Microbial transformation of nitroaromatic compounds under anaerobic conditions

THOMAS GORONTZY, JAN KÜVER and KARL-HEINZ BLOTEVOGEL*

Fachbereich Biologie, AG Mikrobiologie, Universität Oldenburg, Postfach 25 03, W-2900 Oldenburg, Federal Republic of Germany

(Received 5 October 1992; revised 14 January 1993; accepted 20 January 1993)

The transformation of several mono- and dinitroaromatic compounds (tested at 50–200 μM) by methanogenic bacteria, sulphate-reducing bacteria and clostridia was studied. Some of the nitroaromatics tested were transformed chemically by 1.5 mM quantities of culture media reducing agents, like cysteine or sulphide. This abiotic reduction occurred at the o-nitro-groups preferentially. Nitrophenols, p-nitroaniline and p-nitrobenzoic acid were completely transformed biologically into the corresponding amino derivatives. The nitroaromatics were transformed by all of the bacterial strains tested. While growing cells of sulphate-reducing bacteria and Clostridium spp. carried out nitroreduction, methanogen cells lysed in the presence of nitroaromatics. Nevertheless these culture suspensions converted nitroaromatics to the corresponding amino derivatives. This was also confirmed by crude cell extracts of methanogenic bacteria. The rate of nitroreduction by sulphate-reducing bacteria depended on the electron donors supplied and the cell density, with molecular hydrogen being the most effective donor of reducing equivalents. The toxicity of p-nitrophenol to some of the organisms tested depended on the concentration of the nitroaromatic compound and the type of organism.

Introduction

Nitroaromatic compounds are released into the environment in large quantities, since they are widely used not only as pesticides, but also as explosives and precursors for dyes, pharmaceuticals and plastics. They are also formed during incineration of organic compounds and synthesized photochemically in the atmosphere (Gibson, 1982). Some nitroaromatic compounds, such as 1-nitropyrene, are highly mutagenic and/or carcinogenic (Thiem et al., 1979), and several nitroaromatics are potent uncouplers of oxidative and photosynthetic phosphorylation (Terada, 1981; Shea et al., 1983). Once released into the environment, nitroaromatics undergo complex physical, chemical, and biological processes. Depending on the prevailing conditions they may be transformed photochemically (Nakagawa & Crosby, 1974), or reduced electrochemically (Macalady et al., 1986). Nitroaromatics can also be transformed by micro-organisms under aerobic conditions (Germanier & Wuhrmann, 1963; Zeyer & Kearney, 1984; Schackmann & Müller, 1991; Spain & Gibson, 1991). Little is known about the transformation of nitroaromatics by growing cultures of anaerobic bacteria. Transformation reactions have been examined mostly in mixed cultures and enzyme preparations (Boyd et al., 1983; Hallas & Alexander, 1983; Zeyer & Kearney, 1984; Blovevogel & Butte, 1989). Specific nitroreductases catalysing the reduction of nitro-groups of aromatics to amino-groups have been isolated and characterized (Kinoshii & Ohnishi, 1983; Bryant & DeLuca, 1991; Rafii et al., 1991). One of these enzymes acts as an electron carrier protein for the artificial electron-acceptor menadione, indicating quinone reductase activity (Bryant & DeLuca, 1991).

The present study was performed to investigate the behaviour of nitroaromatics in the presence of pure cultures of sulphate-reducing bacteria, methanogenic bacteria, and Clostridium spp., as well as the effect of nitroaromatics on these bacteria.

Methods

Strains of bacteria. The following strains of bacteria were used: Methanobacterium formicicum (DSM 1555), Methanobacterium thermo-
autotrophicum (DSM 1053), Methanosarcinaarkeri (DSM 800), Methanosarcinafrisia (DSM 3318), Methanosarcina sp. Ks2002 (isolated from sewage sludge), Methanospirillum hungatei (DSM 864), Methanogenium taniotis (DSM 2702) and Methanoculleusoldenburgensis (DSM 6216); Desulfovibrio desulfuricans (DSM 642), Desulfo-
bibiro togas (DSM 496), Desulfovibrio sp. AS (isolated from sediment from the river Amazon, Brazil), Desulfovibrio sp. HB (isolated from sewage sludge), Desulfococcus multivorans (DSM 2068), Desulfot-
oma culum orientis (DSM 765), Desulfotomaculum sp. Grol (isolated from a ditch sediment at Bremen, FRG); Clostridium pasteurianum (DSM 525) and Clostridium sp. W1 (isolated from soil).

Chemical transformation. An appropriate amount of each nitro-
aromatic compound was placed into serum flasks containing 50 ml
potassium phosphate buffer (50 mm; pH 7.0) to give a final con-
centration of 0.2 mm. Then the reducing agents Ti(II) nitrilotriacetate,
sodium dithionite, sodium sulphide, sodium sulphite, and cysteine
were added to give a final concentration of between 1.5 and 10.0 mm.
Before analysis the reaction mixtures were incubated at 37 °C for one
week.

Media and culture conditions. The methanogenic bacteria were
 cultivated and maintained as previously described (Balch et al., 1979;
Biotovgel et al., 1986), with molecular hydrogen and carbon dioxide
as energy and carbon sources. The sulphate-reducing bacteria were
cultivated and maintained as described by Widdel & Bak (1992). Unless
otherwise indicated, the sulphate-reducing bacteria were grown with
sulphate (20 mm) and lactate (20 mm) except for Desulfovotomaculum
sp. Grol, which was grown with butanol (20 mm) as energy and carbon
source. The clostridia were grown in the medium described by Widdel
& Bak (1992), with 10 mm-fructose as energy and carbon source.
Experiments with added nitroaromatics were also performed under
these conditions, while transformation experiments with p-NP were
 carried out in fed-batch culture. Samples were withdrawn every 24 h
and the losses of p-NP, the production of p-AP, and the growth
parameters were measured. All experiments were carried out at 37 °C
in triplicate.

Analytical procedures. The optical density was measured spectro-
photometrically at 580 nm. The protein content was determined as
 described by Bradford (1976) with bovine serum albumin as standard.
Methane was analysed by gas chromatography with a Varian model
6000 gas chromatograph equipped with a thermal conductivity
detector. The injector and the detector were heated to 70°C and
the oven temperature was 50 °C. The gases were
separated from each other in a

Results

Chemical reduction of nitroaromatics by medium
cconstituents and possible metabolic products

In order to differentiate chemical from biological
reaction transformations it was first necessary to study
the behaviour of the nitroaromatics in the presence of
typical reducing agents which are used for the prep-
paration of media for anaerobic bacteria (Table 1). o-
Nitrophenol (o-NP) was completely reduced chemically
to its corresponding amino derivative by the reducing
agents sulphide and/or cysteine. Therefore it was not
used to study biological transformation. The trans-
formation of 2,4-dinitrophenol (2,4-DNP) by sulphide
and cysteine resulted in the formation of 2-amino-4-
nitrophenol; p-nitroaniline (p-NA) was transformed to
an unidentified product under the same conditions.
Ti(III) nitrilotriacetate (Ti-NTA) and sodium dithionite
casted a complete transformation of every nitroaromatic
compound tested into the corresponding amino- or
diamino-derivative; therefore these compounds were not
used in biological transformation experiments.

Reduction of nitroaromatics by growing cultures of
bacteria

Uninoculated and autoclaved controls showed no trans-
formation of the nitroaromatics tested. Only 2,4-
dinitrophenol and p-nitroaniline were partially trans-
formed by media reducing agents. All of the organisms
studied were able to perform the transformation of
nitroaromatic compounds and to complete the partial
transformation of 2,4-dinitrophenol and p-nitroaniline
(Table 2). Desulfococcus multivorans and Desulfoto-
maculum orientis only transformed p-nitrophenol. Tran-
sformation always resulted in the formation of amino-

Table 1. Transformation of several nitroaromatic
compounds by reducing agents

<table>
<thead>
<tr>
<th>Nitroaromatic compound (0.5 mm)</th>
<th>Ti-NTA</th>
<th>Dithionite</th>
<th>Sulphite</th>
<th>Sulphide</th>
<th>Cysteine</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-NP</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>m-NP</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>o-NP</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2,4-DNP</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>p-NB</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-NA</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>±</td>
<td>±</td>
</tr>
</tbody>
</table>

* Ti-NTA, Ti(III) nitrilotriacetate; +, complete transformation into the corresponding amino derivative; ±, partial transformation; −, no transformation.
Table 2. Transformation of several nitroaromatic compounds by growing cultures of methanogenic bacteria, sulphate-reducing bacteria and Clostridium

<table>
<thead>
<tr>
<th>Organism</th>
<th>p-NP</th>
<th>m-NP</th>
<th>2,4-DNP</th>
<th>p-NB</th>
<th>p-NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanobacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>formicicum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>thermooautotrophicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanospirillum hungatei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanosarcina barkeri</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>frisia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>sp. KS2002</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Methanogenium tationis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Methanoculleus oldenburgensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Desulfovibrio desulfuricans</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>gigas</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>sp. AS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>sp. HB</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Desulfococcus multivorans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desulfotomaculum orientis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp. GROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pasteurianum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp. W1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* +, 100% transformation into the corresponding amino derivative; —, no transformation.

The transformation of nitroaromatic compounds by methanogenic bacteria only occurred while cells lysed. Therefore it was necessary to pregrow the cells to an optical density of about 0.15 before adding the nitroaromatics. As shown in Table 2, all of the methanogens tested were able to perform a complete transformation of the nitroaromatics. Methanosarcina frisia was investigated in more detail. The results in Fig. 2 indicate that p-NP was transformed by growing cultures of Methanosarcina frisia (OD≤0.15) accompanied by a decrease in the optical density. As long as p-NP was present, the methane production ceased entirely. When transformation had been completed, growth and methane production of Methanosarcina frisia recovered.

Effect of different electron donors on the rate of nitroaromatic reduction by Desulfovibrio gigas

Further experiments with Desulfovibrio gigas showed that different electron donors affected the p-NP trans-
formation differently (Fig. 3a). The following sequence of transformation velocity could be observed: molecular hydrogen > pyruvate > lactate > ethanol. Except in the case of molecular hydrogen the transformation velocity was correlated with the specific growth rates and the biomass yields (Fig. 3b). With molecular hydrogen the transformation was completed within the early stages of the exponential-phase of growth.

Effect of nitro- and aminoaromatics on growth

Concentrations of p-NP higher than 0.2 mM impaired the growth of *Desulfovibrio gigas*, which became apparent by an extended lag phase. A concentration of 1.0 mM led to complete inhibition of growth. The transformation product p-aminophenol (p-AP; 0.1 to 10 mM) did not influence growth. Similar results were obtained with *Clostridium pasteurianum*, but this organism tolerated higher concentrations of p-NP than did *Desulfovibrio gigas*. Complete inhibition of growth of *Clostridium pasteurianum* was observed in the presence of 5.0 mM p-NP. The transformation product p-AP did not influence the growth of this organism nor the growth of *Methanosarcina frisia*.

Discussion

Our results conclusively show that under anaerobic conditions nitroaromatics were converted into the corresponding amino compounds by living bacteria as well as abiotically. Chemical transformation occurred in the presence of media-reducing compounds like sulphide or Ti(III) nitrilotriacetate (Table 1). In the case of o-nitrophenol and 2,4-dinitrophenol, nitro-group transformation occurred only in the ortho-position; the transformation product of p-nitroaniline is not known.
In contrast to recent findings (Macalady et al., 1986), our results clearly demonstrate that nitroaromatics (0.2 mM) can be reduced directly by certain reductants (1-5 mM).

A chemical transformation of 2,4,6-trinitrotoluene to 2,4-diamino-6-nitrotoluene by sulphide ions was also observed (Preuss et al., 1990).

Biological transformation of certain nitroaromatics by cell-free extracts of anaerobic bacteria has been observed in Clostridium spp. (O’Brien & Morris, 1971; Angermaier & Simon, 1983; Rafii et al., 1991), Bacteroides fragilis (Kinoshii & Ohnishi, 1983), Veillonella alcalescens (McCormick et al., 1976) and Enterobacter cloacae (Bryant & DeLuca, 1991). Our results extend this range of species for which transformation has been demonstrated to some strains of sulphate-reducing and methanogenic bacteria (Table 2). According to other authors (Boyd et al., 1983; Battersby & Wilson, 1989) the reductive transformation of nitroaromatic compounds leads to a detoxification of the substance.

Methanogenic bacteria lysed in the presence of nitroaromatics. This was correlated with the reduction of the nitro-substituent to the corresponding amino-group. In Fig. 2 the behaviour of Methanosarcina frisia in the presence of 50 μM p-NP is shown. Cell lysis does not depend on the type of nitroaromatic compound. This may be the reason why methanogenesis is inhibited by nitroaromatics during anaerobic sewage treatment (Horowitz et al., 1982; Boyd et al., 1983; Johnson & Young, 1983). However, Fedorak et al. (1990) found no evidence that anilines negatively influenced methanogenesis. This was also confirmed in our experiments: after the reduction of the nitro-substituent, the resulting aminoaromatic molecule no longer hindered cell growth. Additionally, other aminoaromatics did not cause cell lysis. Therefore we assumed that nitroaromatics or intermediates of the reduction process like nitroso- or hydroxylamines are the real toxicants, since they may react with the unique cell membrane components of the methanogens.

A second toxic function of a nitroaromatic compound might be determined by the fact that it acts as an ‘electron trap’. This has already been assumed for the oxygen sensitivity of methanogens (Jarrell, 1985), consequently leading to the breakdown of ATP synthesis. A third possibility might be the uncoupling activity of nitroaromatics on electron transport chains thus inhibiting ATP synthesis, followed by cell lysis. Although information about the biochemistry of nitro-group reduction under methanogenic conditions is rather poor, it cannot be excluded that the coenzyme F₄₂₀ is involved in such a reaction due to its low redox potential (E₀ = −340 mV). Apparently the methanogens were more sensitive to the presence of nitroaromatics than were the sulphate-reducing bacteria and clostridia. This is probably due to the destruction of the twofold function of the cell membranes of most methanogens as a physiological barrier and to the cell skeleton. In sulphate-reducing bacteria and clostridia such a destructive effect of nitroaromatics might be prevented by the presence of a murein-containing cell wall and a different composition of the cell membrane.

In contrast to the methanogens, Clostridium spp. and sulphate-reducing bacteria reduced the nitro-substituents without cell lysis (Table 2). It is not known why Desulfovoccus multivorans and Desulfotomaculum orientis only transformed p-nitrophenol. As shown in Fig. 1, there is a strong correlation between the growth phase and the reduction process. In addition, p-NP reduction by Desulfovibrio gigas is also dependent on the kind of electron donor. Due to the electron donor applied and the biomass yielded the following sequence of the rate of transformation of p-NP could be measured: lactate < pyruvate < hydrogen (Fig. 3a, b). To our knowledge there are no specific nitroreductases in sulphate-reducing bacteria. Hydrogenase, together with a ferredoxin-like protein, was demonstrated to function as a nitroreductase in Veillonella alcalescens and Clostridium pasteurianum (McCormick et al., 1976). A mechanism for the reduction of aromatic nitro-compounds catalysed by hydrogenase and ferredoxin was also proposed for Clostridium (Angermaier & Simon, 1983). But other enzymes like pyruvate:ferredoxin oxido-reductases, sulphite reductases, nitrite reductases, or quinone reductases are able to transform nitroaromatics as well (Kinoshii & Ohnishi, 1983; Bryant & DeLuca, 1991).

No degradation of the amino-substituted aromatics was observed with the above-mentioned microorganisms. Therefore we conclude that the reduction of nitro-substituents in these organisms is an unspecific detoxification reaction mediated by certain enzymes and/or cofactors.

We thank Professor G. Fuchs (Ulm, FRG) for critically reading the manuscript.

References

