The cytochrome bd quinol oxidase in *Escherichia coli* has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity *in vivo* by oxygen inhibition

Rita D'mello,1 Susan Hill2† and Robert K. Poole1

Author for correspondence: Robert K. Poole. Tel: +44 171 333 4275. Fax: +44 171 333 4500. e-mail: udbs065@bay.cc.kcl.ac.uk

Cytochrome bd is a respiratory oxidase in *Escherichia coli* and many other bacteria. It contains cytochromes b259, b395 and d as redox centres, and is thus unrelated to the haem-copper super-family of terminal oxidases. The apparent affinities (Kₐ) for oxygen uptake by respiring cells and membranes from a mutant lacking the alternative oxidase cytochrome bo' were determined by deoxygenation of oxyyleghaemoglobin as a sensitive reporter of dissolved oxygen concentration. Respiration rates were maximal at oxygen concentrations of 25–50 nM, but the kinetics were complex and indicative of substrate (i.e. oxygen) inhibition. Kₐ values were in the range 3–8 nM (the lowest recorded for a respiratory oxidase), and Kₐ values between 0·5 and 1·8 μM were obtained. Low temperature photodissociation of anoxic, CO- ligated membranes confirmed the absence of cytochrome bo' and revealed a high-spin b-type cytochrome identified as cytochrome b395 of the cytochrome bd complex. Photodissociation in the presence of oxygen revealed binding of a ligand (presumably oxygen) to cytochrome b395 at a rate much greater than that of CO binding, and formation of the oxygenated form of cytochrome d. The results confirm that both high-spin haems in the cytochrome bd complex bind CO and demonstrate that oxygen can also react with both haems. Substrate inhibition of oxidase activity, in addition to transcriptional regulation of oxidase synthesis, may play a crucial role in the regulation of partitioning of electron flux between the cytochrome bd- and bo'-terminated respiratory pathways.

Keywords: *Escherichia coli*, respiratory electron flux, quinol oxidases, oxygen affinity, cytochromes

INTRODUCTION

In bacteria, a single terminal respiratory oxidase catalysing the reduction of oxygen (as in mitochondria) is the exception, rather than the rule (Poole, 1983). Instead, the presence of branched respiratory chains, terminating in up to four different oxidases, has been claimed (e.g. Kitts & Ludwig, 1994). These multiple branched systems raise several important questions: in particular, what is the function of such apparent redundancy, how is electron flux between the branches regulated, and are all the putative oxidases (frequently identified only on the basis of CO difference spectra or nucleotide sequence data) actually functional?

In *Escherichia coli*, two oxygen-reactive haems, cytochromes o and d, were clearly identified by photochemical action spectroscopy (Castor & Chance, 1959) and confirmed by the demonstration of oxygenated intermediates (Poole et al., 1979, 1983a) and extensive studies of the solubilized and purified complexes (reviewed by Poole, 1994). The cytochrome bo' quinol oxidase (the term bo' is used to describe the haem-O- and haem-B-containing quinol oxidase of *E. coli*, the superscript referring to the
ligand-reactive haem in accordance with IUB nomenclature; Poole & Chance, 1995) is regarded as a proton-pumping oxidase, whereas cytochrome bd, which has a greater resistance to respiratory inhibitors, is not a proton pump and thereby is less effective at conserving the pumping oxidase, whereas cytochrome R. D'MELLO, S. HILL and R. K. POOLE
classification; Poole (1983, 1994; pump and thereby is less effective at conserving the
pumping oxidase, whereas cytochrome
Puustinen et al., 1991). Studies of the regulation of
synthesis of the two oxidases reveal that cytochrome bo' is
synthesized maximally under conditions of high oxygen
availability, whereas cytochrome bd is prominent under
microaerobic conditions (Fu et al., 1991), when the synthesis of cytochrome bo' is repressed (Cotter et al., 1990).

The oxygen affinities of both oxidases are widely cited in
relation to this differential synthesis, even though most
data have been obtained using techniques that are
incapable of measuring high affinities (e.g. Kolonay et al.,
1994). Rice & Hempfling (1978), however, used a
modified polarographic technique with a large volume
chamber and a probe covered with an ultra-thin mem-
brane to measure oxygen affinities of cells grown in an
unusual 'phauostat' device and obtained a K_o for oxygen
of 24 nM for cytochrome bd, in remarkable agreement
with the classical studies of Longmuir (1954). However,
all studies involving polarographic methods are limited at
low oxygen tensions by the 'unstirred layer' at the
electrode membrane (Lundsgaard et al., 1978). Recogn-
izing these limitations, we (D'mello et al., 1994a, 1995)
recently modified a highly sensitive spectrophotometric
means of continuously monitoring oxygen depletion,
as reported by the deoxygenation of oxyleghæmoglobin or
oxymyoglobin (Appleby & Bergersen, 1980).

We report here the use of this method to demonstrate the
exceptionally low K_o for oxygen for cytochrome bd in
E. coli using a strain defective in cytochrome bo'. These
measurements also reveal inhibition of oxidase activity at
higher dissolved oxygen tensions, which may be im-
portant in regulating electron flow through branched
respiratory chains in E. coli and other bacteria.

METHODS

Bacteria, growth, and preparation of cell and membrane suspensions. E. coli strain GL101 (F' cya idbC; Lemieux et al.,
1992), which lacks the cytochrome bo' terminal oxidase, was a gift from Professor R. B. Gennis (University of Illinois, USA).
Strain AN2342 ('wild-type'; Poole et al., 1989) was a gift from
Professor F. Gibson (Australian National University). Both
strains were grown in Luria–Bertani (LB) medium, pH 7.0
(Maniatis et al., 1982), supplemented with 0.2% (w/v) glucose
and, for strain GL101, kanamycin (20 μg ml$^{-1}$) and tetracycline
(20 μg ml$^{-1}$), in 2 l baffled flasks containing 400 ml medium at
37 °C with shaking at 200 r.p.m. Cultures were grown to mid-
exponential phase (4 h) or, for strain AN2342, to late-stationary
phase (20 h). Cells were harvested by centrifugation at 4000 g
for 10 min; a portion (approximately 1 g) of the cell paste was
resuspended in 25 mM potassium phosphate buffer (5 ml) and
retained at 4 °C until used (within 6 h) for oxygen affinity
determinations. The remaining cell paste was resuspended
in 50 ml 50 mM PIPES buffer (pH 6.5), containing 8 mM mag-
nesium acetate and a few grains of DNase (Sigma), and stored at
−70 °C for approximately 24 h until membrane vesicles were
prepared using published procedures (D'mello et al., 1994a,
1995). In brief, the thawed cell suspension was passed through
a French pressure cell (Amino) at 60 MPa. Centrifugation at
27000 g for 15 min removed cell debris; membrane vesicles
were recovered from the supernatant fraction by centrifugation
at 100000 g for 90 min. Membranes were suspended in the
above buffer (4 ml, but lacking DNase) and stored at 4 °C
until use (within 6 h). Protein in cells and membranes was assayed
by the method of Markwell et al. (1978).

Determination of oxygen affinities. This was carried out as
described previously by D'mello et al. (1994a, 1995). Oxygen-
saturated soybean leghæmoglobin (courtesy of Dr F. J. Bergersen,
CSIRO Division of Plant Industry, Canberra, Australia) or
sperm whale myoglobin (Sigma, no longer available) was
diluted to 10–15 μM in phosphate buffer (25 mM, pH 7.0)
containing 1 mM EDTA, which had been previously sparged
with, and stored under, a gas mixture of 1% (v/v) oxygen in
argon. Solutions were used within 6 h. Deoxygenation of the
globins by respiration of cells or membranes was monitored by
time-shared multi-wavelength spectrophotometry (Chance et al.,
1975) as described by D'mello et al. (1994a, 1995). The 1:3 m
capacity cuvette was filled with the globin solution and sealed
with a finely perforated stopper, through which substrate
solution (1 M succinate, 10 μl, or 1 M D-lactate, 10 μl) was
injected. The stability of the oxygenated globin was checked by
monitoring $ΔA$ for 5–10 min. After addition of bacteria or
membranes (5–50 μl), globin deoxygenation was continuously
monitored by plotting $ΔA_{355,560}$. Data were analysed as
described previously by D'mello et al. (1994a). At least four
separate determinations were carried out on each sample; means
and standard deviations are presented.

Low temperature spectrophotometry. The apparatus and
techniques used to record photodissociation spectra of samples
in the presence or absence of oxygen have been described
previously (Poole et al., 1979). Suspensions of washed cells or
membranes, containing 30% (v/v) ethylene glycol, were
reduced with sodium succinate (5 mM, 30 min, 30 °C) or sodium
lactate (5 mM, 30 min, 30 °C) in a 2 mm pathlength cuvette
(1 ml capacity) and bubbled with CO for 2 min at room
temperature. The cuvette was cooled to −23 °C and, when
required, oxygen was introduced by vigorously stirring the
contents with a coiled wire (20–30 vertical strokes), giving
approximately 300 μM oxygen in the sample, which was then
rapidly frozen at −78 °C (dry ice/ethanol). After equilibration
in the sample compartment of the spectrophotometer, a baseline
was recorded (CO-reduced minus CO-reduced) and the sample
was photolyzed for 2 min with the focused beam from a 150 W
lamp. Subsequent difference spectra (post-photolysis minus
pre-photolysis) reveal photodissociable haem proteins and their
reactions with CO or oxygen.

RESULTS

Spectral characteristics of the strains used

The Cyo$^{-}$ phenotype of strain GL101 was confirmed by
difference spectroscopy (results not shown). In the CO
difference spectrum, an α-band at 640 nm was identified as the
CO-ligated form of cytochrome d and a trough at 620 nm
was assigned to loss of absorbance of the reduced,
unligated cytochrome on binding CO. In the γ (Soret)-
region, the absorption maximum was at 420 nm and the
trough was at 442 nm. These signals are quite distinct
from those exhibited by cytochrome o in such spectra,
namely a peak at 416 nm and a trough at 430 nm (Poole et
High oxygen affinity of *E. coli* cytochrome *bd*

The Soret band of cytochrome *d* is weak (Poole et al., 1982a) and so the 420 and 442 nm bands do not arise from this component either. Therefore, we conclude that, as in *Azotobacter vinelandii* (D’mello et al., 1994b), these bands arise from CO binding to another haem in the cytochrome *bd* complex, namely cytochrome *b*$_{595}$, and confirm that strain GL101 (Lemieux et al., 1992) contains cytochrome *bd* as sole terminal oxidase and lacks cytochrome *bo*

Fig. 1. Deoxygenation of oxyleghaemoglobin (a) during respiration of lactate by intact cells of *E. coli* GL101 (Cyo- Cyd+). Oxygen consumption rates (*V*, nmol s$^{-1}$) and oxygen concentration (*S*, nM) in (b) were derived as described previously by D’mello et al. (1994a).

Third, to ensure that the absorbance changes were attributable to deoxygenation, and not oxidation, of the globin, the cuvette contents were examined by wavelength-scanning before and after each deoxygenation experiment. In the calculation of results, full deoxygenation was taken as that level attained by respiration and not that achieved by dithionite; this avoids the problems caused by partial oxidation during the reaction or Fe(III) haem impurities in the globin sample used. Only data that were within the working range of each globin (D’mello et al., 1994a) were examined.

Measurements of the oxygen affinity of the cytochrome-*bd*-type oxidase

The basis and validity of the globin deoxygenation method have been described previously (D’mello et al., 1994a, 1995). Several precautions were taken. First, we demonstrated that absorbance at the selected wavelengths was unaffected by the presence of membranes or cells in the cuvette. Second, doubling the cell or membrane concentration did not affect the measured K_m values.
Table 1. Oxygen affinities of cytochrome bd in E. coli cells and membranes

<table>
<thead>
<tr>
<th>Strain</th>
<th>Preparation, substrate</th>
<th>Myoglobin (nm)</th>
<th>Leghaemoglobin (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN2342</td>
<td>Membranes, succinate</td>
<td>3.4 (1.4)</td>
<td>0.94 (0.23)</td>
</tr>
<tr>
<td>GL101</td>
<td>Cells, lactate</td>
<td>8.4 (2.1)</td>
<td>0.83 (0.12)</td>
</tr>
<tr>
<td>GL101</td>
<td>Cells, endogenous</td>
<td>3.0 (2.7)</td>
<td>0.54 (0.07)</td>
</tr>
<tr>
<td>GL101</td>
<td>Membranes, lactate</td>
<td>5.8 (0.6)</td>
<td>1.81 (0.47)</td>
</tr>
</tbody>
</table>

E. coli AN2342 is a wild-type strain and was grown to late-stationary phase to minimize the contribution of cytochrome bo' and maximize cytochrome bd (see text). GL101 is Cyo'. The values presented are means of four to six determinations with standard deviations in parentheses. The K_m values were calculated from the equations of Cleland (1970). n.d., No component detected; --, not done.

The deoxygenation kinetics of oxymyoglobin and oxyleghaemoglobin were followed with both cells and membrane preparations from strain GL101. Data for intact cells respiring lactate (GL101 being defective in succinate dehydrogenase) are shown in Fig. 1 (a, b). The progress of deoxygenation of oxyleghaemoglobin (Fig. 1a) was used to compute the plot (Fig. 1b) of oxygen consumption rate (V) versus oxygen concentration (S). Respiration rates increased to a maximum at approximately 50 nM oxygen and declined at higher oxygen concentrations. Similar results were obtained with membranes (not shown). The most striking example of the decline in respiration at higher oxygen concentrations was afforded by experiments with whole cells respiring endogenous substrates (Fig. 2). The V versus S plot (Fig. 2b), calculated from the deoxygenation kinetics (Fig. 2a), showed that respiration rate increased sharply with increasing oxygen concentration. The inset in Fig. 2(b) shows an expanded abscissa and reveals more clearly the increasing respiration rate at oxygen concentrations up to about 25 nM. At oxygen concentrations above 25 nM, respiration decreased linearly as dissolved oxygen concentration increased. The Lineeweaver–Burk plot (Fig. 2c) showed behaviour typical of substrate inhibition. Analyses using the equations of Cleland (1970) of several similar experiments using oxyleghaemoglobin as supplier and monitor of dissolved oxygen are summarized in Table 1. The K_m values obtained with whole cells and membranes, using either lactate or endogenous substrates, were in the range 3–84 nM, markedly lower than any previously determined value. The K_i values obtained were in the range 0.54–1.81 μM for strain GL101. The highest affinity was observed in cells respiring slowly [$V_{max} = 0.055$ nmol oxygen s$^{-1}$ (mg protein)$^{-1}$].

To determine whether the kinetics observed could be demonstrated in the wild-type strain, E. coli strain AN2342 was grown to late-stationary phase to minimize the contribution of cytochrome bo' and maximize that of cytochrome bd. Membranes from this strain, oxidizing succinate, gave a K_m for oxygen of about 3 nM (Table 1) and also exhibited substrate inhibition ($K_i = 0.94$ μM).

These experiments exploited the low dissociation constant of oxyleghaemoglobin to measure oxygen consumption kinetics in the range 0.003–0.3 μM (Bergersen & Turner, 1985). To check for the presence of a component in these strains with an oxygen affinity in the 0.3–10 μM range, oxymyoglobin was also used (Table 1). No component could be detected, consistent with the absence of cytochrome bo' in strain GL101 and the low levels of this oxidase in strain AN2342 grown under these conditions. We have previously shown that oxymyoglobin can be used to determine oxygen affinities for cytochrome bo' of E. coli (D'mello et al., 1995) and A. vinelandii cytochrome bd (D'mello et al., 1994a).

Ligand-binding reactions of cytochrome bd

The classical interpretation of substrate inhibition kinetics is that, at high (generally non-physiological) concentrations, the substrate acts as an inhibitor by binding to a second site in the enzyme, generating a ‘dead-end’ complex (Cleland, 1970). To date, evidence has not been presented that the E. coli cytochrome bd binds oxygen at two sites. However, this would be consistent with the proposal that CO and nitrite bind to both cytochrome d and cytochrome b_{595} (Hill et al., 1993; Rothery et al., 1987), that cyanide exhibits concerted binding to these haems – perhaps as a bridging ligand (Krasnoselskaya et al., 1993), and that cytochrome b_{595} binds CO in a light-reversible manner (Poole & Chance, 1981). Furthermore, the A. vinelandii cytochrome bd binds both CO and oxygen at high-spin haem (D’mello et al., 1994b).

To extend these studies, photodissociation spectra of strain GL101, lacking cytochrome bo', were recorded. Fig. 3 shows the photolysed (i.e. reduced, unligated) minus pre-photolysis (i.e. reduced, CO-ligated) difference spectrum recorded in the absence of oxygen at −100°C. Although conventional CO difference spectra of this strain are dominated by the CO-ligated and reduced forms of cytochromes d and b_{595}, the characteristic features of cytochrome d in the 630–680 nm region are not detectable in this spectrum or after photolysis at other temperatures between −60 and −130°C in the absence of oxygen (results not shown). This behaviour has been reported previously (Poole et al., 1982a) and is the result of rapid rebinding of CO to cytochrome d after photolysis. Peaks in Fig. 3 at 439, 555 and 592 nm are attributed to the unligated Fe(II) form of haemoprotein(s); troughs at 421, about 532, and 570 nm result from loss of the CO-ligated...
Fig. 3. Photodissociation spectrum of lactate-reduced, CO-ligated whole cells of *E. coli* GL101 (Cyo⁻ Cyt⁺) in the absence of oxygen at −130 °C. The spectrum was recorded immediately after photolysis in the dual-wavelength scanning mode, with 575 nm as the reference wavelength, at 2.86 nm^{−1} and a spectral band width of 4 nm. The pre-photolysis reduced plus CO minus reduced plus CO baseline is shown as a dashed line.

The signals are characteristic of a high-spin haem-B-containing protein, the spectrum resembling, for example, the (inverted) CO difference spectrum of myoglobin (Wood, 1984). The Soret:α/β ratio [ΔA₄₃₉₋₄₂₁/ΔA₅₅₅₋₅₇₀, as defined by Wood (1984)] is high, being 21 at −100 °C (Fig. 3) and 28 at −130 °C (not shown). However, these are minimum values, since the sample dilutions used, to maximize the resolution of the CI and P bands, were not optimal for avoiding suppression of the Soret bands (i.e. those regions of the spectrum where light scattering is most severe). Typical Soret:α/β ratio values for high-spin haem B proteins are around 32. Since strain GL101 does not express cytochrome *bd⁺*, and because cytochrome *d⁺* is not detected under these conditions, the band at 592–595 nm is assigned to reduced, unligated cytochrome *b₅₉₅*, as is the 439 nm band (D'mello *et al.*, 1994a; Rothery *et al.*, 1987). We anticipated that maximal amplitude of the Soret signals of cytochrome *b₅₉₅* (439 nm peak, 421 nm trough) immediately after photolysis would be observed at the lowest temperatures, because the lowest recombination rates are expected at these temperatures. However, the amplitude was maximal at −80 °C, being higher than the amplitudes at −100 °C and −130 °C (results not shown). This might be the consequence of geminate recombination (Gibson, 1989) at the lower temperatures, i.e. the rapid return of a ligand molecule to the same site from which it has been photolysed.

The 439 nm peak and 421 nm trough decreased in amplitude after photolysis, approaching the baseline without change in band shape or position, indicating recombination of the cytochrome with CO. This is illustrated for −60 °C in Fig. 4(a). The kinetics were pseudo-first order (Fig. 4c), with a half-time at −60 °C of >50 min. These changes were fully reversible by re-photolysis of the sample. At −100 °C, negligible (<4%) recombination was observed over a 60 min observation time (Fig. 4c).

To determine whether cytochrome *b₅₉₅* binds oxygen, photodissociation spectra were recorded after introducing the Soret bands (i.e. those regions of the spectrum where light scattering is most severe). Typical Soret:α/β ratio values for high-spin haem B proteins are around 32. Since strain GL101 does not express cytochrome *bd⁺*, and because cytochrome *d⁺* is not detected under these conditions, the band at 592–595 nm is assigned to reduced, unligated cytochrome *b₅₉₅*, as is the 439 nm band (D'mello *et al.*, 1994a; Rothery *et al.*, 1987). We anticipated that maximal amplitude of the Soret signals of cytochrome *b₅₉₅* (439 nm peak, 421 nm trough) immediately after photolysis would be observed at the lowest temperatures, because the lowest recombination rates are expected at these temperatures. However, the amplitude was maximal at −80 °C, being higher than the amplitudes at −100 °C and −130 °C (results not shown). This might be the consequence of geminate recombination (Gibson, 1989) at the lower temperatures, i.e. the rapid return of a ligand molecule to the same site from which it has been photolysed.

The 439 nm peak and 421 nm trough decreased in amplitude after photolysis, approaching the baseline without change in band shape or position, indicating recombination of the cytochrome with CO. This is illustrated for −60 °C in Fig. 4(a). The kinetics were pseudo-first order (Fig. 4c), with a half-time at −60 °C of >50 min. These changes were fully reversible by re-photolysis of the sample. At −100 °C, negligible (<4%) recombination was observed over a 60 min observation time (Fig. 4c).

To determine whether cytochrome *b₅₉₅* binds oxygen, photodissociation spectra were recorded after introducing
Fig. 5. Photodissociation spectra of lactate-reduced, CO-ligated whole cells of *E. coli* GL101 (Cyo- Cyd') supplemented with oxygen at -130°C (a), -100°C (b), -80°C (c) and -60°C (d). The solid lines are the spectra recorded immediately after photolysis and the dotted lines in (b–d) are spectra recorded approximately 1 h after photolysis. Spectra were recorded in the dual-wavelength scanning mode, with 575 nm as the reference wavelength, at 2.86 nm s⁻¹ and a spectral band width of 4 nm. Pre-photolysis reduced plus CO minus reduced plus CO baselines (not shown) were featureless.

Oxygen at -23°C immediately before freeze-trapping. At -130°C (Fig. 5a), the dominant peaks were at 595, 555–557 and 438 nm, very similar to those observed in the absence of oxygen (Fig. 3) and therefore attributable to cytochrome *b*₉₅. However, a new signal at 650 nm was observed, due to oxygenated cytochrome *d* (Poole et al., 1983a). This signal was most intense at -100°C (Fig. 5b). At -80°C (Fig. 5c) and -60°C (Fig. 5d), spectra recorded at frequent intervals after photolysis (not shown) showed development of a trough at 560 nm, due to cytochrome *b* oxidation and the approach of the 438 nm peak to the baseline. These photodissociation spectra are similar to those described previously in which a 632 nm He-Ne laser was used to photolyse selectively the cytochrome *d*-CO complex (Poole et al., 1983b; Poole & Williams, 1987). In both that work and in the present, the first scan after photolysis at -100°C reveals the characteristic signals of cytochrome *d* between 631 and 650 nm. Cytochrome *b*₉₅ is more prominent, relative to the cytochrome *d* signal, after photolysis with 'white' light (Fig. 5b) than after photolysis with the laser (Poole & Williams, 1987). This is expected, since the CO-ligated form of cytochrome *d* (with absorbance maximum near 636 nm) more effectively absorbs the photolyzing radiation (632.8 nm) than does the CO-ligated form of cytochrome *b*₉₅ (with absorbance maximum near 570 nm). Following photolysis with the laser, oxidation of cytochrome *b*₉₅ was observed to accompany disappearance of oxy-cytochrome *d* (Poole & Williams, 1987). Further studies of the reaction progress following photolysis with white light will be necessary to understand the electron transfer events under these conditions.

Fig. 4(b) shows repetitive scanning of the reaction progress with oxygen at -100°C; both the 438 nm peak and the 420 nm trough approached the baseline, without initial detectable shift in band positions and at a greater rate than in anoxic samples. Since the baseline is the spectrum of the reduced, CO-ligated sample, the spectral changes indicate the binding of a ligand (oxygen) to cytochrome *b*₉₅ to give an adduct with spectral properties similar to those of the CO-ligated species. The kinetics were pseudo-first order (Fig. 4d), with a *τ*₁/₂ at -100°C of about 35 min. The rate of ligand binding to cytochrome *b*₉₅ was thus much greater in the presence of oxygen. Indeed, in the absence of oxygen, no measurable ligand...
binding occurred after photolysis of the CO compound until the temperature was raised to about -60 °C (this work) or higher (Poole et al., 1981). Interestingly, we noted that, even in the presence of oxygen, the absorbance changes in the Soret region attributed to cytochrome b$_{595}$ were fully reversible by white light (Fig. 4d).

DISCUSSION

The deoxygenation of oxyleghaemoglobin provides a suitably sensitive assay for the determination of the oxygen affinity of cytochrome bd. The K$_m$ (3–8 nM) determined by this method is about fourfold lower than that measured with a modified oxygen electrode with growing cells (Rice & Hempfling, 1978). Much higher values have been obtained using conventional Clark-type oxygen electrodes and cytochrome bd purified from E. coli. Kita et al. (1984) obtained a value of 0.38 μM using an electrode ‘sensitive to low oxygen concentration’, whilst Kolonay et al. (1994) drew ‘tangents to the oxygen consumption curves at intervals of 0.5 μM, resulting in approximately 20 separate rates’ and reported a K$_m$ value of 2 μM, almost 1000-fold higher than the lowest values given in the present paper. The purified cytochrome-bd-type oxidase from Klebsiella pneumoniae has also been shown to have a very high affinity for oxygen (K$_m$ 20 nM), measured using the spectral properties of leghaemoglobin (Smith et al., 1990). The astonishingly high apparent affinity for oxygen of the E. coli cytochrome bd is in marked contrast to cytochrome bd in A. vinelandii, which has an apparent K$_m$ for oxygen of about 45 μM (D’mello et al., 1994a), measured using the same method. All three oxidases are structurally very similar and the disparity in the measured K$_m$ values is surprising. It should be noted, however, that our values for A. vinelandii (D’mello et al., 1994a) and E. coli (this paper) were determined in situ using either membranes or cells and the direct electron donor to the oxidase in these experiments is therefore the natural quinone pool. In contrast, the value for the K. pneumoniae oxidase, for example, was determined for the purified oxidase provided with ubiquinol-1, duroquinol or N, N, N', N'-tetramethyl-p-phenylenediamine as substrates, and DTT or ascorbate to maintain the donors in their reduced states. It is probable that the nature and concentration of electron donor used in these various experiments is in part responsible for the disparate K$_m$ values reported.

The physiological function of the A. vinelandii oxidase is rapid oxygen consumption and respiratory protection of nitrogenase (Kelly et al., 1990; Poole, 1994) and the K. pneumoniae oxidase has also been proposed to lower the oxygen concentration and allow nitrogenase synthesis and function (Smith et al., 1990). Similar roles for cytochrome bd in E. coli have been demonstrated (Hill et al., 1990): mutants of E. coli defective in cytochrome bd show increased sensitivity to oxygen of fermentation and of microaerobic oxygen-dependent nitrogenase activity in vivo (in strains harbouring K. pneumoniae nif genes). The very high affinity of the E. coli oxidase reported here is consistent with the view that this oxidase serves to scavenge oxygen under oxygen-limited growth conditions.

Oxygen concentrations higher than about 50 nM inhibit respiration via cytochrome bd. Substrate inhibition is particularly marked under conditions of low electron flux through the oxidase. These results have interesting physiological implications for the control of respiratory electron flux in E. coli and provide a possible solution to an enigma. Studies using cydAB–lacZ fusions have shown that cytochrome bd expression is not shut down during aerobic growth (Cotter et al., 1990). Cytochrome bd levels increase about 150-fold over anaerobic conditions, but cytochrome bd levels fall only 3-fold from 600 molecules per cell during anaerobic growth. We propose that inhibition of cytochrome bd activity at intracellular oxygen concentrations in the micromolar range might achieve appropriate control of electron flux through the proton pumping branch, i.e. that terminated by cytochrome bd, rather than through the non-proton pumping cytochrome bd (Puustinen et al., 1991). Rothery et al. (1987) also noted a slight increase in respiration rate as oxygen concentration fell from about 180 μM to 60 μM, but did not attribute this to oxidase activity. Such a model for control of respiratory flux is applicable in principle to any branched respiratory system in which one oxidase is of the bd type, and might be extended to other branched chains for which models implicating the redox poise of the quinol pool (Guerin & Camougrand, 1994) are currently considered. Oxygen inhibition of respiration also occurs in cysts and trophozoites of the parasitic protozoon Giardia muris (Paget et al., 1989), but in this case inhibition of the (unidentified) oxidase occurs at oxygen concentrations greater than 15–27 μM and is irreversible.

There has been much uncertainty regarding the number of ligand-reactive haems in cytochrome bd of E. coli. The evidence that cytochrome d binds both CO and oxygen is unequivocal; in addition to the photochemical action spectrum (Castor & Chance, 1959), evidence for oxygen binding has come from photolysis of CO-ligated cytochrome d in the presence of oxygen at low temperatures, resulting in the oxygenated form (Poole et al., 1983a), and resonance Raman spectroscopy (Poole et al., 1982b; Kahlow et al., 1991). The early photochemical action spectra of stationary phase cells (Castor & Chance, 1959) did not reveal a band that could be attributed to the second high-spin haem of the complex (cytochrome b$_{595}$, then called a$_1$) in the x-region. However, subsequent photochemical action spectra using a liquid dye laser as actinic light source (Edwards et al., 1981) revealed in E. coli (and A. vinelandii) a very clear band at 592 nm, which was attributed to ‘cytochrome a$_1$’. These measurements were not extended to > 610 nm (because of the range of the dye used) and therefore did not reveal the anticipated band of cytochrome d. Nevertheless, in the belief that cytochrome b$_{595}$ is not an oxidase in E. coli, these results have remained puzzling, unsubstantiated and largely ignored.

The present photodissociation spectra obtained with a Cyo$^-$ strain confirm the CO-binding behaviour of cyto-
chrome b_{595} in E. coli and demonstrate for the first time oxygen binding by this haem. The spectral features of the E. coli cytochrome b_{595}-type oxidase are indistinguishable from those described recently for A. vinelandii (D'mello et al., 1994b). The clarity of the signals obtained in the cytochrome b_0-deficient mutant must lead us to question our previous assignment of a 436 nm peak in low-temperature photodissociation spectra to a form of cytochrome b_{595}. Comparison of the kinetics of ligand recombination after photolysis in the absence or presence of oxygen, as measured in the Soret region, strongly supports the view that cytochrome b_{595} binds oxygen and provides a molecular basis for the substrate inhibition phenomenon. We cannot rule out the possibility that oxygen binding to cytochrome d dramatically increases the rate of CO binding to cytochrome b_{595} (positive co-operativity). However, the view that cytochrome b_{595} binds oxygen is consistent with (i) the photochemical action spectrum of Edwards et al. (1981), (ii) the emerging view that the active site of this oxidase is analogous to haem-CUB, and (iii) the present measurements of oxygen uptake kinetics, which implicate a second site for oxygen binding. The present data do not allow us to explain the ability to relieve CO inhibition of respiration by photolysis of either the CO–cytochrome d adduct (Castor & Chance, 1959) or the CO–cytochrome b_{595} adduct (Edwards et al., 1981) can be answered only by further study.

ACKNOWLEDGEMENTS

This work was supported by SERC (BBSRC) through a CASE Studentship (R.D.M.) and a research grant (R.K.P.), by an AFRC (BBSRC) Linked Research Grant (S.H., R.K.P.), and the Royal Society through equipment grants and a Leverhulme Trust Senior Research Fellowship (R.K.P.). We also thank Dr C. A. Appleby for stimulating discussion, Dr F. J. Bergersen for gifts of globins and helpful advice, Dr P. Butterworth for assistance with kinetic analyses, and Dr J. Peisach for bringing to our attention the properties of chlorin haems.

REFERENCES

Received 23 August 1995; revised 14 November 1995; accepted 6 December 1995.