shock proteins</td>
<td>Parsons et al. (1995)</td>
<td>C3 S1</td>
</tr>
<tr>
<td>pHD24†</td>
<td>fip A, monomer subunit for fine tangled pili</td>
<td>Brentjens et al. (1996)</td>
<td>C3 S1</td>
</tr>
<tr>
<td>pUNCH577*</td>
<td>fur, iron-responsive regulatory protein</td>
<td>Biegel et al. (1995)</td>
<td>C2 S1</td>
</tr>
<tr>
<td>pBS*</td>
<td>groES/EL, heat shock proteins</td>
<td>Parsons et al. (1992)</td>
<td>C1 S3</td>
</tr>
<tr>
<td>gyrB oligo‡</td>
<td>gyrB, gyrase B subunit</td>
<td>Dempsey et al. (1991)</td>
<td>C5 S4</td>
</tr>
<tr>
<td>pHD28‡</td>
<td>hbp, H. ducreyi specific outer membrane lipoprotein</td>
<td>Hiltke et al. (1994)</td>
<td>C2 S1</td>
</tr>
<tr>
<td>pUNCH579*</td>
<td>hgb A, haemoglobin receptor</td>
<td>Elkins et al. (1995)</td>
<td>C5 S4</td>
</tr>
<tr>
<td>pKLIP104*</td>
<td>hbdB, A, haemolysin genes</td>
<td>Palmer & Munson (1995)</td>
<td>C1 S2</td>
</tr>
<tr>
<td>pHD4-0*</td>
<td>momp, OmpA homologue</td>
<td>Hiltke & Spinola (1993)</td>
<td>C3 S4</td>
</tr>
<tr>
<td>pHD18‡</td>
<td>pal, peptidoglycan-associated lipoprotein</td>
<td>Fortney et al. (1996)</td>
<td>C1 S3</td>
</tr>
<tr>
<td>pROSE25*</td>
<td>asd, aspartate semialdehyde dehydrogenase; sodc, [Cu, Zn]-superoxide dismutase and recF, recombination and DNA repair</td>
<td>San Mateo et al. (1995)</td>
<td>C1 S1</td>
</tr>
</tbody>
</table>

* Cloned from *H. ducreyi* strain 35000.
† Cloned from *H. ducreyi* strain 85-023233.
‡ Sequence determined from *N. gonorrhoeae* strain MUG 116 (Stein et al., 1991).

CeuI digests to determine the orientation of each *rrn* operon (Fig. 4b). The *rrs* (16S) probe hybridized to fragments C2–C6, but not to C1. The two differently sized *rrl* (23S) and *rrf* (SS) probes gave identical results, hybridizing to C1–C4 and C6, but not to C5. Thus, the *rrn* operons flanking C5 are divergently transcribed, with only *rrs* genes on this fragment. The origin of chromosomai replication probably lies within C5. Likewise, the *rrn* operons flanking C1 are convergent with downstream *rrl* and *rrf*, but not *rrs* sequences on this fragment. Replication termination probably occurs within C1. The *rrn* loci have been arbitrarily designated A–F moving clockwise from the putative origin.

DISCUSSION

The circular chromosome of *H. ducreyi* strain 35000 was estimated to be 1757 kbp. This is roughly one third of the size of the *E. coli* chromosome (Bachmann, 1990) and slightly smaller than the genomes of other *Haemophilus*
species; H. influenzae type b is 2100 kbp (Butler & Moxon, 1990), H. influenzae Rd is 1830 kbp (Fleischmann et al., 1995) and H. parainfluenzae is 2340 kbp (Kauc & Goodgal, 1989). We constructed a macrorestriction map of the H. ducreyi chromosome using Southern blot analysis to identify overlapping I-CeuI and Sfil fragments. We positioned thirteen identified H. ducreyi genes on the map and determined the orientation of the six rrn operons. At the low resolution provided by the current map, we can locate genes within a region of overlap between particular I-CeuI and Sfil fragments, but the relative order of markers on separate probes within an overlap cannot be determined. The three genes that map to the C1/S1 overlap (asd, sodC and recF) were identified by nucleotide sequence homology to genes in the GenBank database, and are present in the order indicated within the cloned probe pROSE25.

The locations of the rrn loci relative to one another are precise within 10 kbp, which was the largest standard deviation of the mean for the I-CeuI fragment sizes. The rRNA loci in H. ducreyi, as in E. coli and other eubacteria, are located in approximately one half of the map (Fonstein & Haselkorn, 1995), and their orientation is consistent with transcription of the rrn operons away from the origin of replication (oriC). The orientation of the rrn loci suggested that oriC was located on fragment C5. In addition, the gyrB probe mapped to the 20 kbp C5/S3 overlap. The gyrB gene encodes the B subunit of DNA gyrase and is usually located near the origin in bacterial chromosomes (Ogasawara et al., 1985; Musialowski et al., 1994). The oligonucleotide used in this study was derived from the gyrB gene of N. gonorrhoeae (Stein et al., 1991) in a region that is highly conserved between N. gonorrhoeae and E. coli. Its position on the map probably represents the H. ducreyi gyrB gene and supports the location of oriC near the rrnA locus.

PCR with the rrI and rrf primers based on E. coli sequences resulted in the amplification of two products, differing in

Fig. 3. Physical and genetic map of the H. ducreyi strain 35000 chromosome. Restriction fragments are numbered in order of their sizes (Table 1). The outer circle represents I-CeuI fragments, the ends of which mark the locations of the six rrn operons. The inner circle represents Sfil fragments. Identified genes are in a larger font; other probes are anonymous H. ducreyi clones. The areas of overlap between the two digests to which markers were localized are indicated by dotted lines. Genes listed on the same line are contained within the same cloned probe (Table 2). The sequence of the gyrB oligonucleotide probe was taken from the N. gonorrhoeae gene (Dempsey et al., 1991; Stein et al., 1991).

Fig. 4. Orientation of rrn operons on the H. ducreyi 35000 chromosome. (a) Diagrammatic representation of the relative positions of the PCR-generated probes and the I-CeuI site within an rrn locus (not to scale). (b) Southern blot of I-CeuI-digested DNA probed with PCR products located upstream (16S) or downstream (23S+5S) of the I-CeuI site with respect to rRNA gene transcription.
Fig. 5. Comparison between the genomic maps of *H. ducreyi* 35000 and *H. influenzae* Rd. Divisions within the linear maps represent the locations of rRNA operons with arrowheads indicating the direction of transcription. The maps are aligned at the *gyrB* loci near the origins of replication, and the lines connect the locations of genes on the two maps. Only loci that have been identified in both strains are shown. The locations of *H. ducreyi* genes are indicated by square brackets encompassing the area of 1-Ceu/SfiI overlap to which they map.

size by roughly 200 bp, with both *E. coli* and *H. ducreyi* genomic DNA templates. One of the seven *E. coli* tRNA operons (*rrnD*) has two *rrf* genes at the 3' end with a tRNA$^\text{Thr}$ gene between them (Duester & Holmes, 1980). The appearance of two PCR products with the *rrf* primer in *E. coli* probably reflects amplification from each of the *rrf* genes at this locus. We did not determine the identity of the tRNAs within *H. ducreyi* tRNA operons. However, based on the amplification of two products using the *rrf* tRNA primer, it seems likely that at least one *rrn* locus may have a similar structure to the *E. coli* *rrnD* operon.

The locations of several groups of genes deserve mention. The heat shock genes, *groEL/1*, and *dnaK/J* are located in different positions in *H. ducreyi* and *E. coli*. While these loci are relatively near the origin in both organisms, the *H. ducreyi* genes flank *oriC*, whereas the *E. coli* *groEL* operon is between *oriC* and *dnaK/J* (Bachmann, 1990). Several outer-membrane components have been identified in molecular studies of *H. ducreyi* pathogenesis (Table 2). The genes for these potential virulence determinants are scattered over the half of the *H. ducreyi* chromosome in which the *rrn* operons are located. Finally, the iron-regulated genes, *fur* and *hgbA*, are not physically linked on the chromosome.

During the preparation of this report, the complete nucleotide sequence of the genome of *H. influenzae* Rd was published (Fleischmann *et al.*, 1995). Despite the shared taxonomic genus of *H. ducreyi* and *H. influenzae*, the two species are not closely related (Dewhirst *et al.*, 1992). Using *rrs* tRNA sequences to compare members of the family *Pasteurellaceae*, Dewhirst *et al.* (1992) placed *H. ducreyi* and *H. influenzae* in distinct phylogenetic clusters. We compared the chromosomal organization of the *H. ducreyi* genome described here with sequence-derived data for *H. influenzae* Rd (Fleischmann *et al.*, 1995). Fig. 5 illustrates the differences between the two species with respect to the location and orientation of the six rRNA operons and the locations of several genetic loci that have been identified in both organisms. The *H. influenzae* Rd genome lacks capsular genes, the *sodC* gene encoding a [Cu, Zn]-superoxide dismutase and the fimbrial gene cluster characteristic of pathogenic *H. influenzae* strains. Therefore, some of the potential virulence factors identified for *H. ducreyi* are absent from the comparison in Fig. 5. It will be some time before the complete nucleotide sequence of the *H. ducreyi* genome is known; meanwhile, the physical and genetic map will be a valuable tool for further genetic studies on *H. ducreyi*. As new genetic markers are added to the map and the resolution improves, we will gain more insights into the genomic organization and potential mechanisms of gene regulation for this increasingly important human pathogen.

ACKNOWLEDGEMENTS

This work was supported by NIH NIAID U01 AI31496 (T. H. K.) and NIH Institutional Training Grant T32 AI07151 (M. M. H.). We thank Stanley Spinola, Christopher Elkins, Susan Biegler Carson, Lani San Mateo and Linda Parsons for providing cloned *H. ducreyi* genes prior to publication. We are grateful to Janne Cannon and Ken Bott for the use of their PFGE equipment, and to Jo Ann Dempsey for helpful discussion during this study.

REFERENCES

Spinola, S. M., Griffiths, G. E., Bogdan, J. & Menegus, M. A.

Received 18 December 1995; revised 9 April 1996; accepted 16 April 1996.