INTRODUCTION

The paradigm of lignin degradation is the oxidative action of lignin and manganese peroxidases (LiP and MnP) by the white rot fungus *Phanerochaete chrysosporium* as a stress response, supported by an H$_2$O$_2$-generation system (Eriksson *et al.*, 1990; Gold & Alic, 1993). The sustained effort of an increasing number of research groups has yielded much physiological, biochemical and molecular genetical information on the system. If such laboratory knowledge is to be applied to this and other fungi to optimize biotechnological processes that include solid substrate fermentation (Agosin & Odier, 1985; Coughlan, 1989; Coughlan & Amaral Collaco, 1990; Kerem *et al.*, 1992) and bleaching of pulp (Addleman & Archibald, 1993; Kondo *et al.*, 1994; Michel *et al.*, 1991; Paice *et al.*, 1993), methods must be available to study which genes are expressed in the synergistic process of lignocellulose degradation under scale-up conditions (Broda *et al.*, 1995). Strategies for genetic improvement of the organisms to be used are also desirable, and these are likely to be fundamentally different from those used, for example, in antibiotic production, which historically have involved cycles of mutagenesis and screening within one lineage, to produce strains that are high producers but otherwise crippled. In contrast, improved lignocellulose degraders must remain robust; in principle, the disadvantages inherent in random mutagenesis might be avoided by exploiting the variation that exists in natural populations (Raeder & Broda, 1986; Raedet *et al.*, 1989a, b).

Lignin degradation by white rot fungi presents a complex picture, several aspects of which are relevant to this study. The natural substrate is lignocellulose rather than lignin, and the other components of this complex material, cellulose and hemicellulose, are degraded concomitantly. *P. chrysosporium* cellulase genes have been identified and their expression studied (e.g. Uzcategui *et al.*, 1991; Sims *et al.*, 1994; Tempelaars *et al.*, 1994; Broda *et al.*, 1995). However, equivalent studies on the hemicellulases of *P. chrysosporium* are few (Copa-Patiño *et al.*, 1993; Copa-
Patiño & Broda, 1994), and the regulation of the overall synergistic process is not yet understood. The generation of the peroxide required for peroxidase activity is considered to depend on carbohydrate degradation, involving several possible pathways (Gold & Alic, 1993).

Low molecular mass compounds can be used as substrates (Eriksson et al., 1990), but these are not convincing models for the high molecular mass insoluble three-dimensional polymer that is lignin. Chemically synthesized radioisotopically labelled high molecular mass model lignin (dehydrogenative polymerize, DHP) (Chua et al., 1983; Faix et al., 1985; Haider & Trojanowski, 1975; Kirk et al., 1975) is a better alternative, but this lacks the carbohydrate present in lignocellulose. In this study both 14C-DHP and [lignin-14C]lignocellulose (Crawford, 1981; Mason et al., 1990) were used to determine lignin degradation activity.

A study by Kirk et al. (1986) with different wild-type isolates of P. chrysosporium and also with a set of cellulase-deficient mutants isolated after irradiation (Johnsrud & Eriksson, 1985) showed differences in 14C-DHP mineralization. There was little correlation between levels of supernatant Lip and 14C-DHP mineralization. Pham et al. (1990) found with another white rot fungus, Dibonimus squaevus, that the ability of a set of meiotically-derived progeny to degrade lignin and cellulose varied greatly. They concluded that performance for these properties was determined multifactorially.

A genetic map has previously been derived for P. chrysosporium strain ME446 (which carries two genome equivalents) by the analysis of the distribution of RFLPs among a set of 53 basidiospore-derived homokaryotic derivatives (Raeder & Broda, 1986; Raeder et al., 1989a). These strains varied widely in supernatant Lip activity, high levels of which were associated with one of the two alleles at locus 34 (Raeder et al., 1989b). The demonstration of abundant RFLPs and this range of levels of Lip activity raised the possibility that there could also be extensive variation between strains in performance for the overall process of lignin degradation. The genetic composition of the 53 sibling strains was determined for RFLP alleles for 38 markers covering the whole genetic map (Raedct et al., 1989a). Therefore this system provides, perhaps for the first time in a fungus, the opportunity to determine whether performance for a property of biotechnological importance (in this case lignin mineralization) can be related to the presence of specific alleles at particular loci. This would then provide the basis for an informed strain improvement programme.

In this study we first established by three independent methods that, under the conditions to be used, lignin was degraded effectively. We then assessed whether strain improvement is possible without mutagenesis and also whether there are alleles of particular genes that make major contributions to the flux through the lignindegradative system. We used P. chrysosporium strain ME446 (which carries abundant RFLPs) and progeny derived from it. These progeny were a set of meiotically-derived strains, heterokaryotic derivatives from crosses between such strains, and meiotically-derived progeny obtained by fruiting one such heterokaryotic strain.

METHODS

Organism. *Phanerochaete chrysosporium* ME446 (ATCC 34541) and its derivatives were maintained on 2% (w/v) malt extract agar (MEA) slopes incubated at 37 °C and stored at 4 °C. The isolation of the basidiospore-derived strains referred to in the Introduction and their genetic composition with respect to RFLP alleles are described by Raeder & Broda (1986) and Raeder et al. (1989a) respectively.

14C-DHP (lignin substrate). Three different batches of DHP were used. Substrates A and B were both derived from a single preparation of guaiacyl [ring-U-14C]DHP synthesized by the polymerization of [ring-U-14C]coniferyl alcohol (New England Nuclear) by Elle Heckman (INRA, Paris), according to the procedure described by Faix et al. (1985). The bimodal size distribution of this material (Eriksson et al., 1990) was confirmed in this work. When the material was received in this laboratory in 1986, part was dissolved in dimethylformamide (DMF) (substrate A) and part was left as a powder (substrate B), both being maintained at -20 °C. Elution profiles for A were obtained in 1989 and 1991 and found to be similar; the greater part of the radioactivity was of higher molecular mass (> 10000 Da). This material was used in all of the experiments described except for those specified below. Substrate B was dissolved in DMF in 1991; its elution profile differed from that of substrate A, there being a larger proportion of radioactivity in the lower molecular mass fraction. This material was used for investigating the effect of molecular size of DHP on its mineralization by *P. chrysosporium*. Substrate C was a [β-14C]guaiacyl DHP kindly donated by Dr M. H. Gold (Portland, Oregon). This material was used to assess the performance of the homokaryotic progeny of strain 2/52.

In order to measure changes in the molecular mass distribution of 14C-DHP after incubation with the fungus, samples of culture supernatants were applied to a 50 cm x 1 cm Sephadex LH-60 gel column with DMF containing 0.1 M LiCl as eluant. Absorbance was measured at 278 nm. An untreated 14C-DHP sample was included as a control. The void volume was calculated by measuring the elution volume of blue dextran (2 mg ml⁻¹; molecular mass 2 MDa). Polystyrene markers with molecular masses of 10200, 7000, 5050 and 2550 Da were used as standards to construct a calibration curve. 14C-DHP was fractionated on an LH-60 Sephadex column with DMF as eluant. The high and low molecular mass peak fractions from two separate fractionations were collected, lyophilized to decrease the volume, and reapplied to the column.

Mature [lignin-14C]lignocellulose. Mason et al. (1990) produced [lignin-14C]lignocellulose substrates from barley crops of varying maturities that ranged from 30 d to 140 d growth. The substrate used here was from the 140 d material. The lignin component in the plants was labelled by injecting t-[U-14C]phenylalanine into the plant stems at regular intervals during growth. The material was then homogenized and solvent-extracted; this was followed by repeated protease (Pronase E; Sigma) treatments until no further radioactivity was released. The lignocellulose was then treated sequentially in a similar way with two cellulase preparations (*Penicillium funiculosum*, *Trichoderma viride*; Sigma) and washed with distilled water. This yielded material in which not less than 90% of the radioactivity was located in the lignin fraction (Klason lignin) as determined by the methods described by Effland (1977).

Scanning electron microscopy. Samples of 140 d [lignin-14C]lignocellulose were examined, pre- and post-fungal in-
cubation. Each sample was frozen in nitrogen slush and transferred under vacuum onto the cold stage (−160 °C) of a Cambridge S200 Cryo SEM. Surface water was sublimed under vacuum by raising the temperature in the cold stage to −80 °C. The temperature was reduced again to −160 °C and the sample was moved into the ante-chamber, where it was sputter-coated with gold. The material was then replaced in the cold stage to be examined.

Culture medium. When 14C-DHP was first used as a substrate, it was found that the majority of the radioactivity added to the culture fluid became attached to the flask. To alleviate this problem, the flasks were washed in dimethyldichlorosilane (DMDCS) solution, allowed to dry and then washed with distilled water to remove any HCl formed in the process.

Culture medium comprised 0.01 M 2,2-dimethylsuccinate (DMS) or sodium acetate (NaOAc) pH 4.5 containing (g l−1): K2HPO4 0.2; MgSO4·7H2O 0.05; CaCl2·H2O 0.013; thiamin, 0.001; NH4H2PO4 0.276; veratryl alcohol, 0.068; and trace elements solution, 7 ml l−1. The trace elements solution contained (g l−1): sodium nitrilotriacetate, 1.5; MgSO4·7H2O 3.0; MnSO4·H2O 0.5; NaCl 1.0; FeSO4·7H2O 0.1; CoSO4·7H2O 0.082; ZnSO4·7H2O 0.1; Alk(SO4)3·12H2O 0.01; H3BO3 0.01; NaMoO4 0.01; CuSO4·5H2O 0.05. The carbon source was 2% (w/v) glucose unless otherwise stated, and the medium was dispensed in 25 ml amounts in 250 ml Erlenmeyer flasks.

The 14C-DHP substrate in DMF was then added as a 15 μl aliquot. In addition, 1 mg unlabelled DHP in 5μl DMF was added to each flask. The unlabelled DHP was produced by the polymerization of coniferyl alcohol using the Zutropfverfahren (drop by drop) method (Tanahashi & Higuchi, 1981). Alternatively, 3-35 ml 140 d [ligum-14Cl]lignocellulose was added per flask, equivalent to 8000 d.p.m. per flask. Flasks were then autoclaved at 15 p.s.i. (103.5 kPa) for 5 min.

Inoculation and processing of cultures. Spore suspensions of individual cultures were prepared by scraping conidiospores from agar plates into sterile distilled water. For each treatment, three or four replicate flasks were inoculated with approximately 10⁸ spores per flask. A control uninoculated flask was included in each experiment. To determine the concentration of spores, the spore suspension was first filtered through sterile glass wool to remove hyphal fragments. The filtered spores were washed by centrifugation at 4000 r.p.m. for 10 min, followed by decanting the supernatant and resuspending the spores in sterile distilled water. The number of spores was then determined using a haemocytometer.

Each flask was stoppered with a bung with inlet and outlet tubes and the clips closed. Vacuum grease was smeared around the junctions of the tubes and the bungs, and Parafilm was wrapped around the bungs and tops of the flasks. The flasks were incubated at 37 °C without shaking. After different periods of incubation the flasks were flushed with O2 for 15 min, and the released 14CO2 trapped in 2 ml Carbo-Sorb E (Packard). Two millilitres of Optiphase 'Hi-Safe' 3 (LKB) scintillation fluid were added after flushing, and radioactivity was counted to within 5% accuracy. About 97% of the released radioactivity was trapped within 15 min (unpublished data).

Enzyme assays. LiP activity was assayed as the oxidation of veratryl alcohol to veratraldehyde (Tien & Kirk, 1984). MnP activity was assayed by the oxidation of vanillylacitone in the presence of Mn(II) ions (Paszczynski et al., 1985). The results were corrected for manganese-independent peroxidase by repeating the assay without MnSO4. Cellulose activity was measured using a cellulose-azure method (Rinderknecht et al., 1967). Cellulose-azure (Sigma) was added to provide a 2% (w/v) suspension in 50 mM sodium acetate buffer pH 9, containing 50 mM NaCl. Release of dye was measured at 595 nm, the assay being calibrated using commercial cellulase (Sigma C-0901).

Preparation of heterokaryons. The method used was essentially that described previously (Thompson & Broda, 1987). For pairings, the homokaryotic strains were subcultured onto 2% (w/v) MEA plates. After 2 d growth at 37 °C, 0.8 cm diameter plugs of mycelium and agar were taken sub-marginally. Plugs from the two strains to be mated were placed 1.5–2.0 cm apart in the centre of an MEA plate, which was then incubated at 30 °C for 2 weeks. Pairings that produced no antagonistic reactions were considered to be putative heterokaryons. Unlike some basidiomycetes, heterokaryotic mycelia of *P. chrysosporium* are not macroscopically different from homokaryotic mycella. Also the heterokaryon does not form clamp connections (Burdals & Eyslin, 1974), so that assessment of heterokaryon formation is subjective using such methods alone. Therefore the heterokaryotic status of 2/52 (a product of strains 2 and 52) was confirmed by demonstrating the presence of the expected pattern of RFLPs, using EcoRI, PstI and SalI. DNA samples from strains 2, 19, 35, 52 and ME446 were used as controls.

Fruiting medium for basidiospores. The medium was that of Gold & Cheng (1979) but with 5% (w/v) wet Whatman microgranular CC31 cellulose in 1/3-strength Vogel's N medium and with thiamin added at a final concentration of 1 mg l−1 instead of biotin; Bacto-agar (Difco) was added at 1.5% (w/v).

Conidiospores were inoculated at 10⁶ spores per plate, and the plates incubated for 1–2 weeks at 30 °C. Fruit-bodies appeared on the edges of the medium and basidiospores ejected from the fruit body were collected in sterile distilled water from the dish lid. There was no contamination with conidiospores. Mono-basidiosporous cultures were obtained by plating approximately ten spores per MEA plate. The plates were incubated overnight and individual germinating spores were excised under a microscope and transferred to separate MEA plates. These were then cultured at 37 °C for 7 d to allow profuse sporulation prior to storage at 4 °C.

RESULTS

Definition of standard conditions for 14C-DHP mineralization

14C-DHP mineralization by strain ME446 was examined over 63 d using two alternative buffers, NaOAc and DMS, both at pH 4.5 and 10 mM, in combination with three alternative carbon sources, glucose, xylose and glycerol. Glucose and DMS gave the highest initial and final levels of 14CO2 release: up to 30% of the initial radioactivity was recovered as 14CO2 (data not shown). The use of DMS was also attractive since prolonged incubation gave no significant change in the pH. In contrast, the use of NaOAc, particularly at low glucose concentrations, resulted in increases in pH, presumably due to utilization of acetate as a carbon source and a resulting loss of buffering capacity. Moreover DMS had previously been used by Kirk et al. (1986).

The molecular mass distribution of the 14C-DHP that remained in suspension after 63 d was examined by gel filtration. In the control, the majority of the radioactivity resided in the > 10000 Da apparent molecular mass portion. After incubation with the fungus, under all conditions, the final molecular mass averaged 3000 Da.
The cumulative values shown are the means of four replicate flasks for each glucose concentration. Flasks were flushed with oxygen on days 3, 6, 9, 15, 20, 24 and 28.

Fig. 1. Effect of glucose concentration on 14C-DHP mineralization. 14C-DHP was added at 46000 d.p.m. per flask. The cumulative values shown are the means of four replicate flasks for each glucose concentration. Flasks were flushed with oxygen on days 3, 6, 9, 15, 20, 24 and 28.

The effect of glucose concentration on 14C-DHP mineralization was examined in the concentration range from 0.25% to 2% (w/v). The duration of 14CO$_2$ release increased as a function of glucose concentration (Fig. 1). In this experiment, as in all others using 14C-DHP, the d.p.m. released by replicate cultures varied. With the 0.5%, 1% and 2% glucose-containing cultures the means of the standard deviations for the different time points were 25%, 31% and 24%, whereas for the 0.25% glucose set the standard deviation was 85%. The reason for this difference was that, with the 0.25% set, one of the four cultures gave negligible mineralization; such aberrant behaviour of a minority of cultures was also observed in the experiments to be described below. The standard conditions that were then chosen were: 25 ml static cultures with 10 mM DMS pH 4.5 and 2% glucose, inoculation with 10^5 spores and incubation with sampling for 14CO$_2$ at 4 and 10 d. The cumulative values for d.p.m. were used in the subsequent calculations.

Use of 14C-DHP as substrate

Published accounts of mineralization of 14C-DHP to 14CO$_2$ show extensive variation between assays from replicate cultures (Kirk et al., 1986). It is important to know whether such variation arises from the assay itself or from differences in the behaviour of replicate cultures. Since DHP is insoluble in water, and is added in a small volume of DMF, it is in suspension rather than in solution. This might be a source of variability in apparent performance between replicate cultures. Such variation was tested for by dispensing sets of replicate aliquots, with different amounts of carrier DHP. The variation between replicate samples was about 10%, and was unaffected by the amount of carrier.

Gel filtration confirmed that the size distribution of the 14C-DHP had two maxima. Such heterogeneity might lead to selective utilization of one size class. This hypothesis was tested with high and low molecular mass fractions. About 85% of the radioactivity released over a 10 d incubation arose from the lower molecular mass material.

Peroxidase activities in culture supernatants during DHP mineralization

Strain ME446 was cultured in DMS plus 2% glucose medium for 14 d. Fungal dry weight increased fourfold between days 3 and 10, and then started to decline. No LiP activity was detected in the supernatant at any time. In contrast, MnP activity appeared between days 5 and 6, with peak activity after 7 d; on day 14, supernatant MnP activity could still be detected. There was also MnP activity but not LiP activity during growth in DMS at lower glucose concentrations. In control experiments with NaOAc+0.25% glucose, LiP appeared on day 5, peaked on day 6 and had disappeared by day 14. This case biomass peaked earlier, at day 4, and then decreased (data not shown). However in NaOAc buffer with 2% glucose LiP was again not detected.

Mineralization of [14C]lignin from mature lignocellulose

Strain ME446 and seven of its derivatives were tested for their ability to release 14CO$_2$ from plant [lignin-14C]lignocellulose substrate. This material had been subjected to repeated cellulase and protease treatments so that more than 90% of the 14C was in the Klason lignin component (Mason et al., 1990). Over 63 d, up to 26% of the 14C label was released as 14CO$_2$, so that not less than 15% of the lignin in this mature material had been mineralized (Fig. 2). Although the preparation of the substrate had involved...
Strain improvement of P. chrysosporium

Fig. 3. Substrate prepared from 140 d [lignin-14C]lignocellulose before inoculation (a) and after 63 d incubation with strain 15/47 (b). Bar, 50 μm (applies to both panels).

exhaustive treatment with cellulases, some of the 14CO2 released in the experiment could still have originated from lignin that had first been solubilized by P. chrysosporium cellulases. However, no supernatant cellulase was de-tectable after 10 d incubation, using the cellulase azure assay; this was expected since cellulases are subject to catabolite repression in this organism (Eriksson & Hamp, 1978), and the medium contained 2% glucose. We infer that mineralization is due to lignin breakdown.

The variation in the cumulative d.p.m. released by replicate cultures of individual strains was greater than with the 14C-DHP substrate using strain ME446 (see above). The mean standard deviation between replicates, across all strains and all time points, was 65%. It was hypothesized that this was due to the heterogeneous nature of the substrate and its relatively low specific activity with respect to 14C. Therefore, although this material was valuable for the demonstration of lignin degradation by P. chrysosporium from mature ligno-cellulose, it was judged to be less useful than 14C-DHP for the studies to be described below on differences in performance between strains.

Untreated substrate and substrate incubated with one heterokaryotic strain (15/47) for 63 d in the above experiment were examined by scanning electron microscopy. Fig. 3(a) shows the material before incubation; although subjected to prior exhaustive protease and cellulase extractions the material appears reasonably intact. Fig. 3(b) shows extensive modification of the material after 63 d incubation, consistent with the conclusion that the fungus has achieved significant degra-dation of the lignin component during this period.

14C-DHP mineralization by homokaryotic derivatives of ME446

Twenty-six homokaryotic derivatives of strain ME446 (Raeder & Broda, 1986) were tested for lignin mineral-ization performance in a series of experiments. Each experiment involved ME446 and five to nine other strains, with four replicate cultures per strain, and was repeated at least twice (Table 1). Determinations were based on the cumulative totals of radioactivity released as 14CO2 by day 10; this was preferred to sampling at intervals for short-term determinations, since the latter method would be likely to reflect to a greater extent the preferential utilization of lower molecular mass 14C-DHP demonstrated above.

As described above for strain ME446 there was substantial variation in d.p.m. released when the data from any set of four replicate cultures were compared. This variation included some cultures that gave negligible or very low levels of 14CO2 release; these data were included in the calculations. Partly as a result of this there was considerable variation in performance of individual strains between experiments (Table 1) so the conclusions to be drawn are qualitative rather than quantitative. The calculated values for the highest- and lowest-performing strains differed by a factor of 70, and the values for the 26 strains fell on a line with no discontinuities or clustering. This suggests that there is substantial allelic variation in a number of determinants involved in 14C-DHP mineral-ization.

Since the RFLP allele distributions for 38 genetic loci for these strains are known (Raeder et al., 1989a), they were analysed for any correlation between the presence of particular alleles at specific loci on the one hand and high lignin mineralization on the other (Table 2). No such correlation was found, indicating strongly that alleles of a number of genes distributed throughout the genome contribute to the final 14C-DHP mineralization rate, rather than there being a single major determinant of per-formance.

Range of performance among heterokaryotic strains

If alleles of a number of genes together determine performance for 14C-DHP mineralization, the range of such performances of progeny of crosses between homo-
Table 1. Rank order for 14C-DHP mineralization of 26 basidiospore-derived homokaryotic progeny of *P. chrysosporium* strain ME446

The medium contained DMS pH 4.5 and 2% glucose, and 8500 d.p.m. of 14C-DHP substrate and 1 mg unlabelled carrier DHP were added to each culture. Determinations were based on the cumulative totals of radioactivity released by day 10. Results are expressed as percentages of the result for ME446 in each sub-experiment. Each value is the mean of the results from four independent cultures. Percentages of total counts are the aggregate percentages for all cultures in each sub-experiment.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sub-expt:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Mean %</th>
<th>Rank order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14%</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>38</td>
<td>75</td>
<td>129</td>
<td>3</td>
<td>82</td>
<td>16</td>
<td>4</td>
<td>35</td>
<td>58</td>
<td>12</td>
<td>31</td>
<td>28</td>
<td>18</td>
<td>30%</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>230</td>
<td>131</td>
<td>105</td>
<td>58</td>
<td>84</td>
<td>112</td>
<td>120</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47%</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>60</td>
<td>73</td>
<td>71</td>
<td>44</td>
<td>50</td>
<td>46</td>
<td>92</td>
<td>58</td>
<td>84</td>
<td>112</td>
<td>128</td>
<td>72</td>
<td>15%</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>35</td>
<td>4</td>
<td>163</td>
<td>136</td>
<td>66</td>
<td>74</td>
<td>51</td>
<td>120</td>
<td>131</td>
<td>105</td>
<td>72</td>
<td>9</td>
<td>17%</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>55</td>
<td>128</td>
<td>81</td>
<td>201</td>
<td>72</td>
<td>150</td>
<td>131</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14%</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>192</td>
<td>112</td>
<td>119</td>
<td>198</td>
<td>107</td>
<td>89</td>
<td>128</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30%</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>56</td>
<td>76</td>
<td>20</td>
<td>26</td>
<td>103</td>
<td>82</td>
<td>105</td>
<td>103</td>
<td>86</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>20%</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>85</td>
<td>36</td>
<td>38</td>
<td>54</td>
<td>4</td>
<td>18</td>
<td>50</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19%</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5</td>
<td>21</td>
<td>18</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19%</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>74</td>
<td>27</td>
<td>22</td>
<td>85</td>
<td>55</td>
<td>38</td>
<td>53</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19%</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>34</td>
<td>178</td>
<td>34</td>
<td>178</td>
<td>30</td>
<td>14</td>
<td>46</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19%</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>13</td>
<td>19</td>
<td>16</td>
<td>22</td>
<td>16</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19%</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>26</td>
<td>35</td>
<td>61</td>
<td>100</td>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>ME446</td>
<td>15</td>
<td>100</td>
<td>100%</td>
<td>1</td>
</tr>
</tbody>
</table>

% of total counts: 1.8 7.2 3.3 8.7 6.7 2.0 3.4 4.3 1.4 5.2 2.5 1.7 3.0 3.9 ± 59%

Homokaryotic strains should be narrower than that of their parents. This is because all such progeny will be homozygous for about 50% of their genes. This prediction is also dependent on the validity of the values obtained using the 14C-DHP mineralization assay. Strains were paired on MEA plates and 12 of the strains that appeared to have arisen by fusion were tested for 14C-DHP mineralization, as above. In all cases strains ME446 (wild-type) and 2/52 (the product of the cross between strains 2 and 52) and an uninoculated flask were also included (Table 3). The range of levels of performance of the 12 strains was 5.3-fold, compared with 16-fold for that of their 11 parental homokaryotic strains. As with the homokaryotic progeny of ME446, a minority of strains performed better than ME446 itself.

14C-DHP mineralization by siblings derived from strain 2/52

Comparison of DNA from strain 2/52 with DNA from strains ME446 and four homokaryotic derivatives showed that it was polymorphic with respect to the *SalI* and *PstI* sites on the sequence that hybridizes with clone 1 (Raeder & Broda, 1986). Basidiospores from this heterokaryotic strain were obtained by fruiting on Walseth cellulose medium, and cultures were derived from such basidiospores. Eighteen of these strains were assessed for 14C-DHP mineralization of 14C-DHP as compared with ME446 and 2/52 (Table 4). The range of mean degradation rates (3.2-fold) was much narrower than had been observed for the homokaryotic derivatives of ME446 and also narrower than that of the heterokaryotic strains described above.
Table 2. Test for correlation of RFLP allele distributions with high lignin degradation among homokaryotic derivatives of *P. chrysosporium* strain ME446

The loci are as in Raeder et al. (1989a) [col. (1)]. For each locus, strains with identified A or B alleles are taken and ranked; the rank-sum for the A-strains is obtained [col. (2)]. The numbers of A-strains [col. (3), \(n_A\)] and of A- or B-strains [col. (4), \(n_A + n_B\)] are given. The expected rank-sum [col.(5)] is calculated as \(\frac{1}{2} n_A (n_A + n_B + 1)\). The Wilcoxon (Mann-Whitney) U-statistic [col. (6)] is obtained as \(U = \text{rank sum} - \frac{1}{2} n_A (n_A + 1)\). The last column (7) is the probability \(P(U < u)\) that the Wilcoxon \(u\)-value [col. (6)] will not be exceeded by chance; in single samples, values of \(P\) very close to 0 or 1 would be significant evidence of association between allele and performance. The significant level of \(P\)-values in an aggregate of cases is hard to evaluate because of their mutual dependence due to the linkage of loci. Nevertheless, a lower bound can be calculated that is based upon the number of linkage groups. It can be shown that with 10 linkage groups involved, the probability of at least one \(P\) value falling outside the range 0.02–0.98 – that is, outside the smallest centered interval covering all \(P\) values – is at least 0.33, which is not significant.

<table>
<thead>
<tr>
<th>(1) Locus</th>
<th>(2) Rank-sum</th>
<th>(3) No. of A-strains</th>
<th>(4) No. of strains</th>
<th>(5) Expected rank-sum</th>
<th>(6) Wilcoxon (u)</th>
<th>(7) (P(U < u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>100</td>
<td>9</td>
<td>26</td>
<td>121.5</td>
<td>55</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>193</td>
<td>15</td>
<td>26</td>
<td>202.5</td>
<td>73</td>
<td>0.32</td>
</tr>
<tr>
<td>52</td>
<td>167</td>
<td>14</td>
<td>21</td>
<td>154</td>
<td>62</td>
<td>0.84</td>
</tr>
<tr>
<td>1</td>
<td>233</td>
<td>16</td>
<td>26</td>
<td>216</td>
<td>97</td>
<td>0.82</td>
</tr>
<tr>
<td>47</td>
<td>233</td>
<td>16</td>
<td>26</td>
<td>216</td>
<td>97</td>
<td>0.82</td>
</tr>
<tr>
<td>54</td>
<td>213</td>
<td>16</td>
<td>26</td>
<td>216</td>
<td>77</td>
<td>0.45</td>
</tr>
<tr>
<td>76</td>
<td>199</td>
<td>14</td>
<td>25</td>
<td>182</td>
<td>94</td>
<td>0.83</td>
</tr>
<tr>
<td>39</td>
<td>218</td>
<td>16</td>
<td>26</td>
<td>216</td>
<td>82</td>
<td>0.55</td>
</tr>
<tr>
<td>34</td>
<td>180</td>
<td>14</td>
<td>26</td>
<td>189</td>
<td>75</td>
<td>0.33</td>
</tr>
<tr>
<td>5</td>
<td>222</td>
<td>14</td>
<td>26</td>
<td>189</td>
<td>117</td>
<td>0.96</td>
</tr>
<tr>
<td>44</td>
<td>180</td>
<td>13</td>
<td>26</td>
<td>175.5</td>
<td>89</td>
<td>0.60</td>
</tr>
<tr>
<td>56</td>
<td>178</td>
<td>15</td>
<td>24</td>
<td>187.5</td>
<td>58</td>
<td>0.30</td>
</tr>
<tr>
<td>41</td>
<td>223</td>
<td>16</td>
<td>26</td>
<td>216</td>
<td>87</td>
<td>0.65</td>
</tr>
<tr>
<td>79</td>
<td>170</td>
<td>12</td>
<td>25</td>
<td>156</td>
<td>92</td>
<td>0.78</td>
</tr>
<tr>
<td>18</td>
<td>233</td>
<td>17</td>
<td>26</td>
<td>229.5</td>
<td>80</td>
<td>0.58</td>
</tr>
<tr>
<td>7</td>
<td>215</td>
<td>17</td>
<td>26</td>
<td>229.5</td>
<td>62</td>
<td>0.23</td>
</tr>
<tr>
<td>19</td>
<td>176</td>
<td>14</td>
<td>26</td>
<td>189</td>
<td>71</td>
<td>0.26</td>
</tr>
<tr>
<td>58</td>
<td>229</td>
<td>17</td>
<td>25</td>
<td>221</td>
<td>76</td>
<td>0.69</td>
</tr>
<tr>
<td>62</td>
<td>232</td>
<td>18</td>
<td>26</td>
<td>243</td>
<td>61</td>
<td>0.28</td>
</tr>
<tr>
<td>45</td>
<td>174</td>
<td>15</td>
<td>24</td>
<td>187.5</td>
<td>54</td>
<td>0.22</td>
</tr>
<tr>
<td>11</td>
<td>206</td>
<td>16</td>
<td>26</td>
<td>216</td>
<td>70</td>
<td>0.31</td>
</tr>
<tr>
<td>cel</td>
<td>202</td>
<td>15</td>
<td>26</td>
<td>202.5</td>
<td>82</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>15</td>
<td>26</td>
<td>202.5</td>
<td>80</td>
<td>0.46</td>
</tr>
<tr>
<td>33</td>
<td>186</td>
<td>14</td>
<td>26</td>
<td>189</td>
<td>81</td>
<td>0.45</td>
</tr>
<tr>
<td>51</td>
<td>180</td>
<td>13</td>
<td>26</td>
<td>175.5</td>
<td>89</td>
<td>0.60</td>
</tr>
<tr>
<td>20</td>
<td>98</td>
<td>5</td>
<td>26</td>
<td>67.5</td>
<td>83</td>
<td>0.98</td>
</tr>
<tr>
<td>14</td>
<td>90</td>
<td>5</td>
<td>26</td>
<td>67.5</td>
<td>75</td>
<td>0.93</td>
</tr>
<tr>
<td>36</td>
<td>68</td>
<td>4</td>
<td>26</td>
<td>54</td>
<td>58</td>
<td>0.84</td>
</tr>
<tr>
<td>72</td>
<td>110</td>
<td>6</td>
<td>25</td>
<td>78</td>
<td>89</td>
<td>0.98</td>
</tr>
<tr>
<td>48</td>
<td>74</td>
<td>5</td>
<td>26</td>
<td>67.5</td>
<td>59</td>
<td>0.67</td>
</tr>
<tr>
<td>12</td>
<td>118</td>
<td>10</td>
<td>26</td>
<td>135</td>
<td>63</td>
<td>0.20</td>
</tr>
<tr>
<td>69</td>
<td>128</td>
<td>10</td>
<td>26</td>
<td>135</td>
<td>73</td>
<td>0.37</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
<td>9</td>
<td>25</td>
<td>117</td>
<td>45</td>
<td>0.07</td>
</tr>
<tr>
<td>61</td>
<td>186</td>
<td>14</td>
<td>26</td>
<td>189</td>
<td>81</td>
<td>0.45</td>
</tr>
<tr>
<td>90</td>
<td>188</td>
<td>15</td>
<td>26</td>
<td>202.5</td>
<td>68</td>
<td>0.24</td>
</tr>
<tr>
<td>57</td>
<td>230</td>
<td>15</td>
<td>26</td>
<td>202.5</td>
<td>110</td>
<td>0.93</td>
</tr>
<tr>
<td>40</td>
<td>193</td>
<td>13</td>
<td>26</td>
<td>175.5</td>
<td>102</td>
<td>0.82</td>
</tr>
<tr>
<td>66</td>
<td>109</td>
<td>7</td>
<td>26</td>
<td>94.5</td>
<td>81</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Table 3. 14C-DHP mineralization by heterokaryotic strains as percentages of mean mineralization by strains ME446 and 2/52 in the same experiment

Experimental details as in Table 1. Each value is itself the mean of the results from four independent cultures.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sub-expt:</th>
<th>2</th>
<th>3</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Mean %</th>
<th>Parental means %*</th>
<th>% Heterozygous†</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/47</td>
<td></td>
<td>32</td>
<td>59</td>
<td>45</td>
<td>15</td>
<td>8</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/47</td>
<td></td>
<td>45</td>
<td>80</td>
<td>63</td>
<td>72</td>
<td>8</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/52</td>
<td></td>
<td>77</td>
<td>97</td>
<td>87</td>
<td>15</td>
<td>38</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/52</td>
<td></td>
<td>110</td>
<td>114</td>
<td>86</td>
<td>84</td>
<td>94</td>
<td>65</td>
<td>38</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>ME446</td>
<td></td>
<td>90</td>
<td>86</td>
<td>100</td>
<td>114</td>
<td>116</td>
<td>106</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29/52</td>
<td></td>
<td>47</td>
<td>7</td>
<td>27</td>
<td>86</td>
<td>38</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/52</td>
<td></td>
<td>43</td>
<td>56</td>
<td>50</td>
<td>120</td>
<td>38</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/8</td>
<td></td>
<td>112</td>
<td>153</td>
<td>133</td>
<td>30</td>
<td>120</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/29</td>
<td></td>
<td>152</td>
<td>100</td>
<td>126</td>
<td>120</td>
<td>86</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/29</td>
<td></td>
<td>164</td>
<td>100</td>
<td>132</td>
<td>131</td>
<td>86</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17/26</td>
<td></td>
<td>46</td>
<td>4</td>
<td>25</td>
<td>72</td>
<td>128</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/14</td>
<td></td>
<td>94</td>
<td>80</td>
<td>87</td>
<td>30</td>
<td>90</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/29</td>
<td></td>
<td>124</td>
<td>84</td>
<td>104</td>
<td>30</td>
<td>86</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% of total counts 10.8 4.7 6.1 2.6 1.9 2.9 4.8±3.3

* The mean values for the parental strains were taken from Table 1.
† This value is derived from the RFLP analysis of Raeder et al. (1989a).

Table 4. Performance of homokaryotic derivatives of strain 2/52

Experimental details as in Table 1. The results are expressed as percentages of the means of the result for 2/52 and the result for ME446 in each experiment. Each value is itself the mean of the results from four independent cultures.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sub-expt:</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>84</td>
<td>88</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>103</td>
<td>157</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>85</td>
<td>36</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>99</td>
<td>169</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>67</td>
<td>101</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>57</td>
<td>87</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>107</td>
<td>108</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>118</td>
<td>63</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>107</td>
<td>67</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/52</td>
<td></td>
<td>124</td>
<td>128</td>
<td>114</td>
<td>95</td>
<td>115</td>
</tr>
<tr>
<td>ME446</td>
<td></td>
<td>76</td>
<td>72</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>55</td>
<td>34</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>50</td>
<td>68</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>51</td>
<td>48</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>27</td>
<td>58</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>41</td>
<td>44</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>77</td>
<td>54</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>108</td>
<td>54</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>49</td>
<td>81</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>86</td>
<td>87</td>
<td>86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% of total counts 4.3 3.7 2.8 3.5 3.6±0.6

DISCUSSION

There are major differences in efficiency of 14C-DHP mineralization among ME446 and its progeny strains, as predicted from the abundant RFLPs contained within ME446 (Raeder & Broda, 1986). Thus some alleles for genes encoding or regulating 14C-DHP mineralization functions differ quantitatively in their contributions to the flux through the system. We infer from the data that some strain improvement is feasible for lignin degradation by cycles of fruiting and crosses, without mutagenesis. To draw these conclusions with confidence we had first to examine the implications of two other features of the system of general interest: the variability in mineralization of 14C-DHP shown between replicate cultures, and the absence of supernatant LiP under the conditions used.

Initial experiments with ME446 established conditions that gave efficient release of 14CO$_2$ from 14C-DHP. The continuing release of label in the glucose dependence experiment indicates that 14C-DHP, diluted with unlabeled carrier, is not limiting. *P. chrysosporium* degraded the low molecular mass fraction of 14C-DHP preferentially. The considerable variation in yields between replicate cultures occurred both because some did not mineralize the substrate and because those that did so mineralized it to various extents. It was shown that very similar amounts of 14C-DHP entered each flask, and great care was taken to prevent leakage of gas from the system. We conclude that there is intrinsic variation in the behaviour of *P. chrysosporium* or that culture conditions are as yet uncontrolled in some crucial respect. Intrinsic variation
between replicate cultures has been described and
discussed previously by Raeder et al. (1989b) for supernatant
LiP using different conditions (0-1 % glucose, NaOAc
buffer). In that case, appearance of LiP activity was
preceded by a decrease in fungal biomass; in about 5 %
of the cultures the decrease in biomass was less than in the
other cultures, and these did not then produce supernatant
LiP activity.

Lignin degradation in the absence of supernatant LiP

Under the chosen conditions, MnP activity was detectable
in the culture supernatants but not LiP activity. Although
14C-DHP mineralization indicated lignin-degradative
ability, we sought independent confirmation that such
degradation was indeed occurring. Mineralization of
material from mature barley straw provided a stringent
test, since this substrate had been prepared by a long
regime of labelling followed by exhaustive treatment with
both polysaccharidases and proteases (Mason et al., 1990;
see Methods). Thus, as in some other white rot fungi
(Périer & Gold, 1991; Rüttimann-Johnson et al., 1993),
supernatant LiP activity is not necessary for lignin
degradation by *P. chrysosporium* under these conditions.
In contrast, MnP was always present in the supernatant.
Moreover, whereas MnP activity appeared before mycelial biomass peaked (i.e. it was present in the primary
growth phase), where LiP activity was present (in
NaOAc medium), it appeared as mycelial biomass started
to decline.

A large literature exists on the conditions that correspond
to maximum production of enzymes implicated in lignin
degradation in supernatants. This literature describes
different species, different strains of *P. chrysosporium*,
different growth conditions (aeration, agitation, immobilization), pH and buffering, presence of veratryl alcohol,
different concentrations of carbon and nitrogen sources
and of Mn(II), and defined media versus woody decay and
solid substrate fermentation conditions (Cancel et al.,
1993; Capdevila et al., 1990; Datta et al., 1991; Dosoretz
et al., 1993; Eriksson et al., 1983; Faison & Kirk, 1985;
Kerem et al., 1992; Niki-Paavola et al., 1990; Orth et al.,
1991; Perez & Jeffries, 1990; Tien & Myer, 1990; Tonon
& Odier, 1988; Venkatrami & Irvine, 1990). Some authors
appear to assume a relationship between supernatant
enzyme levels and an efficient lignin degradation process.
In contrast, others have shown by immunocytocchemical
methods that much of the LiP is mycelium-bound (Evans
et al., 1991; Garcia et al., 1987; Lackner et al., 1991;
Moukha et al., 1993; Ruel & Joseleau, 1991; Srebrotuki
et al., 1988). The process of lignin depolymerization is likely
to depend on structural organization that brings into
proximity the peroxidases (and perhaps the peroxide-
generation system) and the substrate; since such organiza-
tion would depend upon the intact fungus, it seems to
follow that supernatant enzyme is irrelevant for lignin
degradation in vivo. Biochemical studies on the action of
LiPs and MnPs in vitro show that polymerization occurs
(Haemmerli et al., 1986) as well as depolymerization
(Hammel & Moen, 1991; Wariishi et al., 1991; Hammel
et al., 1993). If peroxidases are responsible for lignin
depolymerization, the products must be rapidly parti-
tioned to prevent their repolymerization. If mycelium-
bound LiP is involved in lignin degradative ability and
the appearance of supernatant LiP reflects senescence
(Lackner et al., 1991), LiP mRNA should be detectable in
the absence of such supernatant activity. This has been
reported elsewhere (Broda et al., 1995). Such sequestration
of LiP could explain the paradox that other fungi have
LiP-related DNA sequences and/or proteins that cross-
react with LiP-derived antibodies in Western blots but
have no corresponding measurable supernatant LiP
activity (Huoponen et al., 1990; Orth et al., 1993; Rüttimann
et al., 1992).

Performance and genotype

The range of levels of performance of 26 homokaryotic
derivatives of ME446 was 70-fold; this demonstrates the
consequences of the extent of genetic polymorphism
present in ME446. Both this range and the absence of
clustering in the values suggest that a number of
determinants contribute to the overall efficiency of lignin
mineralization. The markers included in the statistical
analysis cover the whole genome of *P. chrysosporium*
ME446. However, there was no evidence that for any loci
the possession of any one allele has a disproportionate
effect on the flux through the DHP mineralization system.

If performance for DHP mineralization is determined
multifactorially, the range of values for the heterokaryotic
strains should be narrower than that for the parental
homokaryotic strains, and indeed this was the case. The
range for the progeny of strain 2/52 was even narrower;
this was also expected, since less polymorphism is
contained in this strain alone than that present in the set
of homokaryotic strains used to produce the heterokaryotic
strains. The internal consistency of these results supports
the validity of the DHP assay on which they are based.

The mean performance of the 26 progeny of ME446 was
58 % of that of the parent, with five strains performing
better than ME446 itself. The 12 heterozygous progeny
from crosses between such strains had a mean perform-
ance of 83 %. Their inferred degrees of hetero-
ygosity were between 42 and 66 %, on the basis of the
RFLP study of Raeder et al. (1989a), but there was no
correlation between the extent of this heterozygosity and
the performance of individual strains. Of these 12 strains,
eight performed better than either parent, two had
performances intermediate between those of the parents,
and only two performed less well than either parent.
Strains 8/29 (126 %) and 24/29 (132 %) retained the
higher levels of performance observed for the parental
strains 8 (120 %), 24 (131 %) and 29 (86 %). The 18 progeny
of strain 2/52 (94 %) had a mean performance of
79 %, with 16 strains performing more poorly than the
parental strain.

We conclude that within *P. chrysosporium* ME446 some
strain improvement is possible for lignin mineralization
by the use of breeding alone. This could be extended by
inter-strain crosses. There is also scope for directed
mutagenesis; potential targets of biotechnological rel-
and any genetical approaches must be firmly linked to scaled-up solid substrate fermentation conditions, approaches would depend on further development of A. However, it will be equally important to improve our understanding of the organism's physiology under scaled-up solid substrate fermentation conditions, and any genetical approaches must be firmly linked to such studies.

Conclusions

1. The 14C-DHP mineralization assay allows genetically related strains of P. chrysosporium to be compared for performance for lignin degradation.
2. Under the conditions used, supernatant Lip activity is absent, so if Lip is necessary for 14C-DHP mineralization, it must be as mycelium-bound enzyme. We infer that when supernatant Lip is present, as under other conditions, its levels cannot be used as an index of lignin mineralization.
3. Strain ME446 contains abundant RFLPs, and permutations of alleles in different meiotic progeny result in very different levels of performance for 14C-DHP mineralization. However, no single allele is necessary for high performance.
4. Consistent with this interpretation, heterokaryotic strains obtained by crosses between such meiotically derived strains show a much narrower range of levels of performance. Moreover the meiotic progeny of one such heterokaryotic strain show a still narrower range.
5. With each set of strains, individuals were found with performances that were higher than that of the parental strain ME446. Moreover, most heterokaryotic progeny performed better than either of their parental homo-karyotic strains.
6. Some strain improvement for 14C-DHP mineralization is possible by breeding.

ACKNOWLEDGEMENTS

This work was jointly supported by the Agricultural and Food Research Council and Venture Research International. We thank the staff of the Department of Cell and Structural Biology at the University of Manchester for the SEM photographs, Drs R. Krejci and E. F. Harding for advice with statistics, Drs P. Sims, P. Birch and P. Brooks for discussions, and Mrs P. Allen for her preparation of the manuscript.

REFERENCES

Faix, O., Mozuch, M. D. & Kirk, T. K. (1985). Degradation of

Received 7 April 1995; revised 3 July 1995; accepted 13 July 1995.