Phenotypic comparison between rhizosphere and clinical isolates of *Burkholderia cepacia*

Annamaria Bevivino, Silvia Tabacchioni, Luigi Chiarini, M. Vittoria Carusi, Maddalena Del Gallo and Paolo Visca

Author for correspondence: Annamaria Bevivino. Tel: +39 6 3048 3868. Fax: +39 6 3048 4808.

The phenotypic characteristics of four *Burkholderia cepacia* strains isolated from the rhizosphere and the clinical environment were compared. Tests included optimum growth temperature, utilization of carbon sources, production of HCN, indole-3-acetic acid (IAA) and siderophores, proteolytic activity, nitrogen fixation, inhibition of some phytopathogenic fungi, adherence to human mucosal and plant root epithelia, and greenhouse-based plant-growth promotion experiments using cucumber (*Cucumis sativus*). Results indicated that the strains of *B. cepacia* isolated from the rhizosphere differ markedly from their clinical counterparts. Strains isolated from the rhizosphere grew over a wider temperature range, fixed nitrogen and produced IAA, did not produce proteases, displayed a wider antibiosis against the phytopathogenic fungi studied, did not adhere to human uroepithelial cells, promoted growth of *C. sativus* and only produced a hydroxamate-like siderophore. In contrast, clinical isolates could not fix nitrogen or produce IAA, produced proteases, adhered to human uroepithelial cells, did not promote the growth of *C. sativus* and, in addition to a hydroxamate-like siderophore, produced pyochelin and salicylate siderophores. All four isolates exhibited the ability to adhere to the root tissue of *C. sativus* and were unable to produce HCN.

Keywords: *Burkholderia* (*Pseudomonas*) *cepacia*, phenotype, siderophores, pathogenicity, adherence

INTRODUCTION

Burkholderia cepacia (basonym *Pseudomonas cepacia*), formerly included in the rRNA homology group II of the genus *Pseudomonas* (Palleroni, 1984), is now recognized as the type species of the new genus *Burkholderia* on the basis of cellular lipid and fatty acid composition, 16S rRNA sequences, DNA–DNA homology values, and phenotypic characteristics (Yabuuchi et al., 1992). Although originally described as the causal agent of soft rot of onions (Burkholder, 1950), *B. cepacia* has later been reported to be a widely spread species in different soil and root samples (Hebbar et al., 1992a). In recent years, there has been considerable interest in using *B. cepacia* as a biocontrol agent because of its ability to antagonize and repress soilborne plant pathogens (Homma et al., 1990; Hebbar et al., 1992a, b, c; McLoughlin et al., 1992). Some biotypes of *B. cepacia* have been implicated in biodegradation of pesticides (Folsom et al., 1990; Kilbane et al., 1983). Occurrence and distribution of *B. cepacia* are not confined solely to environmental sources. This species has also been isolated from clinical specimens of human origin, particularly from cystic fibrosis patients (Goldmann & Klinger, 1986), as well as from contaminated medical devices and solutions employed in hospital practice (Gilardi, 1983). *B. cepacia* is characterized by an extreme resistance to antimicrobial agents (Gilardi, 1971), and by the ability to grow in minimal media including purified water systems (Carson et al., 1973). These factors have led to the emergence of *B. cepacia* as a serious problem in health care product contamination (Craven et al., 1981), nosocomial infections (Martone et al., 1987), and recalcitrant infections of cystic fibrosis patients (Isles et al., 1984; McKevitt & Woods, 1984; Thomassen et al., 1985).

Strains of *B. cepacia* isolated from plant, soil and human samples have previously been distinguished according to differences in bacteriocin production, maceration of onion slices, hydrolysis of low pectate agar and the size of resident plasmids (Gonzalez & Vidaver, 1979). Lennon & DeCicco (1991) compared strains of *B. cepacia* from
clinical, pharmaceutical-industrial, and environmental origin for the presence of plasmid DNA. In contrast to the environmental group, the clinical isolates varied considerably in the number and size of harboured plasmids which were cryptic and unrelated to the source of strains. The aim of the present study was to compare B. cepacia strains of clinical and rhizosphere origin for characters relevant to virulence in the human host as well as factors involved in biological control and plant-growth promotion. This will enable the selection of strains that may be used safely and effectively as biocontrol agents.

METHODS

Microbial cultures. The different B. cepacia strains used in this study were: B. cepacia PHP7 and TVV75, isolated in France and Vietnam from the rhizosphere of maize and rice, respectively (obtained from T. Heulin and Tran Van Van, Centre Pedologie, ISPAVE, Vietnam from the rhizosphere of maize and rice, respectively). All the strains were identified with the API 20NE (Bio-Mérieux) system. *Pseudomonas aeruginosa* PAO1 (ATCC5562) was obtained from the American Type Culture Collection (Rockville, MD, USA).

Fungal cultures of *Fusarium culmorum* ISPAVE F125, *Fusarium moniliforme* ISPAVE F44, *Fusarium oxysporum* ISPAVE F45 and *Fusarium graminearum* ISPAVE F202 were kindly provided by L. Corazza, Phytopathology Institute, MAF, Rome, Italy. The pathogenic fungi *F. solani* EF5 and *Rhizoctonia solani* EF9 were obtained from the Plant Pathology Institute, University of Naples, Italy. Fungi were maintained on potato dextrose agar (PDA, Difco) with monthly transfers.

Glassware preparation. For experiments requiring low-iron [Fe(III)] conditions, the glassware was rendered Fe(II1)-free by means of specific colorimetric tests. Cultures by filtration through Whatman no. 4 filter paper (Clifton). Hydroxamate-like siderophores were detected using the test of Hydroxamate-like siderophores and their mechanism with 100 µg of L-tryptophan ml⁻¹ and 100 µM FeCl₃. The supernatant was recovered by centrifugation for 20 min at 5500 g, adjusted to pH 2.5, and applied to a C-18 Sep-Pak cartridge (Sage et al., 1986). The cartridge was washed with distilled water and IAA was eluted with methanol containing 10 µg butylated hydroxytoluene ml⁻¹, as described by Forne et al. (1992). The eluate containing IAA was evaporated under vacuum to dryness and dissolved in 200 µl methanol. IAA was determined using the Salkowsky reagent (Ehmann, 1977).

Cyanide production. Cyanogenesis was detected according to Castric & Castric (1983), using HCN-sensitive Whatman 3MM paper discs soaked in the HCN detection reagent of Feigl & Anger (1966). *P. aeruginosa* PAO1 was used as the cyanogenic control.

Protease activity. Protease activity was first qualitatively assayed in the API 20NE test. Quantitative determinations were made on supernatants of 30 h cultures in SM9 using the colorimetric assay described by Tomarelli et al. (1949), with azoalbunin as the substrate. One unit of proteolytic activity was defined as the amount of enzyme hydrolysing 1 µg of azoalbunin in 1 min at 37 °C and was calculated assuming a A₁[::-]₄₅₀ absorption coefficient of 34.

N₂ fixation. Nitrogenase activity was determined by monitoring the reduction of acetylrene to ethylene by gas chromatography (Hardy et al., 1973; Lifshitz et al., 1986). Bacterial cultures were grown in 125 ml stoppered flasks containing 15 ml of the following medium (g l⁻¹): 1.0 KH₂PO₄, 1.74 K₂HPO₄, 0.2 MgSO₄, 0.1 NaCl, 0.02 CaCl₂, 0.015 FeCl₃, 0.002 NaMoO₄, 0.01 yeast extract (Difco), 50 glucose, pH 7.4. Cultures were grown on a rotary shaker (150 r.p.m.) at 28 °C for 24 h, under an atmosphere of 99.9 % (v/v) N₂ and 0.1 % O₂, and cells were collected by centrifugation (10000 g, 4 °C, 20 min). The pellets were washed twice with the same medium and 100 µl aliquots were transferred to 15 ml of fresh medium to give an initial concentration of approximately 5.5 x 10⁸ c.f.u. ml⁻¹. Following an additional 4 h incubation, 10% of the volume of the
Phenotypic characterization of Burkholderia cepacia

Adherence studies to attachment assay. The assay system consisted of a glass tube environment growth chamber at 25 °C with a 16/8 h light/dark cycle and 80% relative humidity, the roots were used in the attachment assay. The assay system consisted of a glass tube (160 × 22 mm diam.) filled with 50 g of a sandy soil–vermiculite mixture (3:1, v/v) saturated with 10 ml of water. This mixture was used to facilitate soil removal from the roots of seedlings and minimize root damage. The tubes were sterilized by autoclaving at 121 °C for 30 min on two consecutive days. One seedling was transferred to each tube, and inoculated with 10^6 B. cepacia cells which had been grown in KB for 24 h at 28 °C on a gyratory shaker (150 r.p.m.). The tubes were capped and incubated in a growth chamber at a constant temperature of 25 °C, with a 16/8 h light/dark cycle, and an average light intensity of 340 μE m⁻² s⁻¹. After 1 week, the seedlings were aseptically removed from the tubes, and each root was sequentially immersed into a series of 5 ml PBS containing 25 ml PBS, pH 6.0. Samples (0.1 ml) of each washing step were appropriately diluted and plated on NA. Bacterial colonies were counted after 24 h incubation at 28 °C. After the last PBS wash, the roots were excised with sterile forceps, crushed in a sterile mortar, and the number of bacteria was determined by plate counts on NA. To study bacterial penetration into the root, the seedlings were inoculated as described above, and after one week of growth were removed from the tubes. To kill attached bacteria, roots were immersed in 3% (w/v) calcium hypochlorite for 30 min, washed thoroughly in sterile distilled water, and crushed in a sterile mortar. The number of bacteria was estimated as above.

Seed sterilization. Commercial cucumber seeds (Cucumis sativus L. cv. Marketmore) were obtained from Four s.r.l. (Bolzano, Italy). Surface sterilization was obtained as follows: seeds were submerged for 2 min in 95% (v/v) ethanol, rinsed five times with sterile distilled water, treated with 0.56% H_2O_2 for 16 h, and finally washed three times with sterile distilled water. Surface-sterilized seeds were germinated aseptically in the dark on nutrient agar (NA, Difco) plates for 48 h at 25 °C, to check for the presence of contaminating micro-organisms.

Adherence studies to C. sativus roots. Seedlings were transferred onto Petri dishes containing a filter paper soaked with sterile distilled water. After 3 d of growth in a controlled environment growth chamber at 25 °C with a 16/8 h light/dark cycle and 80% relative humidity, the roots were used in the attachment assay. The assay system consisted of a glass tube...

Screening for in vitro antibiotic. An in vitro assay was performed to test the ability of B. cepacia strains to suppress fungal phytopathogens on PDA and King's B (KB) (King et al., 1954) media. An agar plug with mycelium was placed at the centre of the agar plate and bacterial strains were streaked near the edge of the petri dish at fixed positions. Plates were incubated at 28 °C, and the growth of fungal phytopathogens was measured at 48 h intervals. The percentage inhibition of the fungal growth was calculated with the following formula: [(R₁ – R₂)/R₁] × 100, where R₁ is the farthest radial distance grown by the fungus in the direction of the antagonist (a control value), and R₂ is the distance grown on a line between the inoculation positions of the fungal phytopathogen and the antagonist strain of B. cepacia (Whipp, 1987).

Adherence to human uroepithelial cells. The adherence assay was performed with P-phenotype uroepithelial cells collected by centrifugation (2000 g, 10 min, 4 °C) from fresh morning urine of a single female healthy donor and washed three times in phosphate buffered saline (PBS, Flow Laboratories), pH 7.2. The number of epithelial cells per ml was calculated by counting a mixture of calcareous soil and sand (3:1, w/w), pH 8.8, containing 0.07% nitrogen, 63% calcium, 0.47% potassium, traces of phosphorus, no carbon, no assimilable iron. To study the plant-growth-promoting activity of B. cepacia strains in the absence of competing microflora, the soil was sterilized by autoclaving twice at 121 °C for 30 min. Greenhouse treatments were as follows: (i) uninoculated controls, (ii) inoculated with B. cepacia PHP7, (iii) inoculated with B. cepacia TVV75, (iv) inoculated with B. cepacia 7/25, (v) inoculated with B. cepacia 9/27. Pots were watered twice a week alternately with 250 ml of sterile deionized water, and 250 ml of mineral solution (Mitchell & Livingstone, 1968) for a total of 10 applications. The plants were grown in a greenhouse at 25 °C during the day and 16 °C at night, with a 16/8 h light/dark period. Each treatment was replicated 16 times and plants were harvested 40 d after germination. The root and shoot tissues of each plant were dried at 85 °C for 24 h and weighed. Data were analysed using Duncan's Multiple-Range Test.

RESULTS

Parameters influencing the growth of B. cepacia strains

To study the carbon source utilization profile of B. cepacia strains a number of carbon sources released by the roots of plants (Rovira, 1965) were added to the M9 basal salt solution at a final concentration of 20 mM. All the strains were able to utilize sucinic acid, malic acid, citric acid, succrose, xylose, arabinose, cellobiose, mannose, mannotol, adipate, caprate, phenylacetae, lactate, galactose, glucose, gluconate, N-acetyl-d-glucosamine, leucine, asparagine, glutamic acid, aspartic acid, proline, arginine, but did not grow on oxalic acid and maltose as the sole carbon source. Lysine utilization was shown for clinical strains only.
Fig. 1. Effect of temperature on growth rates (μ) of B. cepacia strains. ■, PHP7; □, TVV75; △, 7/25; ○, 9/27.

The growth rates of the B. cepacia isolates at temperatures ranging from 21 °C to 42 °C were also determined. Fig. 1 shows that the two clinical isolates of B. cepacia display maximum growth at 42 °C, whereas rhizosphere strains gave different responses to increasing temperatures. The highest growth rate of B. cepacia PHP7 was at 37 °C, whereas for B. cepacia TVV75 the maximum growth rate was observed at 42 °C. It is worth noting that the growth rates at 21 °C were significantly higher for rhizosphere isolates than for clinical ones.

Synthesis of siderophores

The four B. cepacia strains of clinical and rhizosphere origin appeared to synthesize Fe(III)-chelator(s) as shown by a strong positive reaction in the assay of Schwyn & Neilands (1987). Culture supernatants of the B. cepacia strains grown for 48 h in Chelex-100-treated DCAA or succinate mineral medium were tested for the presence of catechol- and hydroxamate-type siderophores. Strains PHP7, TVV75, 7/25 and 9/27 did not release catechol-like compounds, but produced a Fe(III)-repressible, hydroxamate-like molecule, the level of which approached 210 μM, 156 μM, 220 μM and 240 μM, respectively. The addition of 100 μM FeCl₃ to the Fe(III)-poor medium strongly repressed hydroxamate synthesis. TLC analysis of acidified ethyl acetate extracts from culture supernatants in DCAA of strains PHP7, TVV75, 7/25 and 9/27 showed that, similarly to the P. aeruginosa PA01 control, clinical B. cepacia isolates produced pyochelin and its biosynthetic precursor salicylic acid, in response to conditions of limiting Fe(III) (Fig. 2). In contrast, rhizosphere isolates were unable to synthesize either pyochelin or salicylate. Pyochelin (Rₚ values approximately 0.35 and 0.40), migrated as two distinct bands in Fe(III) poor DCAA and succinate medium, respectively; 9* and 9**, B. cepacia 7/25 in Fe(III)-poor DCAA and succinate medium, respectively; 7 and 7**, B. cepacia TVV75 in Fe(III)-poor DCAA and succinate medium, respectively; 5 and 5**, B. cepacia PHP7 in Fe(III)-poor DCAA and succinate medium, respectively; 6 and 6**, B. cepacia 7/25 in Fe(III)-poor DCAA and succinate medium, respectively; 3 and 3**, B. cepacia PHP7 in Fe(III)-rich CAA and succinate medium, respectively; 2 and 2**, B. cepacia PHP7 in Fe(III)-poor DCAA and succinate medium, respectively; 4 and 4**, B. cepacia TVV75 in Fe(III)-poor DCAA and succinate medium, respectively; 1 and 1**, B. cepacia TVV75 in Fe(III)-poor CAA and succinate medium, respectively; the hydroxamate-positive compound in the system used was 0.18–0.20 as determined by fractionation of the silica gel and analysis in the Cšáky assay (1948) of the methanol-eluted compound.

Fig. 2. Thin-layer chromatograms of acidified ethyl acetate and chloroform extracts from cultures of P. aeruginosa PA01 and B. cepacia strains grown in Fe(III)-deficient and Fe(III)-rich media. In Fe(III)-rich conditions FeCl₃ was added to DCAA and succinate medium at a final concentration of 100 μM (see Methods). Lanes: 1 and 1*, P. aeruginosa PA01 in Fe(III)-poor DCAA and succinate medium, respectively; 2 and 2*, B. cepacia PHP7 in Fe(III)-poor DCAA and succinate medium, respectively; 3 and 3*, B. cepacia PHP7 in Fe(III)-rich CAA and succinate medium, respectively; 4 and 4*, B. cepacia TVV75 in Fe(III)-poor DCAA and succinate medium, respectively; 5 and 5*, B. cepacia TVV75 in Fe(III)-poor CAA and succinate medium, respectively; 6 and 6*, B. cepacia 7/25 in Fe(III)-poor DCAA and succinate medium, respectively; 7 and 7*, B. cepacia 7/25 in Fe(III)-rich CAA and succinate medium, respectively; 8 and 8*, B. cepacia 9/27 in Fe(III)-poor DCAA and succinate medium, respectively; 9 and 9*, B. cepacia 9/27 in Fe(III)-rich CAA and succinate medium, respectively. (a) Chromatograms were visualized by exposure to UV light; (b) chromatograms developed by spraying with the ammoniacal silver nitrate reagent for thiazolidine groups; (c) chromatograms developed by spraying with 0.1 M FeCl₃ in 0.1 M HCl. Abbreviations: O, origin of migration; Pchl and Pchil, two forms of pyochelin; Sal, salicylate.
Nitrogenase activity

Under standard conditions the rhizosphere isolates PHP7 and TVV75 showed a N₂-fixing activity of 620 and 715 nmol C₂H₄ h⁻¹ produced per flask when grown in suspension culture under 0.1% O₂. C₂H₄ reduction was not shown by clinical strains 7/25 and 9/27 under the same experimental conditions.

Suppression of fungal pathogens

The antagonistic activity of B. cepacia PHP7, TVV75, 7/25 and 9/27 against six fungal phytopathogens was tested in a plate assay using KB and PDA media. The results shown in Fig. 3 indicate that all B. cepacia strains were able to restrict the growth of several fungal pathogens on both KB and PDA, although to differing degrees. The inhibition was more evident on KB, whereas on PDA the effect was strongly reduced. Only strain PHP7 inhibited all six of the fungi tested and exerted a generally higher antagonistic effect in comparison with the other B. cepacia strains. The most sensitive fungi were F. graminearum, R. solani, F. oxysporum, and F. culmorum on KB, and F. culmorum and F. graminearum on PDA.

Adherence to human uroepithelial cells

Adherence to uroepithelial cells was demonstrated for the clinical strains 9/27 and 7/25 only. Strain 7/25 appeared to be more adhesive than strain 9/27 (approximately 50 and 30 attached bacteria per epithelial cell, respectively). Cell-associated bacteria were not observed with rhizosphere isolates of B. cepacia.

Adherence to C. sativus roots

Table 1 shows comparative data on the ability of B. cepacia strains to adhere to C. sativus roots under sterile conditions. Bacterial adherence was assessed by evaluating the bacterial population associated with the roots 7 d after the inoculation. It was observed that most of the root-associated bacteria were removed during the first wash (approximately 10⁶ c.f.u. ml⁻¹), whereas in the second through to the fifth washes approximately 10⁹ and 10¹⁰ c.f.u. ml⁻¹ were removed, respectively (data not shown). Thus, the first wash was effective in removing bacteria from the roots and multiple wash steps did not cause a significant decrease in the number of attached organisms. On this basis we assumed that after five washes the number of bacteria present on the root corresponded to the number of bacteria which were irreversibly associated with the root. Under these experimental conditions all four B. cepacia strains became

control strain P. aeruginosa PAO1 did. Moreover, no proteolytic activity was detected in culture supernatants of rhizosphere isolates PHP7 and TVV75; conversely, clinical strains 7/25 and 9/27 showed relatively high proteolytic activity. The level of protease(s) in culture supernatants of strains 7/25 and 9/27 grown in SM9 were 0.69 and 0.39 U ml⁻¹, respectively.

Production of IAA, HCN and protease(s)

Differentiation of strains by production of IAA revealed production in the rhizosphere isolates only; the level of IAA in late-stationary-phase cultures approached 0.6 and 0.4 μg ml⁻¹ for strains PHP7 and TVV75, respectively. None of B. cepacia strains produced HCN, whereas the...
Table 2. Effect of B. cepacia strains on root dry weight of C. sativus

<table>
<thead>
<tr>
<th>Strain</th>
<th>Root dry wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>0.35 c</td>
</tr>
<tr>
<td>PHP7</td>
<td>0.51 a</td>
</tr>
<tr>
<td>TVV75</td>
<td>0.44 b</td>
</tr>
<tr>
<td>7/25</td>
<td>0.35 c</td>
</tr>
<tr>
<td>9/27</td>
<td>0.37 c</td>
</tr>
</tbody>
</table>

Irreversibly attached to the roots, reaching values of approximately 10^7 c.f.u. g^-1 fresh weight of root. Furthermore, bacteria were not detected inside the cucumber roots as deduced from plate counts of viable cells obtained from an homogenate of Ca(C10)_2 surface-sterilized roots.

Greenhouse studies

Table 2 shows that inoculation of C. sativus seedlings with rhizosphere isolates PHP7 and TVV75 results in significantly higher dry weight values of plant roots by comparison with clinical strains 7/25 and 9/27, and with the uninoculated control (P = 0.05). B. cepacia PHP7 and TVV75 exerted a positive effect on root dry weight only, as they did not cause any significant change in shoot dry weight (data not shown). Under identical conditions B. cepacia strains of clinical origin (7/25 and 9/27) did not cause any apparent change in root and shoot dry weight, as compared with the uninoculated controls.

DISCUSSION

In agriculture, application of plant-growth-promoting rhizobacteria (PGPR) is desirable to improve crop production and to decrease utilization of chemical pesticides (de Freitas & Germida, 1991; Kloepper et al., 1988; Suslow & Schroth, 1982). The widespread use of PGPR in field experiments has been hampered by the possibility that massive introduction of exogenous micro-organisms in fields may be a risk factor for the balance of the ecosystem and for animal and human health. Thus, when a potentially pathogenic species has to be tested for plant-growth-promoting (PGP) activity in field experiments, any environmental and health risk must be ruled out. Therefore, investigations designed to compare rhizosphere and clinical isolates of B. cepacia for some relevant virulence characteristics (e.g., adhesiveness to human uroepithelial cells, synthesis of protease(s), and siderophores) and for some traits associated with known PGP activity (e.g., root colonization, synthesis of siderophores, antibiosis against fungal phytopathogens, N fixation, and production of IAA and HCN) were carried out.

B. cepacia is recognized as one of the most nutritionally versatile species among Pseudomonadaceae (Stanier et al., 1966; Palleroni & Holmes, 1981; Yabuuchi et al., 1992). Initially the ability of *B. cepacia* strains to grow on different carbon sources normally present in root exudates was explored. These organic substances are released by the plant roots and used as nutritional sources for root-colonizing microbial populations (Rovira, 1956). The results obtained confirm the ability of *B. cepacia* to multiply using a wide range of organic compounds and indicate that rhizosphere and clinical strains differed for one biochemical trait only (1-lysine utilization). It was also observed that the optimal growth temperature of rhizosphere isolates was in the range 37–42 °C, rather than 25–28 °C which is the generally accepted growth temperature of soil bacteria. In contrast, clinical strains grew as well at high temperatures, but at lower temperatures their growth rates were significantly lower than those of rhizosphere isolates. This indicates that rhizosphere strains are better adapted to grow at low temperatures than clinical strains, which preferentially develop at body temperature. We also observed differences in the levels of extracellular protease(s) released by the strains studied. Only clinical strains showed proteolytic activity, in agreement with the role proposed for this extracellular enzyme(s) in the pathogenicity mechanism towards the human host (Janda & Bottone, 1981).

It is now recognized that PGPR may benefit plant growth by providing nutrients and growth factors or by producing antibiotics, siderophores, and cyanide, which may inhibit pathogenic fungi and bacteria (Davidson, 1988). Phytohormone-like substances have been reported in fluorescent pseudomonads (Kloepper et al., 1989), but up to now no study has been published on production of plant hormones by *B. cepacia*. Results show that rhizosphere isolates are capable of synthesizing detectable amounts of IAA, while clinical isolates do not. The behaviour of rhizosphere and clinical *B. cepacia* strains examined in greenhouse studies clearly shows that rhizosphere isolates exert growth promotion of *C. sativus* roots independently of native root zone microflora; the clinical strains, in contrast, did not have any effect on *C. sativus* growth. In addition, nitrogen fixation allowed a differentiation between rhizosphere and clinical isolates of *B. cepacia*. The nitrogen fixing capability was observed for rhizosphere isolates only.

The ability of *B. cepacia* to inhibit the *in vitro* growth of several fungal phytopathogens was investigated. Differences in the level of antagonism shown by the rhizosphere isolate PHP7 with respect to the other *B. cepacia* strains were observed. The antagonistic activity was affected by the medium composition, as it was higher on KB rather than PDA plates. It is generally assumed that the inhibition of fungal pathogens on PDA, being a C-, N- and Fe(II)-rich medium, may be due to the production of antibiotic-like substances, and on KB, an Fe(II)-deficient medium, the inhibition may occur by production of siderophores in addition to antibiotics (Hebbar et al., 1991). Since *B. cepacia* strains displayed higher inhibition of fungal growth in Fe(III)-poor medium, it can be hypothesized that siderophores could be involved in the
antagonistic response. It is known that to counter the
effect of Fe(III) limitation in the environment or within
the mammalian host tissue, most micro-organisms have
developed high-affinity systems for Fe(III) uptake, con-
sisting of low-molecular-mass chelators, called sidero-
phores, and their cognate membrane receptors (Cox,
1989). It has been established that release of siderophores
may be partly responsible for enhanced plant growth
(Kloeper et al., 1980), biocontrol (Leong, 1986) and
morbidity and mortality in animal infections (Sokol,
have been reported to produce pyochelin (Sokol, 1986), a
salicyl-derived thiazole-compound, chemically unrelated to
pyoverdins and pseudobactins, previously described in
the fluorescent pseudomonads (Abdallah, 1991). Pyo-
chelin has been shown to be a potent siderophore for
clinical isolates of B. cepacia, and a correlation was found
between its production and the severity of infection in
cystic fibrosis patients (Sokol, 1986). We found that the
clinical isolates of B. cepacia, 7/25 and 9/27, synthesize
pyochelin, while the rhizosphere isolates PHP7 and
TVV75 do not. In addition to pyochelin, clinical isolates of
B. cepacia released detectable amounts of salicylic acid,
the biosynthetic precursor of pyochelin. This molecule,
formerly termed azurechehin (Sokol et al., 1992), has been
shown to function as a siderophore in B. cepacia and
fluorescent pseudomonads (Visca et al., 1993). Salicylic
acid is a plant hormone known to exert a variety of
positive functional effects on plants, e.g. induction of
systemic resistance against pathogen attack (Enyedi et al.,
1992; Raskin, 1992), so that it appears quite surprising
that production of such a molecule was characteristic of
clinical, rather than rhizosphere isolates. Moreover, both
clinical and rhizosphere isolates synthesize a hydroxamate-
like compound which displays a strong reactivity in the
Schyn & Neilands (1987) assay for siderophores. TLC
analysis did not allow identification of this compound as
cepabactin (Meyer et al., 1989) as had been previously
described for B. cepacia. It will be of interest to investigate
whether the hydroxamate-like compound can be related
to the new ornibactin family of siderophores from a non-
fluorescent Pseudomonas strain which resemble pyoverdins
in their peptide structure, but lack the chromophore moiety
(Stephan et al., 1993). The existence of additional
Fe(III)-transport systems in the pyochelin-producing
clinical isolates of B. cepacia could be an advantage for human pathogenicity.

Another characteristic to be considered was the adhesion
to uroepithelial cells, as the attachment of bacteria to the
mucosal epithelia represents an essential step in the
colonization of the host (Prince, 1992). Adhesiveness was
demonstrated for clinical strains 7/25 and 9/27, while
rhizosphere isolates were unable to adhere to uroepithelial
cells. Thus, rhizosphere isolates appear to lack specific
structures involved in the adhesion to human mucosa. In
contrast, the screening of B. cepacia strains for the ability
to attach to plant root surfaces indicated that all the strains
adhere to cucumber roots in the absence of competition,
but are unable to penetrate inside the roots. It should be
stressed that the root-adherence assay was performed
in vitro under sterile conditions, i.e. in the absence of
competing microflora, and therefore does not predict
whether the bacterium will actually colonize a root
surface, but only determines the potential ability to adhere
and/or proliferate at the rhizoplane (James et al., 1985).
Our results suggest that the adherence of B. cepacia strains
to cucumber roots does not involve specific recognition
events and that the B. cepacia isolates probably share
similar surface properties which do not allow the dis-
crimination between rhizosphere and clinical bacteria for
their root adhesion ability. Thus, while clear differences
between rhizosphere and clinical isolates are evident in the
adhesion test to the human epithelium, no distinction can
be made between the two groups when the target is the
root surface.

Differences between human- and plant-pathogenic
B. cepacia strains have been reported previously (Gonzalez
& Vidaver, 1979); these were based on bacteriocin produc-
tion, maceration of onion slices, pectolytic activity,
and plasmid profile. However, the extent of variation of
phenotypic traits between PGP and clinical B. cepacia
isolates was still not clear. In the present study, relevant
characteristics related to virulence and PGP activity were
analysed in clinical and rhizosphere isolates of B. cepacia.
It has been observed that B. cepacia strains of clinical origin
lack factors involved in PGP activity as compared to
rhizosphere isolates. Conversely, the rhizosphere isolates
appear to have reduced virulence potential by comparison
with PGP isolates. Such an evolutionary divergence
probably results from the selection exerted by extremely
diverse ecological niches on colonizing strains and leads
us to hypothesize that the PGP B. cepacia isolates may have
a very limited capacity for acting as pathogens. However,
due to the limited number of strains examined to date,
further work is still required to determine whether this
divergent trend is universal within the species.

ACKNOWLEDGEMENTS

Dr M. Vittoria Carusi was supported by a grant from the
Progetto Formazione Biotecnologia avanzata, Decreto B
MURST 29/10/91. We are grateful to T. Heulin and Tran Van
Van for the generous gifts of B. cepacia strains PHP7 and
TVV75, respectively.

REFERENCES

Handbook of Microbial Iron Chelates, pp. 139-153. Edited by G.
Winkelmann. Boca Raton, Ann Arbor, Boston, London: CRC
Press.

Arnow, L. E. (1937). Colorimetric determination of the components
of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 228,
531-537.

Phytopathology 40, 115-117.

Morphological, biochemical, and growth characteristics of
Pseudomonas cepacia from distilled water. Appl Microbiol 25,
476-483.

Phenotypic characterization of *Burkholderia cepacia*

Received 29 July 1993; revised 12 November 1993; accepted 26 November 1993.