The high-spin cytochrome o' component of the cytochrome bo-type quinol oxidase in membranes from Escherichia coli: formation of the primary oxygenated species at low temperatures is characterized by a slow 'on' rate and low dissociation constant

Robert K. Poole,† Ian Salmon and Britton Chance

Author for correspondence: Robert K. Poole. Tel: +1 607 255 2423. Fax: +1 607 255 3904.

INTRODUCTION

Escherichia coli contains two terminal oxidases (Poole, 1983, 1988; Poole & Ingledew, 1987). One of these is generally called cytochrome o ('o' for oxidase), following the classical nomenclature of Castor & Chance (1959), who first described the photochemical action spectrum of this oxidase. Increasing interest in the cytochrome o-containing quinol oxidase of E. coli may be attributed to the availability of the purified oxidase and the results of molecular genetic studies of the cyo genes, encoding the subunits of this oxidase, which have revealed significant structural similarities (Chepuri et al., 1990; Saraste et al., 1991) between this oxidase and the cytochrome aa3-type oxidases of mitochondria and certain bacteria. The oxidase complex comprises four membrane-bound polypeptides (Kita et al., 1984; Matsushita et al., 1984), two moles of haem O (Puustinen & Wikstrom, 1991), or one of haem O and one of haem B (Puustinen et al., 1992) and a single copper atom, which is coupled to the high-spin haem O to form a binuclear, ligand-binding site (Salerno et al., 1990).

Little is known of the mechanism of oxygen reduction, which results ultimately in proton-pumping (Puustinen et al., 1991). Early studies (Poole et al., 1979a, b) used the triple-trapping procedure, devised by Chance et al. (1975a), to describe the formation of reaction intermediates and cytochrome oxidation following photolysis of the carbonmonoxy form of the enzyme in intact cells at

Keywords: Escherichia coli, cytochrome bo, cytochrome o', electron transfer, quinol oxidase, oxygen reduction
sub-zero temperatures. Although clearly demonstrating the formation of an early intermediate, presumed to be the oxy complex, and the remarkably low dissociation constant (k_d) for the reaction of the enzyme with oxygen, these studies were limited by the relatively poor signal:noise ratios resulting from spectroscopy of frozen cell suspensions, particularly in the α and β spectral regions. This work relied on recording the difference spectra of the various states of the oxidase after photolysis, with the spectrum of the pre-photolysis state [i.e. the CO-ligated, Fe(II) form] subtracted. Furthermore, recent recognition of the existence of a haemoglobin-like molecule (Hmp) in E. coli (Vasudevan et al., 1991) has raised the question of a permeability or diffusion barrier for oxygen imposed by the cell envelope, which might affect the observed oxygen kinetics in experiments utilizing intact cells.

Here we describe the reactions of cytochrome b in predominantly everted cytoplasmic vesicles at sub-zero temperatures and exploit recent studies of the purified oxidase to interpret more fully the early stages of oxygen-trapping and electron transfer. In particular, the recording at -130°C of difference spectra relative to the post-photolysis state facilitates description of the spectrum of the oxy form. Strains that over-express the gene cloned on multi-copy plasmids (such as RG145; Au & Gennis, 1987), which we have used in recent work (Bolgiano et al., 1991, 1993), synthesize a variant of the oxidase in which the low-spin haem B is replaced to variable extents by a second mole of haem 0 (Puustinen et al., 1992). Therefore, a strain that is wild-type with respect to ψy has been used. A revised nomenclature for this oxidase, in line with international recommendations, is proposed.

METHODS

Cell growth and preparation of membranes E. coli strain B1002 (met ib lac l melE) was used. The growth medium contained (l$^{-}$): $K_2\text{HPO}_4$ (4 g), $KH_2\text{PO}_4$ (1 g), $NH_4\text{Cl}$ (1 g), $K_2\text{SO}_4$ (26 g), $CaCl_2$ (0.01 g), casamino acids (Difco, 1 g), sodium succinate (10.8 g) and a solution (10 ml) of trace elements (Poole et al., 1979b). After autoclaving, the medium was supplemented with 1 M $MgCl_2$ (1 ml l$^{-1}$). Cells were grown in a 6 l New Brunswick fermenter, aerated by sparging with sterile air at 6.1 min$^{-1}$ and stirred at about 100 r.p.m. The fermenter was inoculated with 1.5 ml of a 21 h starter culture that had been grown in the same medium in an Erlenmeyer flask containing one-fifth its volume of culture. Cells were harvested in the late exponential phase of growth when oxygen was not limiting for growth; the yield was approx. 3 g wet wt l$^{-1}$. Harvested cells were washed in a buffer that contained 50 mM Tris (pH 7.4), 2 mM $MgCl_2$ and 1 mM EGTA, then disrupted by sonication. Membranes were prepared by differential centrifugation (Poole & Haddock, 1974).

Spectroscopy. To a 1 ml portion of membrane particles, in a 2 mm pathlength cuvette with plexiglass windows, ethylene glycol was added to a final concentration of 30% (v/v) (Chance et al., 1975a). The sample was reduced by adding succinate to 12 mM and incubating for 30 min. The cuvette contents were bubbled with CO for 2.5 min and then equilibrated at about -25°C for 5 min, after which the cuvette was either plunged into a freezing bath (ethanol/dry ice, -78°C) or else oxygen was introduced by stirring in small volumes of air-saturated buffer containing 30% (v/v) ethylene glycol; the O_2 concentration in this buffer was taken to be 1.0 mM at -23°C (Chance et al., 1975b). Dual-wavelength scanning spectrophotometry (Poole et al., 1979b) and multi-wavelength kinetic recordings (Chance et al., 1975b) were made using the apparatus and general methods described elsewhere.

RESULTS

Spectral changes following low-temperature photolysis

Physiological substrates readily reduced cytochromes b and o in cytoplasmic membranes. Incubation with succinate for 30 min typically gave reduction to 86% (measured at the α-peak) of the level obtained with sodium dithionite; absorption maxima (in reduced minus oxidized difference spectra) were centred at 436 (v) and 563 nm (z) at room temperature. Succinate reduced cytochrome o to 80–90% of the level given by dithionite, as assayed by CO difference spectra (430 nm trough minus 415 nm peak) at room temperature (results not shown).

When CO-ligated cytochrome o is exposed to actinic light, the bound CO is photodissociated, allowing recording of the photodissociation spectrum (photolysed minus pre-photolysis), providing the temperature is maintained sufficiently low to prevent recombination of the CO with the oxidase (Poole et al., 1979a, b). Photolysis to 95% of the maximum attainable with this flash lamp was attained. The photodissociation difference spectrum, obtained by photolysing an anoxic sample at temperatures between -100°C and -132°C, and plotting the post-photolysis minus pre-photolysis difference (not shown), exhibited troughs (in descending order of magnitude) at 412–413, 533–535 (broad) and 566–567 nm. The only prominent peak was at 432 nm, but weak absorbance maxima were observed at 552 and 580 nm. When care was taken to keep the membrane concentration low enough to avoid underestimation of the intense Soret bands in the highly scattering frozen samples, the ratio of absorbance change in the Soret region (432 nm peak minus 413 nm trough) to that in the α-region (567 nm trough minus 580 nm, i.e. the 'z peak-trough' as defined by Wood, 1984) was 27–30. This value and the form of the photodissociation spectra were unaffected by the presence of oxygen in the sample at the time of freeze-trapping. These properties are unlikely to be influenced by interference from the low level of cytochrome bd complex present in the membranes, since (a) the Soret features of the ligand-binding cytochrome d are weak in the Fe(II) state (Poole, 1983, 1988; Poole et al., 1982), (b) in the absence of oxygen, the CO adduct of cytochrome d reforms immediately after photolysis even at 77K (Poole et al., 1982), and (c) similar results have been observed in membranes from a cytochrome bd-deficient, bo-overproducing strain (B. Bolgiano & R. K. Poole, unpublished data). Puustinen & Wikstrom (1991) presented a static difference spectrum (CO-reduced minus reduced) of the purified cytochrome bo complex and reported a γ/α ratio of 23.7, but the wavelengths used were not cited.
Fig. 1 shows spectra obtained after photolysis of the CO-ligated cytochrome \(\delta \) in the presence of oxygen. It is important to recognize that, in these experiments, the membrane concentration was increased to resolve better the absorbance changes in the \(\alpha \) and \(\beta \) regions, with consequent diminution of the \(\gamma/\alpha \) ratio. Photolysis at \(-132^\circ\text{C}\), in the presence of oxygen, introduced by stirring to give solution concentrations of 300–400 \(\mu \text{M} \) (Chance et al., 1975a), resulted in a photodissociation spectrum (Fig. 1a) with troughs (due to loss of the CO form) at 412 (\(\gamma \)), 533 (\(\beta \)) and 566 (\(\alpha \)) nm. The minor trough at 633 nm arises from photolysis of the CO compound of small amounts of cytochrome \(d \) with concomitant formation of the oxygenated form of cytochrome \(d \) (649 nm). The Soret peak at 432 nm is attributed to the Fe(II) form of cytochrome \(\delta \). The peak at 552 nm is attributed mainly to the \(\beta \)-band of the uncomplexed Fe(II) form but is also influenced by the peak between the \(\alpha \) and \(\beta \) bands of the CO complex, by comparison with spectra of myoglobin (Wood, 1984). We attribute the peak at 580 nm to the (weak) \(\alpha \)-band of the uncomplexed protein. A shoulder at this wavelength is shown in the computed spectrum (total dithionite-reducible haem minus low-spin haem) of the high-spin haem in the purified enzyme (Puustinen et al., 1992) consistent with this assignment. The observation that the 566 nm trough (\(\alpha \)-band) does not extend appreci-
ably below the dashed line shown in Fig. 1(a) is indicative of high-spin haem (Wood, 1984). Thus, the photodissociation spectrum in this region, which has contributions from only the ligand-binding cytochrome o of the complex, supports the CO difference spectrum reported by Puustinen & Wikstrom (1991), who suggested, as did Scott & Poole (1982), that the CO-reactive high-spin haem contributes little, if at all, to the reduced minus oxidized difference spectrum. Note that the α-band of the CO complex (i.e. 566 nm trough in Fig. 1a) is sharpened (band width at half-peak height, 10 nm) relative to the β-band at 533 nm (corresponding band width 22 nm) or the α-band at 580 nm (band width 17 nm), exactly as shown for myoglobin (Wood, 1984).

Figs 1 and 2 show the results of cycling the sample used in Fig. 1(a) to successively higher temperatures after photolysis in the presence of oxygen. In each case, the sample was returned to -132 °C to obviate absorbance changes due solely to low temperature intensification (Vincent et al., 1982). This temperature is close to the lowest attainable with the liquid nitrogen transfer line cryostat. Spectra in Fig. 1 are plotted as differences with the prephotolysis state (i.e. reduced, CO-liganded) subtracted, whereas spectra in Fig. 2 are plotted with the postphotolysis state (i.e. reduced, unliganded) subtracted. After cycling the sample to -115 °C (and returning to -132 °C), the spectrum (Fig. 2b) with the post-photolysis form subtracted showed a broad trough centred at 436 nm and a broad maximum centred at 558 nm. These features developed further after cycling to -105 °C (Fig. 2c) and -98 °C (Fig. 2d), with the additional appearance of a β-band centred at 530 nm, and a broad Soret trough extending to about 426 nm. The cytochrome d signals were unchanged. We attribute the absorbance changes between 400 and 600 nm to the reaction of reduced cytochrome o with dioxygen, generating a primary oxygenated form analogous to Compound A of cytochrome a_o, originally described by Chance et al. (1975a) at low temperature and described as structurally similar to oxyhaemoglobin and oxymyoglobin. Indeed, the iron–dioxygen stretching frequency (568 cm$^{-1}$) is the same as

Fig. 2. Difference spectra recorded following photolysis, in the presence of oxygen, of the carbonmonoxy form of cytochrome o' in membranes of *E. coli*. The reference spectrum subtracted in each case is that of the post-photolysis state at the same temperature. Experiments were performed at the temperatures shown.
that found in these oxygen-binding proteins (Han et al., 1990). The primary oxygenated intermediate of cytochrome \(\alpha \) was first described by Poole et al. (1979a, b) and reported to have spectral properties similar to those of the CO complex. However, the improved spectral resolution obtained here with extensively washed, concentrated membranes from cells grown with vigorous aeration, and after subtracting the post-photolysis and pre-photolysis spectra indicate important differences. Thus, the approach of the Soret features toward the baseline in Fig. 1(a–d) was not symmetrical. Identicality of the oxygenated and CO adducts would generate a null difference spectrum (oxygenated minus CO-liganded pre-photolysis). Instead, at temperatures between about \(-98^\circ C\) and \(-132^\circ C\) (Fig. 1a–d), the loss in absorbance at 430 nm was faster than changes at 415 nm, and the difference spectra in Fig. 2(b–d) showed that the presumptive oxy compound has an absorption coefficient lower than that of the reduced, unliganded form at 430–450 nm, and higher at 530 to about 570 nm.

After cycling the sample to \(-95^\circ C\) or \(-82^\circ C\) and back to \(-132^\circ C\), the difference spectrum (Fig. 2c, f) revealed significant deepening and broadening of the \(\gamma \) trough centred at 430 nm and the development of troughs at 554 and 565 nm, as predicted for oxidation of cytochrome(s) \(d \). In addition, the appearance of a peak at 630 nm (Fig. 2c) suggested some reduction of cytochrome \(d \) and the loss of oxygenated cytochrome \(d \), relative to the post-flash (oxygenated) species. At \(-56^\circ C\), (Fig. 1e, 2g), the trough due to cytochrome \(b \) oxidation was clearly split, suggesting the subsequent oxidation of a cytochrome absorbing maximally at shorter wavelengths.

Kinetics of CO and \(O_2 \) binding

Fig. 3(a) shows the kinetics of the reaction of cytochrome \(\alpha \) with oxygen after photolysis at \(-106^\circ C\). The baseline was the spectrum of the pre-photolysis (i.e. CO-liganded) state. The asymmetry in the approach of the 413 nm trough and the 431 nm peak to the baseline is marked and reflects (see above) the greater similarity of the oxygenated form to the CO adduct at 431 nm (where the latter has little absorbance) than at 413 nm (the absorbance maximum of the CO adduct). There were clear isosbestic points at 418.5 nm and 441 nm. Similar experiments performed over the temperature range \(-100^\circ C\) to \(-73^\circ C\) gave an Arrhenius plot with an activation energy of about 38 kJ mol\(^{-1}\) (results not shown). Similar experiments in the absence of oxygen (not shown) gave symmetrical absorbance changes in the Soret region with respect to the baseline, and an activation energy in the temperature range \(-80^\circ C\) to \(42^\circ C\) of 35 kJ mol\(^{-1}\) (not shown).

We previously reported a surprisingly low dissociation constant and first-order rate constant for the reaction between cytochrome \(\alpha \) and oxygen (Poole et al., 1979a). To investigate the possibility that, in intact cells, the cell envelope presented a significant permeability barrier to oxygen diffusion to the oxidase, the experiments were repeated with cytoplasmic membrane particles, which are likely to exist largely as everted membrane vesicles after cell disruption by sonication (Poole, 1993). Recordings were made with the double dual-wavelength apparatus described by Chance et al. (1975b) at 430 minus 450 nm. The results in Fig. 3(b) show some scatter, reflecting the difficulty in controlling oxygen additions to the viscous ethylene glycol-containing sample in the dark, but are
representative of three such experiments. A line of best fit gives a \(K_{41} \) of 61 M\(^{-1}\) s\(^{-1}\), significantly higher than that obtained with whole cells (0.9 M\(^{-1}\) s\(^{-1}\) at \(-101^\circ\)C; Poole et al., 1979a), but an order of magnitude slower than the \(K_{41} \) value for membrane-bound cytochrome aa\(_3\) (685 M\(^{-1}\) s\(^{-1}\); Chance et al., 1975a). Nevertheless, the dissociation constant is clearly very low. An estimate of \(K_{41} \) (the velocity when the oxygen concentration is zero, the intercept) of \(0.1 \times 10^{-3} \) s\(^{-1}\) gives a \(K_{41} \) of \(1.6 \times 10^{-5} \) M \(O_2 \), very close to the value obtained in whole cells (Poole et al., 1979b). Despite some uncertainty in the precise values, the \(k_4 \) is clearly lower than the value of \(0.5 \times 10^{-2} \) M reported for cytochrome aa\(_3\) (Chance et al., 1975a).

DISCUSSION

The results presented here demonstrate the predominantly high-spin character of the photodissociation spectrum of the ligand-binding haem in the *E. coli* cytochrome *o*-containing terminal oxidase complex in membranes. This high-spin assignment is consistent with the ESR studies of Hata et al. (1983), who used a purified oxidase preparation, and those of Salerno et al. (1990), who described a biphasic potentiometric titration of the \(g \) and \(\alpha \) values of +180 and +280 mV. The high potential side of the bell-shaped titration curve (where signal height at \(g = 6 \) diminished at higher potentials) was attributed to oxidation of the copper centre which, when in the Cu(I) state, binds photodissociated ligand to the high-spin haem. This is supported by infrared spectroscopy (Chepuri et al., 1990) and by the finding that in *E. coli* grown under conditions of copper deficiency in a chemostat (Ciccognani et al., 1992) photodissociation spectroscopy grossly underestimates the quantification of cytochrome *o*, by lowering cellular and oxidase copper levels and permitting CO recombination as in myoglobin (Wood, 1984) or cytochrome *d* (Poole et al., 1982).

At \(-132^\circ\)C, the photodissociation spectrum of cytochrome *o* is unaffected by the presence (Fig. 1) or absence (not shown) of oxygen. This is attributed to the negligible reaction of oxygen with the Fe(II) haem at this temperature. The photodissociation spectrum observed in membranes is very similar to, but inverted with respect to, the CO difference spectra for intact cells (Bolgiano et al., 1991) and for the purified oxidase (Puustinen et al., 1991) (Table 1). Photochemical action spectra have been described for *E. coli* only twice; in such spectra, peaks are observed at wavelengths corresponding to the absorption maxima of the CO-inhibited form of the functional oxidase. The original action spectrum of Castor & Chance (1959) is almost identical, after inversion, to the photodissociation spectrum described here, but for the absence of the broad 580 nm signal. The action spectrum of Edwards et al. (1981) is also similar, but for their inability to record signals below about 540 nm, due to inadequate laser light intensity at these wavelengths. The data in Table 1 show that the oxidase whose properties are described here is spectrally similar to the ligand-binding haem *o* of the purified oxidase (Puustinen & Wikstrom, 1991) and to the functional oxygen-reactive cytochrome observed in photochemical action spectra.

In this work, the spectral changes that follow reaction of the oxidase with oxygen at sub-zero temperatures have been followed by recording spectra with respect to both the pre-photolysis state (i.e. reduced + CO), as in previous work, and the post-photolysis state at \(-132^\circ\)C (i.e. reduced, unliganded). The latter type of difference
The photodissociation spectrum obtained in the absence of photolysis minus reduced, unliganded is similar to a photolysis at 426-430 nm. At this point, the difference spectrum (post-changes can be assigned to the formation of an oxygenated oxygenated form with a spectrum similar to that of the intermediate (Fe$^{2+}$O₂ or Fe$^{3+}$O₃) described previously in ancestral bands that are more intense than those of the reduced CO difference spectra of the two haem types, taking that the first optically detectable intermediate has absorbance changes from an initial ligand-binding reaction than hitherto. They show kinetic studies (Poole et al., 1979a, b).

At the lowest temperatures studied, the spectrum (Fig. 2a) exhibits a 558 nm peak and a 436 nm trough. After photolysis at −105 °C to 98 °C, however, the α/β region has peaks at 530–565 nm and a trough is developing at 426–430 nm. At this point, the difference spectrum (post-photolysis minus reduced, unliganded) is similar to a photodissociation spectrum obtained in the absence of oxygen (see, for example Bolgiano et al., 1993). This suggests that at about −98 °C the species formed is an oxygenated form with a spectrum similar to that of the CO species. The spectral similarity of the oxygen and CO adducts of haem proteins is well established (Wood, 1984). The form of the enzyme observed after photolysis at lower temperatures (e.g. Fig. 2a) is unclear and must be the subject of future studies.

Puustinen & Wikstrom (1991) have drawn attention to the distinctive blue-shifted pyridine haemochrome spectrum of α-type cytochromes, compared to haem B proteins, as did Bolgiano et al. (1991). The comparative data in Table 1 also reveal significant differences between the CO difference spectra of the two haem types, taking myoglobin as a well characterized example of a high-spin protohaem protein. The β-bands of Fe(II) myoglobin are shifted about 5 nm to higher wavelengths (compared with the average values for cytochrome α (Table 1), whilst the α-bands are shifted about 11 nm further to the red than the corresponding cytochrome α′ bands. Both haems have broad, weak absorbances in the unliganded, reduced state and thus contribute little to reduced minus oxidized spectra in the α- and β-regions, as first suggested by Scott & Poole (1982). This finding requires careful consideration in spectral studies of cytochrome α-containing oxidases.

Although the physiological function of the haemoglobin-like protein in E. coli (Vasudevan et al., 1991) is not yet known, it does bind oxygen (Ioannidis et al., 1992; Orii et al., 1992) and its properties suggest that it could have oxygen transport properties similar to those postulated for the Vitreoscilla haemoglobin (Khosla & Bailey, 1988). Nevertheless, its presence (at wild-type levels) in the intact cells used previously (Poole et al., 1979a, b) does not explain the remarkably low dissociation constant described in that paper, since extensively washed membranes (this paper) reveal similar kinetic parameters.

ACKNOWLEDGEMENTS

This work was supported by grants to R.K.P. from the Royal Society and the SERC.

REFERENCES

Table 1. Comparison of absorption maxima in CO difference spectra for some haem O- and B-containing proteins

<table>
<thead>
<tr>
<th></th>
<th>β-bands (nm)</th>
<th>α-bands (nm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe(II) CO</td>
<td>Fe(II) CO</td>
<td>Fe(II) CO</td>
</tr>
<tr>
<td></td>
<td>λ$_{max}$</td>
<td>λ$_{min}$</td>
<td>λ$_{max}$</td>
</tr>
<tr>
<td></td>
<td>Fe(II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli cytochrome α*</td>
<td>537</td>
<td>552</td>
<td>570</td>
</tr>
<tr>
<td>E. coli cells</td>
<td>535</td>
<td>550</td>
<td>567</td>
</tr>
<tr>
<td>E. coli cells</td>
<td></td>
<td>555</td>
<td>570</td>
</tr>
<tr>
<td>E. coli membranes (RG145)*</td>
<td>530</td>
<td>550</td>
<td>565</td>
</tr>
<tr>
<td>E. coli membranes</td>
<td>535</td>
<td>552</td>
<td>567</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>538</td>
<td>558</td>
<td>579</td>
</tr>
</tbody>
</table>

*Over-producing strain; such strains synthesize variant forms of the oxidase with higher ratios of haem O:haem B than in the wild-type.
† CO-difference spectrum, room temperature.
‡ Photochemical action spectrum, room temperature.
§Photodissociation spectrum, −130 °C. Spectrum inverted with respect to CO-difference spectrum.

Received 8 September 1993; revised 16 November 1993; accepted 1 December 1993.