Processing and secretion by *Escherichia coli* of a recombinant form of the immunogenic protein MPB70 of *Mycobacterium bovis*

R. Glyn Hewinson¹* and William P. Russell²

Molecular Genetics Unit¹ and Applied and Molecular Immunology Unit², Central Veterinary Laboratory, New Haw, Weybridge, Surrey KT15 3NB, UK

(Received 16 November 1992; revised 25 January 1993; accepted 1 February 1993)

The gene encoding an immunodominant secreted antigen, MPB70, of *Mycobacterium bovis* was cloned into the plasmid vector pBluescript II KS+ along with its native ribosome-binding site. In this construct translation of the protein in *Escherichia coli* was from the native AUG initiation codon and was directed by the mycobacterial ribosome-binding site. Two different molecular mass forms (26 kDa and 22 kDa) of MPB70 were observed in whole-cell pellets of recombinant *E. coli*. The difference in size indicates cleavage of the signal peptide of MPB70 by an endopeptidase of *E. coli*. MPB70 was secreted into the periplasm of recombinant *E. coli*, where the 22 kDa form of the protein was predominant. The culture filtrate contained only the 22 kDa form of the protein, which was soluble. The passage of MPB70 from the periplasm into the growth medium was found to be due, at least in part, to non-specific leakage of periplasmic proteins across the outer membrane associated with the expression of recombinant MPB70.

Introduction

Improvement of immunodiagnostic screening for *Mycobacterium bovis* infection relies on the identification and purification of antigens exhibiting a high degree of specificity (Daniel & Janicki, 1978; Auer, 1987; Fifis et al., 1992). In order to identify such antigens for diagnosis in cattle, Fifis et al. (1992) purified a number of proteins from *M. bovis* and tested these antigens with panels of sera from *M. bovis*-infected cattle, *M. bovis* culture-negative cattle, and cattle infected with other mycobacteria. Their study identified a number of promising candidate antigens, of which the protein MPB70 gave greatest specificity for *M. bovis* infection.

MPB70 is an immunodominant antigen of *M. bovis* (Fifis et al., 1989) containing *M. bovis* species-specific epitopes (Wood et al., 1988). The protein is an active component of bovine PPD (Harboe et al., 1990) and is able to elicit a delayed-type hypersensitivity (DTH) response (Nagai et al., 1981; Miura et al., 1983; Harboe et al., 1986; Haslov et al., 1987), and to stimulate T lymphocyte proliferation (Fifis et al., 1989; Griffin et al., 1991) and antibody production (Fifis et al., 1992; Wood et al., 1992) in *M. bovis*-infected animals. The protein is a major component of *M. bovis* culture filtrate (Nagai et al., 1981; Harboe et al., 1986; Abou-Zeid et al., 1987; Fifis et al., 1991) and is secreted from the cell following cleavage of a 30-amino-acid signal peptide which directs translocation of the hydrophobic molecule across the cytoplasmic membrane (Terasaka et al., 1989). MPB70 has been cloned and sequenced (Terasaka et al., 1989; Radford et al., 1990).

The use of isolated *M. bovis* antigens, such as MPB70, in immunodiagnostic assays is hindered by difficulties in growing the organism and purifying the antigens. Recombinant proteins may provide a realistic alternative. Previous reports have indicated that bulk purification of mycobacterial recombinant proteins in *Escherichia coli* may be achieved by fusion of the protein of interest to a second protein for which column purification procedures are available. However, this often results in the accumulation of the fusion protein as an insoluble protein mass within the bacterial cell (Vordermeier et al., 1991; Ashbridge et al., 1992), making purification difficult.

This report describes the production of a plasmid construct which generates a form of MPB70 with retained antigenicity, that is secreted across the cytoplasmic membrane of *E. coli*. The results indicate that the leader peptide of the recombinant mycobacterial protein is cleaved by an endopeptidase of *E. coli*, resulting in the accumulation of a soluble, mature form of the protein in the periplasm and growth medium, thus facilitating purification.
Methods

Bacterial strains and vectors. *Escherichia coli* strain DH5x (F– glnlacZAM15 ΔlacZYA–argF)U169 recA1 endA1 hsdR17 (rK mK supE44 λ thi-1 gyrA relA1) was used as host for plasmid vectors pBluescript II KS+ (Stratagene), pUC18 and pUC19 (Gibco-BRL). The *M. bovis* DNA used in this study was extracted from strain AN5 (Central Veterinary Laboratory, Weybridge, UK).

Immunological reagents. *M. bovis* sonicated extract was prepared by the method of Morris et al. (1985). Rabbits were immunized subcutaneously at multiple sites with *M. bovis* sonicated extract (100 μg) in Freund’s incomplete adjuvant. The rabbits were boosted twice at 14 d intervals. Murine anti-MPB70 monoclonal antibody, SB10 (Wood et al., 1988), was purchased from Agen Biomedical (Queensland, Australia). Rabbit antibody directed against β-lactamase of *E. coli* was purchased from CP Laboratories (Hertfordshire, UK).

Polymerase chain reaction (PCR). DNA was extracted from *M. bovis* strain AN5 by the method of Whipple et al. (1987). PCR was performed in 50 μl reaction mixtures containing 50 mM-KCl, 10 mM-Tris/HC1 (pH 8.8), 0.01% (w/v) gelatin, 3 mM-MgCl2, 200 μM of each dinucleotide triphosphate (dNTP), 2.5 U of thermostable Taq DNA polymerase (Perkin-Elmer Cetus) and 20 pmol of each oligonucleotide primer. The DNA sequence of the primers was as follows: 5’- AAAAAATTTGACGACGCTCCGAAGAATC-3’ and 5’- CCCCCGATCTTACGCCCCAGCGATCAGGAC-3’. The reaction mixture was overlaid with 50 μl mineral oil and DNA samples (10 ng) were pipetted through the oil into the mixture. The parameters for amplification were: denaturation at 94 °C for 3 min for one cycle, followed by 30 cycles at 94 °C for 1 min, 56 °C for 1 min and 72 °C for 2 min. A final extension at 72 °C for 10 min was also included. A reagent blank (negative control) was as described above but without the addition of DNA sample.

Sequence analysis. DNA sequencing of double-stranded template was performed using the primer-extension dideoxy chain-termination method (Sanger et al., 1977) as recommended by the manufacturer (Sequenase, United States Biochemicals).

Other genetic procedures. Restriction endonucleases and other enzymes were used according to the manufacturers’ instructions. Other genetic manipulations were as described by Sambrook et al. (1989).

Osmotic shock procedure. The method used to obtain periplasmic and cytoplasmic cell fractions was a modification of that described by Koshland & Botstein (1980). A 10 ml overnight culture of bacterial cells was grown in Luria–Bertani broth, with 0.1% (w/v) glucose added (LBG; Sambrook et al., 1989), in the presence of 100 μg ampicillin ml–1. The culture was harvested by centrifugation at 5000 × g, 20 °C. The supernatant was discarded and the cells washed twice in 0.1 M phosphate-buffered saline (PBS) for 30 min, washed in PBS with 0.05% (w/v) Tween 20 (PBST) and incubated for 1 h with rabbit antiserum directed against sonicated *M. bovis* (diluted 1 in 500 in PBST), or with rabbit antiserum directed against β-lactamase (diluted 1 in 500 in PBST). Membranes were washed and incubated for 30 min at 20 °C with alkaline-phosphatase-conjugated anti-rabbit immunoglobulin (Sigma; diluted 1 in 8000 in PBST). After washing, bound alkaline phosphatase was detected using Nitro Blue Tetrazolium as described by Blake et al. (1984).

Immunoblotting. Proteins were transferred to nitrocellulose by electroblotting as described by Matusaida (1987). Membranes were blocked with 3% (w/v) bovine serum albumin (BSA) in phosphate-buffered saline (PBS) for 30 min, washed in PBS with 0.05% (w/v) Tween 20 (PBST) and incubated for 1 h with rabbit antiserum directed against sonicated *M. bovis* (diluted 1 in 500 in PBST), or with rabbit antiserum directed against β-lactamase (diluted 1 in 500 in PBST). Membranes were washed and incubated for 30 min at 20 °C with alkaline-phosphatase-conjugated anti-rabbit immunoglobulin (Sigma; diluted 1 in 8000 in PBST). After washing, bound alkaline phosphatase was detected using Nitro Blue Tetrazolium as described by Blake et al. (1984).

Results

Cloning of the gene encoding MPB70 and its expression in *E. coli.

PCR was used to amplify the gene encoding MPB70 from chromosomal DNA extracted from *M. bovis* AN5. The oligonucleotide primers used in this reaction were designed to give a product of 678 bp encompassing 660 bp of mycobacterial DNA encoding the MPB70 structural gene with an additional 78 bp upstream of the AUG initiation codon and restriction endonuclease sites at each end to allow cloning into the plasmid vector. The upstream region of DNA included a putative ribosome-binding site at positions –13 to –9 from the initiation codon (Terasaka et al., 1989; Radford et al., 1990). Thus
it was envisaged that by cloning the PCR product into the vector pBluescript II KS⁺ transcription of the gene encoding MPB70 would occur from the lacZ promoter of the vector and that translation of MPB70 would occur from ribosomes binding to the cloned ribosome-binding site. A 678 bp product was obtained from the PCR and was ligated into pBluescript II KS⁺ using the EcoRI and BamHI restriction endonuclease sites encoded by the oligonucleotide primers. The recombinant plasmid was transformed into E. coli DH5α. The identity of the mycobacterial insert in E. coli transformed with the recombinant plasmid was confirmed by DNA sequence analysis. The recombinant plasmid was designated pVW500.

Expression of MPB70 was detected by Western blotting using polyclonal rabbit antisera directed against sonicated M. bovis. Two forms of MPB70 were observed in the cell pellet (Fig. 1, lane 4). These polypeptides were not detected in the cell pellet of control recombinant E. coli containing plasmid without the mycobacterial DNA insert (Fig. 1, lane 2). One form of MPB70 gave an apparent molecular mass of 26 kDa, the other, predominant form, gave an apparent molecular mass of 22 kDa as estimated by denaturing PAGE. The expression of MPB70 was confirmed by Western blot analysis of the recombinant proteins using SB10, a monoclonal antibody specific for MPB70 (Wood et al., 1988). SB10 bound both forms of recombinant MPB70, although its affinity for the polypeptides was not as high as that of the polyclonal antisera (data not shown).

In order to determine whether transcription of MPB70 was from a promoter present in the 78 bp of M. bovis DNA upstream of the MPB70 initiation codon or from the lacZ promoter of the plasmid vector, the entire DNA fragment was excised from pVW500 using EcoRI and BamHI endonuclease digestion and ligated into the plasmid vectors pUC18 and pUC19. This procedure introduced the DNA fragment into pUC in both orientations relative to the lacZ promoter. Western blot analysis using the rabbit antisera raised against sonicated M. bovis showed that MPB70 was only expressed by recombinant E. coli containing the pUC18 construct, i.e. in the same orientation as pVW500, suggesting that expression was under control of the lacZ promoter.

Secretion of MPB70 by E. coli

Western blotting of concentrated culture filtrate using rabbit antisera raised against sonicated M. bovis detected the presence of only the 22 kDa form of recombinant MPB70 in the culture medium (Fig. 1, lane 3). This suggested that MPB70 was expressed and secreted by E. coli via a mechanism involving cleavage of the secretory signal peptide. In order to confirm this, osmotic shock was used to obtain cytoplasmic and periplasmic fractions of the recombinant cells. These fractions, and the culture filtrates from recombinant E. coli, with and without the MPB70 DNA insert, were Western blotted with antisera directed against sonicated M. bovis (Fig. 2a). The majority of the 26 kDa form of MPB70 was restricted to the cytoplasmic fraction of recombinant E. coli (lane 3), whereas the 22 kDa form was detected in the culture filtrate, the cytoplasm, and the periplasm (lanes 1–3).

The cellular fractions were also analysed for the presence of β-lactamase (a periplasmic protein of 29 kDa that is synthesized as a preprotein with a typical signal peptide of 23 amino acids: Sutcliffe, 1978; Koshland & Botstein, 1980), which was encoded by the plasmid vector. β-Lactamase was detected by Western blotting using specific rabbit antisera (Fig. 2b). A similar pattern of β-lactamase secretion to that of MPB70 was observed. Two forms of β-lactamase (of approximately 31.5 kDa and 29 kDa) were detected in the cytoplasm and periplasm (lanes 2, 3, 5 and 6), although the lower molecular mass form was predominant in the periplasm (lanes 2 and 5). The lower molecular mass form was also observed in the culture filtrate (lanes 1 and 4), suggesting some leakage across the outer membrane.

Measurement of β-lactamase leakage across the outer membrane of recombinant E. coli

In order to establish whether the presence of MPB70 in the culture filtrate was due to active secretion via a specific pathway, or to a general increase in the leakage of proteins through the outer membrane, the β-lactamase
activity was measured in each of the cellular fractions. The results of three experiments comparing the \(\beta \)-lactamase activities in the cellular fractions of recombinant \(E. coli \) expressing MPB70 and \(E. coli \) containing plasmid without the MPB70 insert are shown in Table 1. The \(\beta \)-lactamase activities in the culture filtrate were consistently higher for \(E. coli \) expressing MPB70 \([V_{\text{max}} = 2785 \pm 808 \text{nmmol min}^{-1} \text{(mg dry mass)}^{-1}; \text{mean} \pm \text{SEM}, n = 27] \) than the activities observed for recombinant \(E. coli \) that did not express MPB70 \([V_{\text{max}} = 1017 \pm 424 \text{nmmol min}^{-1} \text{(mg dry mass)}^{-1}; n = 27] \). The ratio \(V_{\text{max}} \text{ culture filtrate}/V_{\text{max}} \text{ periplasm} \) was 1.68 for \(E. coli \) expressing MPB70 whereas for cells not expressing MPB70 it was only 0.33.

Discussion

The intention of this study was to produce recombinant antigens for the development of sensitive and specific blood-based immunodiagnostic tests of \(M. bovis \).
infections in domestic and wild animals. Antigen production in *E. coli* rather than in *M. bovis* reduces the problems associated with the slow generation time of *M. bovis*, the infectivity of the pathogen and the more complex biochemical composition of mycobacteria. The immunogenic protein MPB70 is a suitable candidate antigen for diagnosis since it has been shown to be the most specific antigen for serodiagnosis of *M. bovis* infection in cattle (Fifis et al., 1992). Fortuitously, the recombinant MPB70 produced in this study was found to be secreted across the cytoplasmic membrane of *E. coli* and to accumulate in the periplasm and culture medium of the organism.

Since the plasmid construct encoding MPB70 (pVW500) also contained 81 bp of mycobacterial DNA upstream from the initiation codon, it was possible that transcription of MPB70 was initiated from a mycobacterial promoter present in this DNA fragment. However, as expression was only observed in one orientation of the mycobacterial DNA insert relative to the lacZ promoter, we conclude that it is most likely that transcription is directed from the lacZ promoter of the plasmid vector. This result is consistent with the sequencing data of Terasaka et al. (1989), which identified putative promoter sequences at positions −148 to −143 and −124 to −119 upstream of the MPB70 initiation codon (i.e. outside the DNA region contained in pVW500). Moreover, insertion of the PCR product into the lacZ gene of pBluescript II KS+ and pUC18 introduced a stop codon in the lacZ gene at positions −8 to −6 from the initiation codon of the MPB70 structural gene, thus creating a two-cistron expression system (Schoner et al., 1984). It therefore seems likely that expression of MPB70 was achieved by translational coupling (Schoner et al., 1984). In this system it is envisaged that transcription is initiated from the lacZ promoter, the *E. coli* ribosomes bind the putative ribosome-binding site (Terasaka et al., 1989; Radford et al., 1990) encoded by the *M. bovis* DNA insert and MPB70 is translated from its native AUG initiation codon. In some cases this type of two-cistron construction has been shown to improve the efficiency of translation of heterologous genes in *E. coli* (Schoner et al., 1984).

Two forms (26 kDa and 22 kDa) of the recombinant MPB70 were produced by *E. coli* containing the plasmid construct pVW500. Analysis of the protein sequence of MPB70 reveals the presence of a 30-amino-acid secretory signal sequence at the amino-terminus of the protein (Terasaka et al., 1989; Radford et al., 1990). This is cleaved from the mature protein during secretion by *M. bovis* (Radford et al., 1990). The signal peptide of MPB70 conforms to the physico-chemical properties observed for other bacterial signal peptides (Von Heijne, 1988) in that the peptide has a positively charged amino-terminal region, a central hydrophobic region and a more polar carboxy-terminal with an Ala-X-Ala endopeptidase recognition site. The difference in molecular mass of the two forms of MPB70 can therefore be explained by cleavage of the 30-amino-acid secretory signal peptide (Terasaka et al., 1989; Radford et al., 1990) from the 26 kDa form of MPB70 by an endopeptidase of *E. coli*. The molecular mass of mature MPB70 predicted from the amino acid sequence is 16.3 kDa (Terasaka et al., 1989; Radford et al., 1990) rather than the observed 22 kDa. However, mature native MPB70 from *M. bovis* also displays aberrant mobility in denaturing PAGE, giving an apparent molecular mass of 18–23 kDa (Miura et al., 1983; Nagai et al., 1986; Abou-Zeid et al., 1987; Haslov et al., 1987; Fifis et al., 1989). Therefore, when the signal peptide is removed, both native and recombinant MPB70 display similar aberrant mobilities. Preliminary unpublished data suggest that the pl of the recombinant form of MPB70 (4.8) is similar to the value of 4.5–5.0 reported for native MPB70 (Nagai et al., 1986; Fifis et al., 1989).

Secretion of recombinant MPB70 into the periplasm of *E. coli* was observed. To our knowledge this is the first report of the secretion of a mycobacterial protein by a Gram-negative bacterium. Moreover, the 22 kDa form of MPB70 was detected in both the periplasm and culture filtrate of recombinant *E. coli* in the exponential phase of growth. Since the signal peptide of MPB70 was removed following translocation across the cytoplasmic membrane, it seemed likely that the appearance of MPB70 in the culture medium was either due to non-specific leakage across the outer membrane or to a specific, signal-peptide-independent process. Recent studies indicate that several pathways exist for the secretion of proteins across the outer membrane (Pugsley, 1989). However, our results show that the expression of MPB70 in *E. coli* gives rise to an increase in leakage of the normally periplasmic β-lactamase across the outer membrane into the culture medium. Therefore the accumulation of recombinant MPB70 in the culture medium of *E. coli* is due, at least in part, to non-specific leakage of periplasmic proteins across the outer membrane. A likely explanation for this leakage is that hydrophobic interactions between the outer membrane and MPB70, which is a hydrophobic molecule (Terasaka et al., 1989), cause some disruption of the outer membrane. However, expression of MPB70 did not affect the growth rate of the cells in culture (unpublished data).

This processing and secretion of the mycobacterial antigen MPB70 by *E. coli* may be exploited for the purpose of antigen production. Production of MPB70 in this way has several advantages. Secretion precludes
proteolysis of the protein by housekeeping cytoplasmic peptidases, which would normally remove abnormal proteins from the cytoplasm, and separates it from contaminating cytoplasmic proteins. Moreover, processing of the protein by \textit{E. coli} results in the production of a mature, soluble form of MPB70 which resembles the native molecule, whereas recombinant proteins are often produced as chimeric fusion proteins which might alter the conformation of the protein.

The ability of \textit{E. coli} to secrete MPB70 raises the possibility that \textit{E. coli} and attenuated oral vaccine strains of salmonella might be able to secrete a range of mycobacterial antigens. This possibility is currently under investigation.

We are most grateful to Dr M. J. Woodward and Dr D. G. Newell for their invaluable help with the preparation of the manuscript. Nitrocefin was a kind gift from Glaxo Pharmaceuticals (Greenford, UK). This work was funded by the Ministry of Agriculture, Fisheries and Food.

References

