Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene

Frans J. Weber, Sonja Isken and Jan A. M. de Bont

Author for correspondence: Frans J. Weber. Fax: +31 8370 84978.
e-mail: frans.weber@algemeen.im.wau.nl

INTRODUCTION

Aromatic solvents like toluene, styrene and tetratin are toxic for micro-organisms even at subsaturating concentrations in water (de Smet et al., 1978; Sikkema et al., 1992). These solvents partition preferentially in the cell membrane and this excessive accumulation causes expansion of the membrane and impairment of membrane functions (Sikkema et al., 1994). Notwithstanding the clear toxicity of various aromatic solvents to most microorganisms, bacteria do exist that are able to tolerate high concentrations of such compounds in their environment.

Clear examples are *Pseudomonas putida* IH-2000 (Inoue & Horikoshi, 1989) and *P. putida* PpG1 (Shima et al., 1991) which grew in the presence of 50% (v/v) toluene. These strains, however, were not able to metabolize toluene. Recently, two other strains have been isolated which can utilize toxic solvents as carbon and energy source. *P. putida* Idaho grew on toluene and p-xylene in concentrations of more than 50% (Cruden et al., 1992) and *P. putida* S12 grew on supersaturating concentrations of styrene (Weber et al., 1993).

The mechanism of this tolerance of these *P. putida* strains is presently unknown, but it is reasonable to expect adaptations at the level of the membrane composition. Changes in the fatty acid composition of membrane lipids may alter the partitioning of solvents in the membrane. An increase of the acyl chain length of the phospholipids from tetradecanoic to octadecanoic acid reduced the partitioning of lindane into liposomes 50-fold (Antunes-Madeira & Madeira, 1989). Incubations of *Escherichia coli* with apolar solvents such as benzene and octanol resulted in increased synthesis of saturated fatty acids (Ingram, 1976; Ingram, 1977). Another adaptation mechanism has been observed in a *Pseudomonas putida* species growing on phenol at high concentrations (Heipieper et al., 1992). These cells adapted by converting the *cis* unsaturated fatty acids into the *trans* isomers which have a higher transition temperature and a decreased fluidity of the membrane.

In this report we describe changes in the fatty acid composition of the phospholipids of the three solvent-tolerant strains *P. putida* PpG1, *P. putida* Idaho and *P. putida* S12, in response to the presence of supersaturating concentrations of organic solvents in the growth medium.

METHODS

Organism and growth. *Pseudomonas putida* S12 had been isolated on styrene (Hartmans et al., 1990). *P. putida* Idaho (NRRL B-18435) and *P. putida* PpG1 (ATCC 17453) were obtained from culture collections. Cells were grown in phosphate-buffered (pH 7.0) mineral salts medium (Hartmans et al., 1989) with sodium acetate (60 mM) or glucose (15 mM) as carbon and energy source. Cultures were incubated at 30°C with horizontal shaking in a water bath (160 oscillations min⁻¹, amplitude 2-2 cm).

Growth in the presence of solvents. An inoculum of 5% (v/v) from an overnight culture was transferred to fresh medium. When the culture reached the exponential growth phase (OD₆₅₀ ≈ 0.4) organic solvents were added. The culture bottles (250 ml) containing 25 ml of medium were closed with Mininert valves (Phase Separations, Waddinxveen, The Netherlands) to prevent evaporation. A partition coefficient of toluene between medium and air of 3.8 (Amoore & Hautala, 1983) was used to calculate the toluene concentrations in the water phase.

Chemostat. Cells were grown on mineral salts medium with
Table 1. Fatty acid composition (%) of three toluene-tolerant *P. putida* strains grown on glucose, acetate or acetate in the presence of toluene (1%, v/v), respectively

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>P. putida S12 Glucose</th>
<th>Acetate</th>
<th>Acetate + 1% toluene</th>
<th>P. putida PpGl Glucose</th>
<th>Acetate</th>
<th>Acetate + 1% toluene</th>
<th>P. putida Idaho Glucose</th>
<th>Acetate</th>
<th>Acetate + 1% toluene</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>35.9</td>
<td>31.4</td>
<td>31.2</td>
<td>30.7</td>
<td>34.3</td>
<td>34.5</td>
<td>39.4</td>
<td>38.7</td>
<td>39.5</td>
</tr>
<tr>
<td>16:1 trans</td>
<td>4.7</td>
<td>9.6</td>
<td>20.6</td>
<td>12.5</td>
<td>12.3</td>
<td>16.9</td>
<td>4.4</td>
<td>9.0</td>
<td>12.1</td>
</tr>
<tr>
<td>16:1 cis</td>
<td>32.8</td>
<td>25.9</td>
<td>13.5</td>
<td>23.2</td>
<td>20.4</td>
<td>9.4</td>
<td>18.9</td>
<td>16.7</td>
<td>2.9</td>
</tr>
<tr>
<td>17 cyclo</td>
<td>< 1.0</td>
<td>6.1</td>
<td>5.3</td>
<td>1.3</td>
<td>3.0</td>
<td>7.8</td>
<td>3.0</td>
<td>3.6</td>
<td>6.5</td>
</tr>
<tr>
<td>18:0</td>
<td>4.2</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>3.6</td>
<td>1.4</td>
<td>2.3</td>
<td>2.9</td>
<td>1.7</td>
</tr>
<tr>
<td>18:1 trans</td>
<td>1.0</td>
<td>3.1</td>
<td>10.4</td>
<td>1.8</td>
<td>1.8</td>
<td>7.1</td>
<td>4.6</td>
<td>8.7</td>
<td>17.2</td>
</tr>
<tr>
<td>18:1 cis</td>
<td>21.4</td>
<td>21.3</td>
<td>16.9</td>
<td>26.7</td>
<td>22.4</td>
<td>19.4</td>
<td>22.0</td>
<td>23.9</td>
<td>8.5</td>
</tr>
<tr>
<td>19 cyclo</td>
<td>< 1.0</td>
<td>1.2</td>
<td>< 1.0</td>
<td>1.1</td>
<td>2.1</td>
<td>3.5</td>
<td>5.3</td>
<td>4.3</td>
<td>11.6</td>
</tr>
<tr>
<td>Ratio Sat./unsaturated</td>
<td>0.67</td>
<td>0.67</td>
<td>0.62</td>
<td>0.54</td>
<td>0.76</td>
<td>0.89</td>
<td>1.00</td>
<td>0.94</td>
<td>1.45</td>
</tr>
<tr>
<td>trans/cis 16:1</td>
<td>0.14</td>
<td>0.37</td>
<td>1.5</td>
<td>0.54</td>
<td>0.60</td>
<td>1.8</td>
<td>0.23</td>
<td>0.54</td>
<td>4.1</td>
</tr>
<tr>
<td>trans/cis 18:1</td>
<td>0.05</td>
<td>0.15</td>
<td>0.62</td>
<td>0.07</td>
<td>0.08</td>
<td>0.37</td>
<td>0.21</td>
<td>0.36</td>
<td>2.0</td>
</tr>
</tbody>
</table>

15 mM glucose in a fermenter with 700 ml working volume at 30 °C, 350 r.p.m. and at a dilution rate of 0.2 h⁻¹. Various toluene concentrations were supplied to the fermenter via the gas phase by passing an adjustable part of the air flow through a column (15 cm) of toluene which was kept at 30 °C. The total air flow was kept constant at 140 ml min⁻¹.

Bacterial survival. The numbers of viable cells before and after solvents were added to exponentially growing cultures (OD₆₅₀ ≈ 0.4) or to cells harvested from steady state chemostat cultures were determined by plating 0.1 ml of suitable dilutions in 0.8% (w/v) saline on solidified agar medium with the same growth substrate (e.g. acetate or glucose) as the liquid cultivation medium.

Fatty acid analysis. The total lipids of cells were extracted with chloroform/methanol (Bligh & Dyer, 1959). The fatty acids were methylated using boron trifluoride/methanol according to the method of Morrison & Smith (1964). The fatty acid methyl esters were extracted into hexane and normally analysed on a Chrompack CP9000 gas chromatograph equipped with a CP-Sil 88 WCOT fused-silica column. Fatty acid identities were confirmed by GC-MS analysis using a 5890A Hewlett-Packard gas chromatograph equipped with a CP-Sil 19CB WCOT fused-silica capillary column; mass spectra were recorded on a 5970 series mass-selective detector with a 59822B Ionization Gauge Controller (Hewlett-Packard).

Phase transition temperature. The temperature-dependent vibrational frequency of the CH₂-stretch in lipids of whole bacterial cells was measured by Fourier transform infrared spectroscopy (FTIR). FTIR measurements were carried out using a Perkin-Elmer series 1750 FTIR spectrometer equipped with a 7500 data station, as described by Crowe et al. (1989). Exponentially growing cells were harvested and washed twice with water. The pellet was placed between two CaF₂ windows. The sample was cooled to −10 °C and slowly heated; spectra were recorded after every stepwise increase (2 to 3 centigrade degrees) in temperature.

RESULTS

Fatty acid composition

The three solvent-resistant strains, *P. putida* PpGl, *P. putida* Idaho and *P. putida* S12 were grown in mineral medium containing either glucose, acetate, or acetate in the presence of toluene (1%, v/v). Exponentially growing cells from these cultures were harvested, washed and the fatty acid profiles were determined (Table 1).

When glucose-grown *P. putida* S12 cells were compared to acetate-grown cells, an increase in the amount of *trans* and a decrease in the *cis* unsaturated fatty acids was seen. A further increase in the *trans/cis* ratio was observed when *P. putida* S12 cells were grown on acetate in the presence of toluene (1%). The acetate-grown cells also had a higher percentage of cyclopropane fatty acids when compared to glucose-grown cells. However, the presence of toluene had no effect on these cyclopropane fatty acids. Similarly, in two other solvent-tolerant strains, *P. putida* PpGl and *P. putida* Idaho, high *trans/cis* ratios were observed when grown in the presence of high toluene concentrations.

Stability of the adaptation

Subsequently, we determined whether the observed changes in fatty acid profiles, as dependent on growth conditions, were reversible. *P. putida* S12 grown on acetate in the presence of 1% toluene was used to inoculate (1%) acetate and glucose medium without solvents. The fatty acid composition of the cells grown on acetate was almost identical to the fatty acid composition of the parent culture grown in the presence of toluene. However, a decrease in the *trans/cis* ratio was observed, when grown on glucose (Table 2).
Adaptation of *P. putida* strains to toxic solvents

Table 2. Fatty acid composition (%) of toluene-adapted *P. putida* S12 grown in the absence of toluene for about 100 generations on glucose or acetate, respectively.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Glucose</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>38.4</td>
<td>32.5</td>
</tr>
<tr>
<td>16:1 trans</td>
<td>11.5</td>
<td>25.2</td>
</tr>
<tr>
<td>16:1 cis</td>
<td>19.1</td>
<td>12.2</td>
</tr>
<tr>
<td>17 cyclo</td>
<td>3.1</td>
<td>2.8</td>
</tr>
<tr>
<td>18:0</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>18:1 trans</td>
<td>2.9</td>
<td>6.9</td>
</tr>
<tr>
<td>18:1 cis</td>
<td>22.3</td>
<td>16.9</td>
</tr>
<tr>
<td>19 cyclo</td>
<td>< 1.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Glucose</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat./unsaturated</td>
<td>0.79</td>
<td>0.63</td>
</tr>
<tr>
<td>trans/cis 16:1</td>
<td>0.60</td>
<td>2.1</td>
</tr>
<tr>
<td>trans/cis 18:1</td>
<td>0.13</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Fig. 1. Effect of toluene on the fatty acid composition of *P. putida* S12 and on survival of cells given a shock addition of toluene. Cells were grown in a glucose-limited chemostat at a dilution rate of 0.2 h⁻¹. Various subsaturating toluene concentrations were applied to the fermenter via the gas phase. The fatty acid composition of the cultures was determined after a steady-state was reached in the chemostat. Toluene concentrations below 300 mg l⁻¹ in the water phase did not result in changes in the fatty acid composition. However, substantial changes in the *trans/cis* ratio of the unsaturated fatty acids were observed in cells grown in the presence of higher toluene concentrations (Fig. 1). The steady-state chemostat cultures were also used to determine the effect on cell viability of a ‘shock’ addition of toluene (1%). Only a small number of survivors were recorded in cultures grown in the presence of less than 300 mg toluene l⁻¹. However, when grown in the presence of more than 300 mg toluene l⁻¹, a high percentage of cells survived this addition of toluene.

Phase transition temperature

Fatty acids undergoing melting from gel to liquid phase show an adsorption shift of 2-4 wavenumbers in the infrared spectrum (Cameron & Dluhy, 1987). The symmetric vibration band of CH₂ groups at a frequency around 2850 cm⁻¹ was measured using FTIR spectroscopy. This adsorption maximum was determined at different temperatures for *P. putida* S12 grown on glucose, acetate or acetate medium containing 400 mg toluene l⁻¹, respectively. In Fig. 2 it can be seen that cells grown in the presence of toluene possess a lipid melting temperature which is about 7 centigrade degrees higher than in cells grown in the absence of toluene.

Subsaturating concentrations of toluene

Toluene concentrations below the maximum solubility in water (640 mg l⁻¹ at 30 °C) (Bohon & Claussen, 1951) also slowed the growth of *P. putida* S12 on glucose or acetate medium. A toluene concentration of about 350 mg l⁻¹ reduced the growth rate to one-half of the maximum. When these cells were transferred to fresh medium with the same toluene concentration, no growth inhibition was observed.

The effect of toluene on the fatty acid composition of *P. putida* S12 was also determined by growing the organism in a glucose-limited chemostat at a dilution rate of 0.2 h⁻¹. Various subsaturating toluene concentrations were applied to the fermenter via the gas phase. The fatty acid composition of the cultures was determined after a steady-state was reached in the chemostat. Toluene concentrations below 300 mg l⁻¹ in the water phase did not result in changes in the fatty acid composition. However, substantial changes in the *trans/cis* ratio of the unsaturated fatty acids were observed in cells grown in the presence of higher toluene concentrations (Fig. 1). The steady-state chemostat cultures were also used to determine the effect on cell viability of a ‘shock’ addition of toluene (1%). Only a small number of survivors were recorded in cultures grown in the presence of less than 300 mg toluene l⁻¹. However, when grown in the presence of more than 300 mg toluene l⁻¹, a high percentage of cells survived this addition of toluene.

DISCUSSION

Previously we have isolated 14 bacteria on subsaturating concentrations of styrene as sole carbon and energy source (Hartmans *et al.*, 1990). These bacteria were
thought not to grow on supersaturating concentrations of styrene, as these high styrene concentrations were expected to be toxic (de Smet et al., 1978; Sikkema et al., 1994). However, one of the selected strains, *P. putida* S12, eventually grew on styrene at concentrations of more than 50% after a long lag-phase (Weber et al., 1993).

In the present investigation, significant changes in the fatty acid profiles of solvent-adapted strains have been observed. *P. putida* S12 and two other solvent-tolerant strains responded to the presence of 1% toluene by increasing the amount of trans fatty acids and by decreasing the corresponding cis isomer. This adaptation in *P. putida* S12, occurred not only at supersaturating concentrations but also at subsaturating concentrations of toluene in water. No effects were seen below 300 mg toluene l⁻¹, but above 300 mg l⁻¹ the trans/cis isomer ratio of the cells increased dramatically. Cells having a high trans/cis isomer ratio were well equipped to survive ‘shock’ additions of toluene (1%).

The cis/trans isomerization as an adaptation mechanism in *P. putida* S12 is quite remarkable as most bacteria adapt to membrane-active compounds by changing the saturation index of their lipids (Ingram, 1976, 1977; Ingram & Buttke, 1984; Keweloh et al., 1990). Although 15 years ago trans monounsaturated fatty acids were regarded as non-natural fatty acids (Lehninger, 1977), over the last 10 years trans fatty acids in bacteria have been reported in, for instance *Aerobacter cyraenophila* (Moss & Daneshvar, 1992), *P. aeruginosa* (de Andres et al., 1991), *P. atlantica* (Guckert et al., 1987), *P. putida* (Heipieper et al., 1992), *Vibrio cholerae* (Guckert et al., 1986) and other *Vibrio* species (Okuyama et al., 1990), a marine isolate (Gillan et al., 1981) and in methane-utilizing bacteria (Makula, 1978). Recently, a cis/trans isomerization has been observed as an adaptation mechanism of a *P. putida* strain to toxic phenol concentrations (Heipieper et al., 1992). From our results it now appears that this defence mechanism is widespread in *P. putida* species.

The trans isomer has a steric configuration which is similar to that of saturated fatty acids. The cis-isomer has a kink in the acyl-chain of the fatty acids, which causes steric hindrance and results in a membrane with a higher fluidity. Studies with *Acholeplasma laidlawii* membranes enriched with exogenously supplied fatty acids have shown that the phase transition temperature between membranes containing about 80% cis or trans octadecenoic acid, respectively, differ about 45 centigrade degrees (Macdonald et al., 1985). In the toluene-adapted strain possessing a high trans/cis ratio, the transition temperature of the membrane in vivo was approximately 7 centigrade degrees higher compared to the non-adapted cells. This provides the cell with a mechanism to compensate for loss of membrane integrity as a result of the accumulation of lipophilic compounds. Furthermore, an increased lipid ordering also opposes partitioning of lipophilic compounds in the membrane (Antunes-Madeira & Madeira, 1989).

Apart from an increase in the trans/cis ratio of the unsaturated fatty acids, an increase in the amount of cyclopropane fatty acids was observed in acetate-grown cells when compared to glucose-grown cells. The lipids of acetate-grown *P. putida* S12 consisted of about 6% cyclopropane fatty acids, whereas glucose-grown cells did not contain these fatty acids. However, adaptation to toluene either in batch or in chemostat cultures did not enhance the level of cyclopropane fatty acids.

Growth of *P. putida* S12 in batch-cultures in the presence of supersaturating toluene concentrations was only observed when using toxic concentrations of acetate or propionate as carbon source (Weber et al., 1993). At 60 mM acetate (pH 7.0), about 0.3 mM of the undisociated acetic acid will be present in the medium. Results of Sheu & Freese (1972) suggest that these low concentrations of acetic acid are membrane-active. Acetate-adapted cells had an increased trans/cis ratio of the monounsaturated fatty acids. As a result, cells from such cultures had a higher degree of lipid ordering in the membrane and consequently these cells were able to further adapt and grow in the presence of toluene. Nakajima et al. (1992) and Aono et al. (1992) have shown that toluene-resistant bacteria can be isolated effectively by first adapting bacteria to the presence of a second phase of the less toxic solvent, xylene. Pre-adaptation of cells to less toxic compounds (acetate, xylene) or to subsaturating concentrations of toxic solvents (toluene) seems to be an effective technique to isolate solvent-tolerant microorganisms.

P. putida S12 cells possessing a high trans/cis isomer ratio after growth on acetate medium containing toluene, did not revert back to normal fatty acid content upon several generations growth without toluene. This response seems to be quite unusual, but these cells were grown on a medium with an acetate concentration (60 mM) which is normally toxic for the cells. Apparently, the modification in the fatty acid composition induced by toluene, is of benefit for the cells to grow in the presence of toxic acetate concentrations. Upon removal of acetate, a normal fatty acid composition was observed, indicating that the trans/cis isomerization is an adaptation mechanism and not a mutation.

The present investigation has focussed only on one possible defence mechanism of *P. putida* strains to toxic solvents. Further investigations will be necessary to determine whether trans/cis isomerization of the fatty acids is an important factor in gaining resistance or that other, as yet undiscovered adaptations are of primary importance. In this respect it will be worthwhile to consider the known effects of alcohols on microorganisms including changed protein/lipid ratios or changes in the phospholipid classes (Ingram & Buttke, 1984).

ACKNOWLEDGEMENTS

We thank Hermann J. Heipieper for helpful discussion during the preparation of the manuscript; C. J. Teunis, Department of Organic Chemistry (Agricultural University Wageningen) for...
REFERENCES

Received 22 December 1993; revised 14 February 1994; accepted 24 March 1994.