The melA gene is essential for melanin biosynthesis in the marine bacterium Shewanella colwelliana

W. CLAIBORNE FUQUA* and RONALD M. WEINER

Department of Microbiology, University of Maryland, College Park, MD 20742, USA and Center of Marine Biotechnology, 600 E. Lombard St, Baltimore, MD 21202, USA

(Received 14 December 1992; accepted 19 January 1993)

The surface-adhering, Gram-negative marine bacterium Shewanella colwelliana synthesizes a red-brown melanin in the late stage of exponential growth in laboratory culture. Previous studies identified a single gene, melA, from S. colwelliana that could impart the ability to produce melanin to an E. coli host. However, these studies did not demonstrate a requirement for melA during melanization in S. colwelliana. In this paper, genetic analyses, using a broad host range conjugation system to generate specific lesions, reveal that melA null mutants fail to synthesize pigment. The wild-type melA gene provided in trans on a low copy number plasmid complemented these null mutations, as well as a spontaneous pigment variant, to wild-type melanin synthesis. Polyclonal antibodies, raised against a MelA-LacZ fusion protein, were used to confirm the presence of the melA gene product in wild-type S. colwelliana and verify its absence in the non-pigmented mutants. In addition, detection of the MelA protein over the course of growth in batch culture revealed a constant steady-state level of MelA protein, suggesting that the timing of melanization and the quantity of melanin synthesized is not controlled at the level of melA expression.

Introduction

Shewanella colwelliana is a periphytic marine bacterium isolated in association with the eastern oyster Crassostrea virginica (Weiner et al., 1985). In laboratory culture S. colwelliana strain D (hereafter referred to as S. colwelliana) synthesizes a brownish-red melanin. Intermediates of melanization in S. colwelliana are thought to have a key role in the chemical signalling that stimulates free-swimming oyster larvae to colonize surfaces in the marine environment (Bonar et al., 1986; Coon et al., 1985; Weiner et al., 1989) and it has been demonstrated that factors that affect the levels of melanin synthesis in S. colwelliana cultures also influence the ability of those cultures to induce oyster settlement in vitro (Fitt et al., 1989). Melanization normally occurs towards the end of exponential growth, but this can be delayed significantly by the presence of 1–2% glucose in the culture medium. Formation of the pigment under either condition is augmented strongly by additional tyrosine.

Melanin is a broadly defined group of dark pigments identified in at least some species of virtually all organisms. Although melanogenesis in animals has been investigated intensively (Hearing & Tsukamoto, 1991), very few bacterial melanization systems have been thoroughly studied and even fewer have been defined at the molecular level. Among this limited group, the genes for tyrosinases from several species of Streptomyces have been cloned, sequenced and shown to encode proteins with identifiable sequence similarity to mammalian tyrosinases (Bernan et al., 1985; Huber et al., 1985). Melanization in Streptomyces spp. appears to be a highly regulated process and may be controlled allosterically by the level of intracellular copper (Lee et al., 1988; Tseng & Chen, 1991), and at the level of gene expression in response to the concentration of copper (Held & Kutzner, 1990), various amino acids (Cramer et al., 1972; Katz & Betancourt, 1988), and ammonia (Held & Kutzner, 1990).

In brown-pigmented strains of Rhizobium leguminosarum biovar phaseoli, melanization is mediated by the melA gene product, and melanin is thought to play a role in nitrogen fixation in nodules (Borthakur et al., 1987). Accordingly, R. leguminosarum bv. phaseoli melA is regulated in response to nitrogen levels not only by the nifA transcriptional regulator (Hawkins & Johnston, 1988) but also by a second gene designated melC (Hawkins et al., 1991). Interestingly, catechol melanin
formation in another nitrogen-fixing bacterium, Azotobacter salinestris (formerly A. chroococcum), is also controlled in response to ammonia concentration, and may be involved in oxygen scavenging during nitrogen fixation (Shivprasad & Page, 1989). The soil bacterium Vibrio tyrosinasticus and a hypertoxic mutant of V. cholerae are reported to synthesize melanin (Ivins & Holmes, 1981; Pomerantz & Murthy, 1974). Although the regulation of melanization in Vibrio spp. is unclear, recent studies have shown that under non-optimal culture conditions wild-type V. cholerae synthesizes melanin, suggesting a stress-responsive control in this bacterium (Coyne & Al-Harthi, 1992). No sequence information is currently available for any of the genes required for melanin synthesis in these bacteria.

A number of bacteria are reported to produce melanin from phenolic degradation products, such as 3,4-dihydroxyphenylacetate, that accumulate during the catabolism of tyrosine (Barnett & Hageman, 1983; Muller, 1985, Trias et al., 1989). Tyrosine degradation generally requires multiple catalytic steps to convert tyrosine to melanin precursors. Some bacteria are known to accumulate homogentisic acid via a complex reaction mechanism involving the transamination of L-tyrosine to p-hydroxyphenyl pyruvate, followed by conversion of this compound to homogentisate (Gottschalk, 1986). Homogentisate can spontaneously oxidize to form melanin, as it does in alkaptonuric humans (Menon et al., 1991). Again, no sequences for the genes involved in catabolic synthesis of melanin in bacteria have been reported.

To begin the study of the biosynthesis of melanin and its precursors, a S. colwelliana gene sufficient for melanin biosynthesis (melA) in E. coli was cloned, sequenced and expressed in E. coli (Fuqua et al., 1991). The melA gene is expressed as a low abundance, monocistronic transcript encoding a predicted protein of 39.5 kDa. The deduced protein sequence shows no significant similarity to tyrosinases, a class of copper-binding enzymes known to mediate melanization in some animals, fungi and bacteria (Lerch, 1981). In addition, spectrophotometric tyrosinase assays with crude lysates of S. colwelliana or E. coli expressing melA do not detect this activity. This and other evidence suggests that melA directs melanization from tyrosine via an alternative mechanism. Although the melA gene alone mediated melanization in E. coli, this does not rule out the possible requirement for an additional heretofore uncharacterized enzyme(s) in E. coli and S. colwelliana, that converts tyrosine to the proper substrate for MelA. The Mel+ phenotype of E. coli harbouring melA demonstrates that the gene can impart the ability to synthesize melanin to a foreign host, but does not elucidate directly its role in S. colwelliana melanization. In the current study, genetic and molecular analyses provide direct and indirect evidence for the integral role of the melA gene in S. colwelliana melanization. Insights into the relationship between melA expression and the timing of melanin synthesis in culture, as well as the influence of glucose and tyrosine are also presented.

Methods

Strains and plasmids. Strains of E. coli, S. colwelliana, and plasmids are listed in Table 1.

Media and general microbiology. E. coli strains were grown in Luria–Bertani (LB) media or M9 minimal medium under standard conditions. S. colwelliana strains were grown in Marine Broth (MB) 2216 (Difco) at 25 °C with vigorous aeration. Standard antibiotic concentrations were used for E. coli (Sambrook et al., 1989), while for S. colwelliana the concentrations were: chloramphenicol (Cm), 2.5 μg ml⁻¹; rifampicin (Rif), 150 μg ml⁻¹; and tetracycline (Tc), 100 μg ml⁻¹. Melanin production was assayed on either LB or MB 2216 media supplemented with 5 mg l-tyrosine ml⁻¹.

Conjugal mating between E. coli/rspir derivatives and S. colwelliana recipient strains was performed by a patch-mating protocol. Equal swabs of donor and recipient strains were thoroughly mixed on the surface of a MB 2216 agar plate (conjugation was blocked on LB agar) to form a 1 cm patch in the centre of the plate, and mating was allowed to proceed for 24 h at 25 °C. The mating patches were washed twice in 1 ml of MB 2216, resuspended in a final volume of 1 ml, and serial dilutions were incubated on the appropriate selective media at 25 °C for 3–4 d. Negative controls with identically prepared cultures of donors or recipients alone were included.

DNA manipulations. Transformation, DNA isolation, restriction enzyme digestion and modification of DNA were performed essentially as described by Sambrook et al. (1989). Double-stranded DNA was sequenced with Sequenase Version 2 and [α-35S]dATP (Amersham) as prescribed by United States Biochemicals. DNA probes for hybridizations were generated using the polymerase chain reaction (PCR, Gelfand et al., 1990) and pairs of synthetic oligonucleotides (synthesized on a Milligen 7500 DNA synthesizer). The oligonucleotides used for PCR were 5'-TGCCAGATGTCATTTCTG-3' and 5'-GAAGAAGTTGTGGATAGTTCA-3' to amplify a 700 bp probe for the 3' end of melA (GenBank accession no. M59289). Universal and Reverse Primer for amplification of the 600 bp insert in an EcoRI deletion construct of pCAT19 (Fuqua, 1992), and 5'-ATCCGCCTCCCATCCAGTCT-3' and 5'-TGAAGATGCTTGGATTGAC-3' to generate a 535 bp β-lactamase probe from pBR325 (Bolivar, 1978).

Southern blot analyses. An alkaline, capillary blotting protocol (Reed & Mann, 1985) was used to transfer DNA separated on 8% agarose gels to Zetaprobe activated nylon membranes (Bio-Rad). Membranes were air-dried prior to rehydration in 6 × SSPE (1 × SSPE is 150 mM NaCl, 10 mM NaHPO₄, 10 mM EDTA, pH 7.4) and prehybridization in a solution of 6 × SSPE, 0.1% SDS, 0.5% skim milk and 100 μg denatured salmon sperm DNA ml⁻¹ (SSD) at 65 °C for at least 1 h. Following this incubation, the prehybridization solution was poured off and a denatured, digoxigenin-labelled DNA probe (Genius Random Primer Labelling system, Boehringer-Mannheim) in 8 ml 6 × SSPE, 100 μg SSD ml⁻¹ was added to the membrane, prior to incubation at 65 °C for 12 h. The membrane was subsequently washed twice in 2 × SSPE, 0.01% SSD at 65 °C for 5 min followed by two washings in 0.2 × SSPE, 0.01% SSD at 65 °C for 5 min. The chemiluminescent development reaction was performed as prescribed.
Table 1. Strains and plasmids used and generated in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Characteristics</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli AB705</td>
<td>lacZ deletion strain</td>
<td>Luria et al. (1960)</td>
</tr>
<tr>
<td>JM101</td>
<td>λ-Complementation strain</td>
<td>Messing (1979)</td>
</tr>
<tr>
<td>SY327/λpir</td>
<td>Host for pGP704-derivative cloning and maintenance, λpir recA56</td>
<td>Miller & Mekalanos (1988)</td>
</tr>
<tr>
<td>SM10/λpir</td>
<td>Conjugal strain for pGP704 transfer, λpir recA::RP4-2-Te::Mu</td>
<td>This work</td>
</tr>
</tbody>
</table>

Shewanella colwelliana

- D: Diffusible melanin
- DR5: RifR derivative of D
- PIM1: Spontaneous MelD mutant
- PIM1R: RifR derivative of PIM1
- C72: CmR melA::CAT19
- C75: CmR melA::CAT19 marker replacement

Plasmid

- pUC19: Cloning vector
- pBR325: Cloning vector
- pLKC480-482: KmR ApR lacZ fusion cassette series
- pRK290: TeR, broad host range IncP
- pGP704: ApR, R6K origin, mobilizable cloning vector
- pCAT19: ApR, CmR, vector carrying CAT19 cassette
- pMC3A: ApR Mel+ melA in pUC19
- pMC6A: ApR Mel+ melA in pUC19
- pMAC3: ApR, KmR, Lac+
- pGB3A7: ApR CmR Mel- (melA::CAT19)
- pRCAM2: TeR CmR
- pRKmel: TeR CmR Mel+ melA in pRK290

by Boehringer-Mannheim using anti-digoxigenin Fab-alkaline phosphatase conjugate and Lumi-Phos substrate; the filters were autoradiographed. Hybridization conditions for colony blots were identical to those used for Southern blots although probes were random-primer labelled with [α-32P]dCTP (Amersham) and washed filters were autoradiographed directly.

Generation of MelA-specific antiserum. Antiserum was raised to an affinity-purified MelA-LacZ fusion protein encoded by plasmid pMAC3 as follows. A 1 litre culture of E. coli AB705 harbouring pMAC3 was grown for 16 h at 37 °C. Cells were harvested by centrifugation at 16000 g (10 min, 4 °C), washed in 50 ml 1 x TE (10 mM-Tris/NaCl pH 7.4, 1 mM-EDTA), centrifuged again, and resuspended in 3 ml 0.1 M-NaHCO3/NaCO3. The purity of this preparation was verified using SDS-PAGE (Laemmli, 1970) and silver staining (data not shown). Three Balb/C mice were injected intraperitoneally with 110 μg of the affinity-purified MelA-LacZ preparation resuspended in Ribi incomplete Freund’s adjuvant. The mice were boosted at day 21 with another 110 μg dosage of the MelA-LacZ preparation, followed by a final immunization with 20 μg on day 28. On day 32 the mice were sacrificed and serum was collected. Western blots were immunostained with horseradish-peroxidase-conjugated goat anti-mouse secondary antibodies (Pierce) and 4-chloro-1-naphthol.

Antibodies reactive to β-galactosidase and other E. coli determinants were absorbed from the preparation by extensive incubation with cut squares of nitrocellulose previously treated with E. coli β-galactosidase (Sigma) and crude lysates of E. coli AB705(pUC19) in 0.1 M-sodium phosphate buffer, pH 8.0.

Results and Discussion

Melanization of S. colwelliana strains and E. coli carrying melA

When S. colwelliana is cultured on MB 2216 agar supplemented with tyrosine, it produces the red-brown pigment melanin (Fig. 1, plate 1). Likewise, E. coli derivatives expressing the S. colwelliana melA gene (Fuqua et al., 1991) synthesize the same pigment on LB agar supplemented with tyrosine (Fig. 1, plate 3), while wild-type E. coli does not (Fig. 1, plate 4). Significantly less pigment is synthesized on these enriched media without additional tyrosine. A defined medium for growth of S. colwelliana has yet to be developed, but E. coli strains carrying melA produce melanin on M9 minimal medium only when supplemented with tyrosine. The melanin produced by S. colwelliana and E. coli harbouring melA has been shown to conform to a number of the simple chemical criteria used to characterize melanins (Aurstad & Dahle, 1972; Fuqua et al., 1991; Weiner et al., 1985). Previous attempts to mutate S. colwelliana with ethylmethane sulphonate (EMS) and the acridine dye ICR 191 resulted in a number of pigment variants, all of which proved to be highly unstable (Weiner et al., 1985). However, a mutant isolated from stock laboratory cultures, designated PIM1, produced an intermediate level of melanization (Mel0) compared to S. colwelliana, when grown on tyrosine-supplemented MB 2216 agar (Fig. 1, plate 2). This difference was less pronounced on unsupplemented MB 2216 agar. The PIM1 mutation is highly stable and no significant
reversion to wild-type melanization has been observed in culture.

Null mutants of melA do not synthesize melanin

To generate site-specific melA mutants of S. colwelliana, a chloramphenicol acetyltransferase (CAT) gene cassette was inserted into the melA coding sequence in vitro. The 1 kb CAT19 cassette (Fuqua, 1992) was cleaved with BamHI and inserted in place of a 300 bp BglII fragment in the melA coding region carried on plasmid pMC3A (Fuqua et al., 1991), resulting in a Mel- CmR plasmid. The vector pGP704 is a RP4-mobilizable plasmid, with an R6K origin of replication that requires the product of the pir gene supplied in trans for replication (Miller & Mekalanos, 1988). Derivatives of pGP704 will not replicate in bacteria that do not express the pir gene, and thus can be used to deliver mutagenic gene fragments into strains of interest for marker replacement via homologous recombination. A 2.6 kb BamHI–NheI fragment, containing the CAT19-disrupted melA gene and flanking DNA was inserted into plasmid pGP704 cleaved with BglII and XbaI, to generate the mutagenesis plasmid pGB3A7.

The CAT19-interrupted melA gene on pGB3A7 was transformed into E. coli SM10/Δpir (Miller & Mekalanos, 1988), a strain carrying a chromosomal copy of conjugal transfer (tra) genes required for conjugal transfer of RP4 plasmids. The resulting strain was mated with S. colwelliana DR5, a Rif8 mutant of S. colwelliana, and transconjugants were grown selectively on MB 2216 agar with Rif and Cm. Transconjugants were transferred to MB agar supplemented with Cm and L-tyrosine, and screened for synthesis of melanin. Roughly 2000 transconjugants were screened and of 350 pigment variants obtained, approximately 10% synthesized no visible melanin, while the remaining 90% showed reduced levels of melanin synthesis (Fig. 2a, plates 1–3).

As the integration of pGB3A7 into the chromosomal copy of melA via a single recombination event would generate a functional melA gene, it was necessary to identify bona fide marker replacement mutants. However, S. colwelliana is resistant to β-lactam antibiotics, so that it was impossible to screen for loss of the pGP704 Ap8 resistance marker. Instead, colony hybridizations were performed with gene probes specific for β-lactamases or CAT19, and transconjugants that hybridized with the latter, but not the former, were selected for further analysis. Of the 30 transconjugants screened in this manner, four mutants hybridized as predicted for marker replacements (data not shown) and none of these synthesized visible melanin (Mel8). A number of mutants that hybridized with both the CAT19 and β-lactamase probe synthesized intermediate levels of melanin (Mel+).

Southern blots of genomic DNA from representatives of each class of mutants (Mel+ and Mel8) were probed separately with digoxigenin-labelled probes specific for CAT19 and melA. Genomic DNA from S. colwelliana hybridized strongly with the melA probe as predicted, but did not hybridize with the CAT19 probe (Fig. 2b, c, lanes 1 and 2, respectively). Digests of genomic DNA from a Mel8 mutant hybridized to both the CAT19 probe and the melA probe, but the number and sizes of the hybridized fragments clearly indicated a duplication of the melA gene on the chromosome (Fig. 2b, c, lanes 3 and 4). These results suggest that the Mel8 mutants represent Campbell-type, single-crossover insertions of the pGB3A7 plasmid into the resident melA gene, that may have resulted in altered expression or stability of the melA locus. In contrast, a single 3 kb PstI fragment and a 10 kb HindIII fragment from digests of genomic DNA
from a Mel⁻ Cm⁸ bla mutant, hybridized with the melA probe (Fig. 2b, lanes 5 and 6). The CAT19 probe hybridized to the identical fragments (Fig. 2c, lanes 5 and 6), indicating that the CAT19-disrupted melA gene had effectively replaced the resident chromosomal copy. The Mel¹ and Mel⁻ mutants were designated C72 and C75, respectively. These results confirm that the Mel⁻ mutants are true marker replacements of melA and demonstrate the efficacy of broad host range plasmids for genetic manipulations in S. colwelliana. This is the first evidence that correlates the previously established ability of melA to direct melanization of E. coli with a similar function in S. colwelliana.

The melA gene complements melanin-deficient mutants in trans

Complementation analysis with a wild-type copy of melA was performed to test whether the inability of the S. colwelliana site-specific mutants and the spontaneous mutant PIM1 to synthesize normal levels of melanin was attributable directly to the absence of a functional melA gene. A broad host range plasmid derivative carrying melA was constructed as follows. The CAT19 cassette cleaved with Smal was inserted 202 nt downstream of the melA coding sequence, into the single MscI site in plasmid pMC6A (Fuqua et al., 1991) to generate a
plasmid imparting a Mel\(^+\) Cm\(^+\) phenotype. A 2.6 kb Smal–HindIII fragment carrying melA and CAT19 was excised from this construct and the HindIII site was filled in using the Klenow fragment of DNA polymerase. This blunt-ended fragment was inserted into the broad host range plasmid pRK290 (Ditta et al., 1980) cleaved at its single BglII site, and filled in as above. This mobilizable plasmid, designated pRKmel, imparted the Mel\(^+\) phenotype in E. coli.

Plasmid pRKmel was conjugated from E. coli S17-1/ \(\lambda\) pir into Rif\(^+\) derivatives of S. colwelliana, and the mutants PIM1, C72 and C75. The Te\(^a\) Rif\(^+\) transconjugants were isolated and scored for their ability to synthesize melanin. A CAT19-carrying version of pRK290, designated pRCAM2, (obtained from E. J. Quintero) was used as a negative control. The presence of the appropriate constructs in the transconjugants was verified by plasmid isolation and restriction analysis (data not shown). All of the Te\(^a\) Rif\(^+\) transconjugants, including the spontaneous PIM1 and the engineered Mel\(^-\) and Mel\(^+\) mutants, were complemented to the wild-type Mel\(^+\) phenotype by pRKmel, while the control plasmid pRCAM2 had no effect on the mutant phenotypes (Table 2). The possibility that the altered Mel\(^+\) phenotype in S. colwelliana C72 and C75 was due to polar effects of the inserted CAT19 cassette was excluded as the pRKmel plasmid carries only the melA gene. Thus, the requirement for a functional melA gene during S. colwelliana melanization was verified genetically. Complementation with melA is particularly informative for the PIM1 mutant, the only stable, spontaneous pigmentation variant isolated to date. The genetic analysis and examination of the abundance of the melA gene product in PIM1 (see below) suggest that, as in the site-directed melA mutants, the PIM1 defect in melanization is directly attributable to a partial or complete loss of melA function. While we cannot yet exclude the possibility that other gene products are also required, these genetic analyses demonstrate the essential nature of melA in the process of S. colwelliana melanization.

Table 2. Complementation analysis of melA mutants

<table>
<thead>
<tr>
<th>Strain</th>
<th>Plasmid</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. colwelliana wild-type</td>
<td>pRCAM2, pRKmel</td>
<td>Mel(^+)</td>
</tr>
<tr>
<td>S. colwelliana PIM1</td>
<td>pRCAM2, pRKmel</td>
<td>Mel(^+)</td>
</tr>
<tr>
<td>S. colwelliana C72</td>
<td>pRCAM2, pRKmel</td>
<td>Mel(^+)</td>
</tr>
<tr>
<td>S. colwelliana C75</td>
<td>pRCAM2, pRKmel</td>
<td>Mel(^+)</td>
</tr>
</tbody>
</table>

Detection of the melA gene product in S. colwelliana cultures

Although the melA gene had been shown to be essential for high-level melanization in S. colwelliana, there was still no direct evidence of its expression or the activity of the MelA protein in pigmenting cultures. In fact, Northern blots with oligonucleotide probes specific for melA failed to reveal detectable levels of the melA transcript in S. colwelliana cultures at any stage of growth (Fuqua et al., 1991). Moreover, classical enzyme assays for measuring tyrosinase activity were ineffective in S. colwelliana and E. coli carrying melA. Repeated attempts to purify MelA from cultures of S. colwelliana and E. coli by conventional biochemical methodologies were unsuccessful. In order to circumvent these apparent limitations of detection and obtain a method for monitoring MelA protein levels, polyclonal antibodies were raised against MelA as follows. A protein fusion of MelA and the E. coli LacZ protein was constructed by insertion of the lacZY Km\(^+\) cassette pLKC482 (Tiedeman & Smith, 1988) into a ScaI site (nt 992, GenBank M59289) in the melA coding sequence to construct pMAC3. This construct was Lac\(^+\) Mel\(^+\) Km\(^+\) and encoded a fusion protein of 140 kDa (data not shown). The DNA sequence of the junction of melA and lacZ coding regions verified the predicted reading frame and fusion point in melA. Polyclonal antiserum directed against the MelA–LacZ fusion protein was raised as described in Methods. This antiserum specifically stained the MelA protein and is present in immunostainings with pre-immune serum (data not shown).

The antibody preparation was used to compare extracts of S. colwelliana, the melA marker replacement mutant C75, and the spontaneous melanin variant PIM1. Equal amounts of total protein were separated by SDS-PAGE and transferred to nitrocellulose, prior to immunostaining with the anti-MelA serum. While the 41 kDa protein was stained specifically in lysates of E. coli expressing melA and S. colwelliana (Fig. 3b, lanes 1 and 2), the C75 and PIM1 extracts contained no detectable melA (Fig. 3b, lanes 3 and 4). Thus, the identity of the 41 kDa protein as the melA gene product was again confirmed. These results also demonstrate that the melanization-deficient phenotypes of both
Shewanella colwelliana melA gene

Fig. 3. Detection of the MelA protein in wild-type and mutant S. colwelliana lysates using polyclonal antisera against MelA. (a) Immunostaining of electrotransfers from 12% SDS-PAGE gels loaded with whole cell lysates of E. coli JM101 pUC19 (lane 1), E. coli JM101 pMC3B Mel' (lane 2) and S. colwelliana (lane 3). (b) Similar immunostaining of lysates from E. coli JM101 pMC3B (lane 1), and S. colwelliana wild-type (lane 2), PIM1 (lane 3) and C75 (lane 4). (c) Immunostaining of lysates of E. coli JM101 pMC3B (lane 1) and S. colwelliana from aliquots of a rapidly growing culture 11 h (lane 2), 16 h (lane 3), 20 h (lane 4), 26 h (lane 5), 34.5 h (lane 6), 42 h (lane 7) and 57 h (lane 8) after inoculation. The relative electrophoretic migration of protein size standards are indicated by the arrowheads on the left and the MelA protein is indicated on the right.

S. colwelliana PIM1 and the marker-replacement mutant C75 are due to the absence or reduced levels of MelA. Although the underlying defect resulting in the PIM1 Mel' phenotype is not known, it is clearly manifested in lowered abundance of the melA gene product.

Additionally, recent results with a newly developed enzyme assay utilizing reverse phase HPLC and an electrochemical detection system to analyse the reaction products produced from tyrosine in S. colwelliana crude cell extracts have revealed an observable deficiency for the S. colwelliana melA mutants when compared to the wild-type (S. L. Coon and others, unpublished).

The melA gene product and melanin precursors are present throughout batch culture growth

Similar to many other melanizing bacteria, S. colwelliana cultures begin producing visible levels of melanin in the late stage of growth (Fuqua, 1991; Weiner et al., 1985). Thus, it was hypothesized that the timing of
melanization observed for S. colwelliana reflect an increase in the synthesis of MelA and indicates that the late exponential stage onset of melanization was growth-rate regulated, possibly at the level of melA gene expression. Moreover, the effects noted upon addition of either tyrosine (enhanced melanization) or glucose (delayed melanization), were also postulated to be due to substrate induction and catabolite repression of melA expression, respectively. In the light of this observation, we wished to determine the steady-state levels of the MelA protein in batch culture. The anti-MelA serum was used to guage the relative abundance of the MelA protein in samples from time-course batch-culture growth studies of S. colwelliana, standardized to equal total protein concentration. The antiserum was sensitive to 2-fold changes in MelA concentration over a range of three orders of magnitude. Surprisingly, immunostaining revealed an equal steady-state level of MelA (Fig. 3c, lanes 2–8) at all of the sample times (Fig. 4a). In addition, the presence of 5 mM-tyrosine or 1% glucose had no apparent effect on the steady-state levels of MelA in lysates (data not shown). The constant level of the melA gene product indicates that the late exponential stage onset of melanization observed for S. colwelliana cultures does not reflect an increase in the synthesis of MelA and suggests that the melA gene may be expressed constitutively under the conditions tested.

To determine when melanin precursors begin to accumulate in S. colwelliana cultures, samples from rapidly growing liquid cultures were removed and treated with NaOH to drive polymerization of melanin precursors. In congruence with the results obtained by monitoring MelA protein levels, melanin precursors were evident in the early phase of growth (Fig. 4b, †), even though visible pigment did not form in the culture until much later (Fig. 4b, †). Melanin was not formed in MB 2216 controls or in cultures of the Mel- mutant C75.

Polymerization of melanin is predominantly an oxidative process (Bell & Wheeler, 1986) and a reducing environment can effectively prevent the polymerization of melanin from its unstable precursors. Interestingly, in exponentially growing S. colwelliana cultures the dissolved oxygen concentration was below the level of detection (presumably due to rapid utilization by respiring cells), and a rise in oxygen levels as growth slowed was coincident with the timing of pigmentation (Fig. 4b). Furthermore, S. colwelliana cultures grown in continuous culture with saturating oxygen levels synthesize melanin constitutively (A. Enriquez & R. M. Weiner, unpublished results). However, the pH in S. colwelliana cultures also increases with longer incubation time (Weiner et al., 1985), and this may also affect the timing of pigment formation. Collectively, these results suggest that melanin precursors are present throughout the course of growth in batch culture, albeit maintained in a non-active, perhaps reduced state. Therefore, both the melA gene product and melanin precursors are present throughout growth.

Interestingly, the glucose-supplemented culture remained in exponential phase longer and reached a higher final cell density than the non-supplemented culture (Fig. 4a). This observation may explain the delay in melanization usually observed in the presence of glucose, and again is probably a physico-chemical phenomenon.

Similar effects due to culture conditions have been proposed to occur in Bacillus subtilis, where pigmentation occurs coincidently with sporulation (Barnett & Hageman, 1983) and is believed to be due to a shift to alkaline pH in the culture during sporulation. In S. colwelliana, the observed timing of melanization and the effects of tyrosine and glucose are probably attributable to dynamic changes in culture parameters during growth, including changes in redox potential or pH, over the course of growth. Alternatively, the timing of melanization and the effects of tyrosine and glucose on melanization in S. colwelliana could reflect the regulation of an undefined component of the melanin biosynthesis pathway that is required to drive the process to completion. For the tyrosinases, a second protein, melC,
is required for activity in Streptomyces and when the genes are expressed in E. coli (della-Cioppa et al., 1990). However, if such an additional protein(s) is required for S. colwelliana melanization, it must also be present in E. coli (Fuqua et al., 1991).

The authors acknowledge Darren Sledjeski for assistance in generating the polyclonal antiserum. We also wish to thank Amy Berndson, Barry Goldman and Nick Mantis for helpful discussion and critical evaluation of the manuscript, and David Weisshenker for preliminary results. This study was supported by the Office of Naval Research University Research Research Initiative TeamGrant no. N-00014-86-k-0066, the Center of Marine Biotechnology, Baltimore, MD, and the Maryland Department of Natural Resources.

References

