Isolation, characterization and sequence analysis of the *scrK* gene encoding fructokinase of *Streptococcus mutans*

YUTAKA SATO,*1 YASUHITO YAMAMOTO,1 HARUTOSHI KIZAKI1 and HOWARD K. KURAMITSU2

1Department of Biochemistry, Tokyo Dental College, 2-2, Masago 1-chome, Mihama-ku, Chiba City, 261 Japan
2Department of Pediatric Dentistry, University of Texas, Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, USA

(Received 21 September 1992; revised 16 December 1992; accepted 14 January 1993)

A gene encoding an ATP-dependent fructokinase from *Streptococcus mutans* GS-5 was identified within a 2 kb DNA fragment immediately downstream from the *scrA* gene. The gene cloned in *Escherichia coli* also expressed mannokinase activity. Insertional inactivation of this gene in *S. mutans* markedly decreased both fructokinase and mannokinase activities. Nucleotide sequence analysis of the 2 kb fragment revealed an ORF starting 199 bp downstream from the *scrA* gene, preceded by potential ribosome-binding (Shine-Dalgarno) and promoter-like sequences. This ORF specified a putative protein of 293 amino acids with a calculated *M*, of 31681. The deduced amino acid sequence of the fructokinase gene, *scrK*, from *S. mutans* exhibited no significant similarity to fructokinase genes from *Klebsiella pneumoniae*, *E. coli* plasmid pUR400 or *Vibrio alginolyticus*, but was similar to a comparable gene from *Zymomonas mobilis*.

Introduction

Streptococcus mutans has been implicated as the principal etiological agent in human dental caries (Loesche, 1986). The mechanisms by which sucrose is transported and metabolized in this organism have been of particular interest because the resulting acid produced from dietary sugars, including sucrose, can demineralize the enamel tooth surface resulting in dental caries.

Sucrose is transported in this organism primarily by means of a phosphoenolpyruvate-dependent phosphotransferase system (PTS) (Slee & Tanzer, 1982; St Martin & Wittenberger, 1979). We have sequenced and characterized two genes, *scrA* and *scrB*, encoding sucrose Enzyme II of the PTS and sucrose-6-phosphate hydrolase (S6PH), respectively, from *S. mutans* (Sato et al., 1989; Sato & Kuramitsu, 1988). Sucrose transported by the sucrose PTS with concomitant phosphorylation by sucrose Enzyme II at the 6' position of the glucose moiety results in the formation of sucrose 6-phosphate in the streptococcal cells which is subsequently hydrolysed by S6PH to glucose 6-phosphate and fructose. Intracellular free fructose should then be phosphorylated for further glycolysis probably by an ATP-dependent fructokinase (ATP:fructose 6-phosphotransferase, EC 2.7.1.4). Genes encoding fructokinase activity from several organisms (Blatch et al., 1990; Aulkemeyer et al., 1991) have been isolated, sequenced and designated *scrK*. This gene appears to be part of the same regulon containing *scrA* and *scrB*. In addition, another gene, *frk*, from *Zymomonas mobilis* encoding a fructokinase which is not linked to any PTS has been cloned and sequenced (Zembrzuski et al., 1992). In contrast, the *scrA* and *scrB* genes of *S. mutans* are tandemly arranged but are divergently transcribed from opposite DNA strands (Sato et al., 1989). However, because intracellular free fructose would be generated by the sucrose PTS and S6PH as mentioned above, it was assumed that the fructokinase gene in this organism might be located near the *scrAB* region.

In this paper, we describe the isolation, characterization and nucleotide sequence of the *scrK* gene from *S. mutans*, encoding the fructokinase enzyme. The amino acid sequence deduced from the *scrK* gene was also compared with those for other bacterial fructokinases.

Abbreviations: PTS, phosphoenolpyruvate-dependent phosphotransferase system; S6PH, sucrose-6-phosphate hydrolase.

The nucleotide sequence data reported in this paper have been submitted to DDBJ, EMBL and GenBank and assigned the accession number D13175.

*Author for correspondence. Tel. 43 279 2222; fax 43 279 2052.

0001-7855 © 1993 SGM
Methods

Bacterial strains. S. mutans GS-5, its spontaneous colonization-defective strain, IS3, and Escherichia coli strains JM109 and MV1184 were maintained and routinely grown as described previously (Perry et al., 1983; Yanisch-Perron et al., 1985; Vieira & Messing, 1987).

Isolation of the S. mutans scrK gene. The marker rescue procedure using plasmid pVA891 (Macrina et al., 1983) for isolating chromosomal DNA fragments was described previously (Sato et al., 1992) and utilized to isolate the scrK gene. The recovered fragments flanking plasmid pVA891 were characterized following restriction endonuclease digestion with enzymes selected on the basis of the Southern blot hybridization patterns of this region of the chromosome.

Nucleotide sequencing and sequence analysis. All fragments to be sequenced were subcloned into pBluescript KS(+)/SK(+) (Stratagene). Sequential deletion clones of the fragments in pBluescript were obtained by the exonuclease III and mungbean nuclease system (Takara) (Henikoff, 1984). Sequencing was accomplished by the dideoxy chain-termination method (Sanger et al., 1980). Sequencing was accomplished by the DNA polymerase supplied with the Taq DNA polymerase supplied with the Taq Dye Primer Cycle Sequencing Kit (Applied Biosystems), and a thermal cycler (Perkin Elmer Cetus, Model PJ2000). An automated DNA sequencer (Applied Biosystems Model 373A) was utilized to determine the nucleotide sequence of both strands of the entire region with the overlapping clones. Sequence analysis was carried out with the DNASeqs-Mac using CD-ROM databases (Hitachi Software Engineering).

Expression of the scrK gene with a T7 RNA polymerase/promoter system. The scrK gene was subcloned into a pT7 RNA polymerase/promoter SK(+) in the opposite direction relative to the lacZ promoter (in the same direction as the T7 promoter). The resultant plasmid, pSRK2, was then introduced into E. coli strain K38 harbouring the plasmid pGPI-2 encoding the T7 RNA polymerase and expressed according to the procedure described by Tabor & Richardson (1985). The cells from 10 ml culture of the T7 RNA polymerase expression system were harvested, washed twice with 10 mM-potassium phosphate buffer, pH 6-5, and resuspended in 2 ml of the same buffer. A portion of the suspension was analysed by SDS-PAGE and an aliquot was used for enzyme and protein assays.

SDS-PAGE. A portion of the cell suspension was mixed with the same volume of the SDS sample buffer [125 mM-Tris/HCl, pH 6.8, 2% (v/v) SDS, 10% (v/v) 2-mercaptoethanol, 20% (v/v) glycerol, 0.02% bromophenol blue], boiled for 3 min and frozen until electrophoretic analysis using the gel system of Laemmli (1970) with 12% (w/v) acrylamide gels. The molecular mass of the protein encoded by the scrK gene was determined following electrophoresis and staining of the gels with 0.25% Coomassie brilliant blue R250 in methanol/acetic acid/water (9:2:9 vol by vol).

Preparation of cell-free extracts. E. coli cells were grown and suspended in 10 mM-potassium phosphate buffer, pH 6-5 as described above. S. mutans cells were grown overnight at 37 °C in BTR–sucrose medium as described previously (Sato et al., 1991). The overnight cultures were then inoculated (0.1%) into 250 ml of the same medium and incubated at 37 °C for 15 h. The cells were collected, washed and resuspended in potassium phosphate buffer at a concentration of 0.2 g wet weight ml⁻¹. Both E. coli and S. mutans suspensions were subjected to mechanical disruption with glass beads in a B. Braun MSK cell homogenizer for 5 and 15 min, respectively, at 4 °C. After the removal of the glass beads and cell debris by low speed centrifugation, the extract was centrifuged at 20000 g for 15 min, and the supernatant was subjected to an additional centrifugation at 100000 g for 30 min in a Hitachi Himac centrifuge CS120. The resultant supernatant fluid was used as a crude extract and was dispensed into small aliquots, immediately frozen and stored at −80 °C until required for enzyme and protein assays.

Enzyme assays. Fructokinase activity was determined by a spectrophotometric assay described by Porter et al. (1980), with minor modifications. The standard assay mixture contained 2 mM-ATP, 10 mM-MgCl₂, 2 mM-NADP, 0.05–50 mM-fructose (usually 12.5 mM), 200 mM-Tris/HCl buffer, pH 7.4, 24 IU glucose-6-phosphate isomerase (EC 5.3.1.9), 15 IU glucose-6-phosphate dehydrogenase (EC 1.1.1.49), and 0.5 to 20 µl of crude enzyme preparation in a final volume of 0.5 ml incubated at 25 °C. For determination of mannokinase activity, mannose was substituted for fructose, and 2.8 IU mannose-6-phosphate isomerase (EC 5.3.1.8) was added to the reaction mixture described above. Glucokinase activity was also determined by replacing fructose with glucose and omission of glucose-6-phosphate isomerase from the assay mixture. Kinase activities were completely dependent on the presence of ATP, NADP, Mg²⁺, the appropriate sugar, and enzyme extract. 1- and 6-phosphofructokinase activities with E. coli crude extracts were determined with the NADH-coupled spectrophotometric method of Ferenci & Kornberg (1971) with minor modifications. Under these conditions, the amount of phosphorylated products formed in the assay is proportional to the amount of NADP reduced or NADH oxidized as measured by the change in absorbance at 340 nm. Protein concentrations of the crude extract were determined by the method of Lowry.

Results

Isolation of the fructokinase gene immediately downstream from the scrA gene

Our previous study (Sato et al., 1989) showed that the scrA and scrB genes from S. mutans GS-5 were divergently transcribed on opposite strands of a 6.6 kb EcoRI fragment cloned in the plasmid pMH613 (Fig. 1). Two other potential ORFs, ds1 and ds2, whose functions remain to be determined were located downstream from the scrB gene on the EcoRI fragment and a truncated ORF, ORF3, was located downstream from the scrA gene (Fig. 1). To clone the intact ORF3, a DNA fragment containing the EcoRI site (map position 6-6, Fig. 1) was initially isolated from the S. mutans GS-5 chromosome by a marker rescue method. Following integration into and excision from the chromosome with the marker rescue plasmid, the region was isolated in pSW73B (Fig. 1). Since plasmid pSW73B did not contain the promoter and 5' region of ORF3, both the PvuII–EcoRI fragment (map position 5-8-6-6) from pMH613 and the EcoRI–SacI fragment (map position 6-6-7-9) from pSW73B were subsequently inserted into pBluescript II SK(+) in the opposite orientation to the lacZ promoter. The resultant plasmid containing the intact ORF3 fragment was designated pSRK2 (Fig. 1). E. coli JM109 harbouring pSRK2 expressed fructokinase activity probably by transcription from the promoter of ORF3. The activity was about ten times higher than that of the control strain, JM109 harbouring pBluescript II SK(+) Therefore, the ORF3 encoding this activity was designated the scrK gene.
The fructokinase gene of S. mutans

Figure 1. Restriction map of plasmids pMH613, pSW73B, pSRK2 and pSWM6. Plasmid pMH613 contains a 6.6 kb EcoRI fragment from GS-5. The location and direction of transcription of the serA, scrB, ds1 and ds2 genes are indicated by arrows. Circles at the end of arrows represent putative promoter sites. ORF3 was truncated at the end of the fragment. Plasmid pSW73B was constructed from a GS-5 chromosomal fragment downstream from the scrA gene as described in Methods. Plasmid pSRK2 contains the intact scrK gene and was utilized for ScrK expression with a T7 RNA polymerase system. Plasmid pSWM6 was utilized for inactivation of the scrK gene on the GS-5 chromosome as described in Results. A, Aful, B, BamHI; E, EcoRI; EV, EcoRV; H, HindIII; Pvu, PvuII; S, SacI; tet, tetracycline resistance gene.

Nucleotide sequence of the scrK gene

The 1404 bp nucleotide sequence shown in Fig. 2 begins at a PvuII site (map position 58, Fig. 1) and extends 240 bp downstream from the termination codon of the scrK gene. The sequence includes the 83 bp 3' region of the scrA gene, a 199 bp interval region, the 882 bp scrK ORF (position 283–1164, Fig. 2), a 168 bp putative intercistronic region and the 72 bp 5' region of a downstream ORF. The scrK gene encodes a 293 amino acid protein with a calculated Mr of 31 681. A potential ribosome-binding site (AAGAGG) could be identified 6 bp upstream from the ATG initiation codon of the scrK gene. In addition, a promoter-like sequence (TTGAAA-N15-TATAAT), which resembles the E. coli promoter consensus sequence, exists between positions 172 and 198, and is situated 53 bp downstream from the putative transcriptional terminator sequence of the scrA gene and 84 bp upstream from the initiator codon of the scrK gene. There appeared to be no inverted repeat sequences capable of forming stable hairpin loop structures between the termination codon of scrK and the putative initiation codon of the downstream ORF, although several promoter-like sequences were detected in this region (e.g. P1’P1”, P2’P2”; Fig. 2).

Comparison of the S. mutans fructokinase sequence with other fructokinase sequences

The calculated Mr of the protein deduced from the S. mutans scrK gene was similar to proteins from a family of sugar kinases and sugar-phosphate kinases (references in Aukemeyer et al., 1991). It was therefore of interest to compare the deduced amino acid sequence of the S. mutans fructokinase with these related proteins. The ScrK amino acid sequence was compared with protein databases containing the NBRF (R. 28.0) and SWISS-PROT (R. 18.0) entries, and only the xylose operon repressor protein of Bacillus subtilis exhibited significant similarity despite the presence of several fructokinase and phosphofructokinase genes. Recently, the sequence of the frk gene encoding fructokinase from Zymomonas mobilis has been reported (Zembrzuski et al., 1992). Homology matrices with an 8 amino acid window indicated that the ScrK protein of S. mutans exhibited significant similarity to this protein throughout the entire sequence but no similarity to the ScrK protein of Klebsiella pneumoniae (data not shown). The computer-generated maximum-matched alignment of the ScrK protein from S. mutans with the Frk protein allowing for gaps (Fig. 3) indicated 38% identical and 58% similar amino acid residues with several highly similar regions. In addition, two ATP-dependent fructokinases have been purified recently from Lactococcus lactis (Thompson et al., 1991) and Fusobacterium mortiferum (Thompson et al., 1992). N-terminal amino acid sequences of the two enzymes were determined following Edman degradation. Eighteen of the first 25 amino acid positions in the former and 15 of 27 positions in the latter organism were identical to the N-terminal sequence deduced from the S. mutans fructokinase gene (data not shown).

Expression and characterization of the ScrK enzyme

To maximize scrK expression by pSRK2 which contains the intact scrK gene from S. mutans, a T7 RNA polymerase expression system was utilized. Cell extracts from each strain were subjected to SDS-PAGE, and a Coomassie blue-stained gel is presented in Fig. 4. Under these conditions, only K38(pGP1-2)(pSRK2) (lane 6)
nucleotide sequence. The opposing arrows downstream from the S.D. gene denote an inverted repeat. -35
scrK

Fig. 3. Comparison of the amino acid sequence of S. mutans fructokinase (ScrK) with that of Z. mobilis fructokinase (Frk). Computer-generated maximum-matched alignment of the ScrK and Frk proteins allowing gaps (hyphens). Identical and similar amino acid residues are marked as asterisks and dots, respectively, between the two sequences. The numbers indicate the relative (not actual) position of each amino acid.

contains a protein band with an Mr of around 32000. The apparent molecular mass of this protein was almost the same as that calculated from the protein sequence deduced from the scrK gene. The crude extract of strain K38(pGP1-2)(pSRK2) phosphorylated 18.7 pmol of fructose and 4.27 pmol of mannose min⁻¹ (mg protein)⁻¹ (Table 1) when the sugar concentration of the assay mixtures was 12.5 mM, and apparently phosphorylated no glucose even when the glucose concentration was increased to 50 mM (data not shown). Fructokinase activity of the extract was inhibited by mannose but not by glucose (data not shown), whereas the Z. mobilis fructokinase is strongly inhibited by glucose (Zembrzuski et al., 1992). The scrK gene expressed neither 1- nor 6-phosphofructokinase activities. Using crude extracts with relatively high specific activities prepared from the T7 RNA polymerase expression system, several kinetic parameters of the ScrK were determined. The apparent Km and Vmax values were 0.77 mM, 20.0 pmol min⁻¹ (mg protein)⁻¹ for fructose and 1.00 mM, and 5.0 pmol min⁻¹ (mg protein)⁻¹ for mannose, respectively. In addition, mannose acted as a competitive inhibitor of fructose phosphorylation. The apparent Kc value for mannose with respect to the fructokinase reaction was 0.44 mM. These Km and Kc values were similar to those reported previously for the mannofructokinase partially purified from S. mutans SL-1 (S. sobrinus SL-1) (Porter et al., 1980).

Inactivation of the scrK gene in S. mutans

To confirm whether or not the scrK gene codes for the sole fructokinase in S. mutans strain GS-5IS3, the scrK

Fig. 2. Nucleotide sequence and deduced amino acid sequence of the scrK region. Numbering begins at the PvuII site (map position 58, Fig. 1) and the sequence ends 240 bp downstream from the termination codon of the scrK gene. The sequence contains the 3' region of the scrA gene, the scrK gene and the S' region of a putative ORF. The deduced amino acid sequences specified by the ORFs are presented below the nucleotide sequence. The opposing arrows downstream from the scrA gene denote an inverted repeat. -35 to -10, P1/P1' and P2/P2' denote putative promoters of the scrK gene and the downstream ORF, and S.D. denotes ribosome-binding (Shine–Dalgarno) sequences.
The fructokinase gene of S. mutans

Fig. 4. Coomassie blue-stained 12% (w/v) polyacrylamide gel of the T7 RNA polymerase expression products. Sample extracts were prepared as described in Methods. Lanes: 1 and 2, 5 μl extracts from E. coli JM109(pBluescript II) (1) and JM109(pSRK2) (2) without the T7 RNA polymerase-expressing plasmid pGPl-2; 3, M, markers; 4 to 6, 10 μl extracts from E. coli K38(pGPl-2) (4), K38(pGPl-2)(pBluescript II) (5) and K38(pGPl-2)(pSRK2) (6) induced as described in Methods. The arrow indicates the ScrK protein.

Table 1. Fructokinase (FK) and mannokinase (MK) activities of the E. coli clone and S. mutans

<table>
<thead>
<tr>
<th>Sugar* concn (mM)</th>
<th>E. coli K38(pGPl-2)(pSRK2)</th>
<th>S. mutans GS-5IS3</th>
<th>LSWMS2 (scrK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FK</td>
<td>MK</td>
<td>FK</td>
</tr>
<tr>
<td>50</td>
<td>ND</td>
<td>ND</td>
<td>0.426</td>
</tr>
<tr>
<td>12.5</td>
<td>18.7</td>
<td>4.27</td>
<td>0.348</td>
</tr>
<tr>
<td>1.25</td>
<td>13.2</td>
<td>26.5</td>
<td>0.239</td>
</tr>
</tbody>
</table>

ND, Not determined.

* Fructose or mannose concentration in the standard assay mixtures.

gene in pSWM6 was insertionally inactivated with the streptococcal tetracycline resistance gene (tet) (Perry & Kuramitsu, 1989) at the unique EcoRI site (Fig. 1). The plasmid pSWM6 was linearized and introduced back into S. mutans GS-5IS3 following transformation. After confirmation of the predicted double cross-over-integration event of the fragment into the chromosome by Southern analysis (data not shown), crude extracts were prepared from the cells of the mutant, designated LSWMS2, and the parental strain GS-5IS3 grown with sucrose. The mutant was completely devoid of fructokinase as well as mannokinase activity when the sugar concentration of the assay mixtures was less than 1.25 mM and exhibited low activities compared to GS-5IS3 when tested with higher sugar concentrations (Table 1). Nevertheless, both strains LSWMS2 and GS-5IS3...
reached the same growth yield with sucrose \([Y_w = 0.2 \text{ mg dry weight (mg sucrose)}^{-1}]\), although LSWMS2 grew slightly slower in BTR–sucrose broth.

Discussion

The nucleotide sequence of the region downstream from the \(scaA\) gene revealed that there was an 882 bp ORF in the same orientation as the \(scaA\) gene. This ORF is the \(scrK\) gene encoding the mannofructokinase activity since the cloned gene in \(E. coli\) expressed high fructokinase as well as mannokinase activities, but no 1- or 6-phospho-fructokinase, or glucokinase activities. To our knowledge, this sequence represents the first complete sequence of a gene encoding mannofructokinase activity. The \(scrK\) gene specifies a protein with a \(M_r\) of 31,681 which agrees well with the value estimated from SDS-PAGE (Fig. 4). However, this value is different from the \(M_r\) (49,000) estimated previously by gel filtration for the purified mannofructokinase of \(S. mutans\) strain SL-1 (Porter et al., 1980). Although this difference cannot be simply explained by dimerization of the protein, Thompson et al. (1991) observed a similar discrepancy for the \(L. lactis\) fructokinase I. This difference in molecular size estimates was apparently due to a concentration-dependent monomer–dimer equilibrium which confers the anomalous \(M_r\) deduced by gel filtration.

A kinetic study with the \(scrK\) gene product revealed that mannose was a competitive inhibitor of fructose phosphorylation and glucose was neither an inhibitor nor a substrate for the enzyme. On the other hand, the \(K. pneumoniae\) fructokinase (ScrK) did not phosphorylate mannose nor was the phosphorylation of fructose inhibited by mannose (Sprenger & Lengeler, 1988), whereas the \(Z. mobilis\) fructokinase is strongly inhibited by glucose (Zembrzuski et al., 1992). In this respect, the \(S. mutans\) fructokinase encoded by the \(scrK\) gene appears to be distinct from both the \(Z. mobilis\) fructokinase (Frk) and the \(scrK\) gene products from \(K. pneumoniae\), \(E. coli\) pUR400 and \(V. alginolyticus\). Comparisons of the amino acid sequence of these fructokinase proteins revealed that the ScrK protein from \(S. mutans\) was most similar (58%) to the Frk protein from \(Z. mobilis\). Moreover, the N-terminal amino acid sequence of this ScrK protein exhibited strong similarity to the comparable regions of the purified fructokinases from \(L. lactis\) and \(F. mortiferum\). These results tentatively suggest that the \(S. mutans\) fructokinase together with the fructokinases from \(L. lactis\), \(F. mortiferum\) and \(Z. mobilis\) might form a fourth subfamily in addition to the three sugar kinase subfamilies proposed by Aulkmeyer et al. (1991). However, such a classification will depend on the determination of the complete sequences of the fructokinases from \(L. lactis\) and \(F. mortiferum\). Very recently, nucleotide sequences of the \(sacAB\) genes coding for S6PH and sucrose PTS Enzyme II from \(L. lactis\) Tn5276 have been reported (Rauch & de Vos, 1992). The gene arrangement of this region was quite similar to that of the comparable chromosomal region of \(S. mutans\). It will be of interest to determine whether or not the \(scrK\) gene of this organism is arranged similarly to that of \(S. mutans\). It is also of interest that the gene arrangement of \(scrK\) relative to \(scaA\) and \(scrB\) in \(S. mutans\) is quite distinct from that of comparable genes from \(K. pneumoniae (scrK/YAB)\), \(E. coli\) pUR400 (\(scrK/YAB\)) or \(V. alginolyticus (scrAKB)\) (Wehmeier et al., 1989; Schmid et al., 1988; Blatch et al., 1990).

The \(S. mutans\) \(scrK\) gene is preceded by a typical ribosome-binding (Shine–Dalgarno) sequence and promoter-like sequences were located 164 bp downstream from the putative \(scaA\) transcription terminator sequence. This result, together with expression of the gene in pSRK2, suggests that the \(scrK\) gene might be transcribed independently of \(scaA\) transcription. A 168 bp non-coding region was detected downstream from the \(scrK\) gene. However, no inverted repeat sequences characteristic of transcription terminators could be detected in this region, although several potential candidates for promoter regions were detected. This suggests that the ORF might be co-transcribed with the upstream \(scrK\) gene. Further analysis is necessary to elucidate the transcription start site and size of the \(scrK\) transcript together with determination of the complete sequence of the downstream ORF. These approaches are currently in progress in our laboratories.

Introduction of the inactivated \(scrK\) gene back into \(S. mutans\) severely decreased fructokinase activities. However, the \(scrK\) mutant of \(S. mutans\), LSWMS2, gave the same \(Y_w\) as parental strain GS-5IS3. This suggested that the fructose moiety of sucrose could be phosphorylated in LSWMS2 by another enzyme(s) exhibiting fructokinase activity or by the fructose PTS following hydrolysis of sucrose with a variety of extracellular enzymes of this organism (e.g. glucosyltransferases, fructosyltransferase and fructanase). The latter possibility is unlikely since almost 90% of the sucrose metabolized by \(S. mutans\) strains is transported into the cells (Tanzer et al., 1972). Alternatively, intracellular fructose generated by the sucrose PTS and S6PH could be released back to medium by an unknown mechanism, in order to be phosphorylated by the fructose PTS. A more likely explanation is based on the observation of Thompson et al. (1991) that \(L. lactis\) expresses a second fructokinase II synthesized independently of the fructokinase I linked to the sucrose PTS. Therefore, the presence of a second fructokinase with a weak affinity for fructose in \(S. mutans\) is compatible with the results indicating that extracts of LSWMS2 exhibited low but
significant fructokinase activity when the fructose concentration of assay mixture was raised to 50 mM (Table 1). However, further investigation will be necessary to clarify the pathway of fructose phosphorylation in S. mutans.

We would like to thank Dr F. Yoshimura (Aichi Gakuin University School of Dentistry) for the gift of pPGP1-2. This investigation was supported in part by a Grant-in-Aid for Scientific Research (no. 02670839 to Y. S.) from the Research Fund of the Japanese Ministry of Education, Science and Culture, and by Public Health Service grant DE-03258 (to H. K. K.) from the National Institutes of Health.

References

