Multiple domain structure in a chitinase gene (chiC) of *Streptomyces lividans*

TAKESHI FUJII* and KIYOTAKA MIYASHITA

Laboratory of Soil General Microbiology, National Institute of Agro-Environmental Sciences, 3-1-1 Kan-nondai Tsukuba, Ibaraki 305, Japan

(Received 3 August 1992; revised 5 November 1992; accepted 24 November 1992)

One of the chitinases of *Streptomyces lividans*, chitinase C, was encoded by a 2 kb *smal–XhoI* restriction fragment contained in the recombinant plasmid pEMJ7. DNA sequence analysis of this region revealed the presence of two open reading frames (ORF1 and ORF2) which had opposite orientations. Northern analysis showed that only the mRNA complementary to ORF1 was transcribed, and that this transcription was induced by chitin and repressed by glucose. ORF1 showed a codon distribution typical of *Streptomyces*. A sequence identical to that of the N-terminus of mature secreted chitinase C was found from amino acid residue 31 in the deduced amino acid sequence of ORF1 (619 amino acids), implying that ORF1 encodes a pre-protein of chitinase C. The pre-protein of chitinase C consisted of four discrete domains. The 30 amino acid N-terminal sequence, domain 1, was characteristic of a signal peptide. Domain 2 consisted of 105 N-terminal amino acids of mature chitinase C, and was similar to cellulose-binding domains of several cellulases. Domain 3 (94 amino acids) showed homology with type III homology units of fibronectin. Domain 4, a C-terminal 390 amino acid sequence, is probably the catalytic domain of the chitinase, since it exhibited identity with several other chitinolytic enzymes.

Introduction

Chitin (poly-β-1,4-N-acetyl-glucosamine) exists abundantly in nature as a major structural component of the cell walls of fungi, arthropod exoskeletons, and crustacean shells. Many organisms, from bacteria to higher plants, are reported to produce chitinases (EC 3.2.1.14) which hydrolyse chitin to chitodextrins. These organisms usually possess several chitinase genes, whose expression is induced by extracellular chitin or its derivatives (Berger & Reynolds, 1958; Monreal & Reese, 1969; Watanabe *et al.*, 1990a; Legrand *et al.*, 1987; Herget *et al.*, 1990). They secrete multiple chitinases to use chitin as a carbon and/or nitrogen source (in bacteria), or to defend against pathogen attack (in plants), suggesting that these various chitinases work together to hydrolyse chitin. The amino acid sequences of several plant and bacterial chitinases have been reported (Jones *et al.*, 1986; Broglie *et al.*, 1986; Kamei *et al.*, 1989; Harpster & Dunsmuir, 1989; Laflamme & Roxby, 1989; Metraux *et al.*, 1989; Parsons *et al.*, 1989; Payne *et al.*, 1990; Watanabe *et al.*, 1990b; Samac *et al.*, 1990; Zhu & Lamb, 1991; Watanabe *et al.*, 1992; Kuranda & Robbins, 1991), but these sequences are not always homologous. This suggests that chitinase genes have spread through various organisms in the process of evolution and have formed several gene families.

Streptomyces spp. are typical soil inhabitants, and produce various carbohydrases, including chitinases. *Streptomyces lividans*, for example, secretes at least four chitinases (Miyashita *et al.*, 1991). The production of these enzymes is induced by chitin, and repressed by glucose. The regulation of chitinase genes in bacteria is still unclear. The mechanism of catabolite repression in *Streptomyces* seems to be quite different from the cAMP-dependent system in *Escherichia coli* (Pastan & Adhya, 1976). Neither the function of the multiple chitinase system in the degradation and utilization of chitin, nor the evolution of these chitinase genes, is well understood.

Our group is interested in the chitinase systems of *Streptomyces*. We have isolated strains of *Streptomyces* with relatively high chitin-degrading activities from soil (Ueno *et al.*, 1990); and to analyse the multiple chitinase system and its genetic control, we have cloned three
chitinase genes from *S. lividans* by self-cloning (Miyashita et al., 1991). These cloned genes did not hybridize with each other, and were subject to both chitin induction and glucose repression. One of the clones, containing pEMJ7, secreted much chitinase C when grown on a chitin medium. In this report, we describe the structure and expression of the gene which encodes a pre-protein of chitinase C, and discuss the multiple domain structure of the enzyme.

Methods

Bacterial strains, plasmids and media. *Streptomyces* *lividans* 66 (strains TK24 and TK64) and *Streptomyces* plasmid pIJ486 were kindly supplied by Dr D. A. Hopwood (John Innes Institute, Norwich, UK). Plasmid pEMJ7, a derivative of vector pIJ486, contains a 4.5 kb fragment carrying *chic*C of *S. lividans*. Plasmids pEMJ701, 702, 703, 704, 705, 706, 707 and 708 are derivatives of pEMJ7 containing various restriction fragments of the insert DNA of pEMJ7. Plasmid pUC18 and phages M13mp18 and M13mp19 were used for cloning in *E. coli* JM109 (Yanisch-Perron et al., 1985). Restriction fragments derived from the insert DNA of pEMJ7 (701 to 717 in Fig. 1) were subcloned into the multiple cloning sites of pUC18, and then recloned into M13mp18 (pEMM701, 702, 703, 706, 709, 710, 711, 712, 714, 715, 716 and 717) or M13mp19 (pEMM704R, 705R, 706R, 707R, 708R, 709R, 711R, 712R, 713R, 714R, 715R and 717R) (Fig. 1). The recombinant phage DNA generated was subjected to dideoxynucleotide sequencing. *S. lividans* containing recombinant plasmids was grown at 30 °C with shaking in Luria broth (LB) medium containing thiostrepton (50 μg ml⁻¹) to prepare plasmids. For extraction of RNA, *S. lividans* containing pEMJ7 was grown at 30 °C with shaking in inorganic salts medium (Miyashita et al., 1991) containing colloidal chitin (0.15 mg ml⁻¹), thiostrepton (50 μg ml⁻¹) and yeast extract (1.5 mg ml⁻¹) with or without glucose (15 mg ml⁻¹). Thiostrepton was a generous gift from S. J. Lucania (E. R. Squibb & Sons). YEME and R2YE medium were used for protoplast formation and transformation of *Streptomyces*, respectively (Hopwood et al., 1985).

Recombinant DNA techniques. Preparation of plasmid, double-stranded and single-stranded M13 DNA, restriction enzyme digestion, recovery of DNA fragments from agarose gels, transformation of *E. coli*, and selection of transformed colonies of *E. coli* and transformed plaques of M13 clones were done according to Sambrook et al. (1989). Prototplasting, transformation, selection of transformants of *S. lividans*, and preparation of plasmid DNA from *S. lividans* were done according to Hopwood et al. (1985). T4 DNA ligase (ligation kit, Takara Shuzo, Tokyo, Japan), alkaline phosphatase (Toyobo, Osaka, Japan) and T4 DNA polymerase (blunting kit, Takara Shuzo) were used according to the manufacturers' instructions.

Northern hybridization. A 50 ml culture of *S. lividans* containing pEMJ7 was grown at 30 °C in inorganic salts colloidal chitin medium with or without 1.5% (w/v) glucose for 2 d. Total RNA was extracted from the cells as described by Hopwood et al. (1985). As a control, RNA was also extracted from cells grown in inorganic salts medium without chitin and glucose. The resulting RNA fractions (30 μg) were applied to a 14 x 15 cm² 1.2% (w/v) agarose gel containing formaldehyde (2.2 M). After electrophoresis, RNA bands were transferred onto a nylon membrane (Hybond N⁺, Amersham) following the method of Sambrook et al. (1989). As a molecular mass marker, a 0.24–9.5 kb RNA ladder (BRL) was used. A single-stranded end-labelled probe of each fragment was synthesized by the method of Ausubel et al. (1989) with the following modifications. To prepare templates for primer extension reaction, a *PstI* restriction fragment (460 bp), which was located into the centre of the *SmaI-XhoI* fragment.

Fig. 1. Restriction map and various subcloned DNA fragments of the insert fragment of pEMJ7. The solid horizontal lines below the restriction map indicate the fragments used in this study to localize the gene and/or for sequencing analysis. The bold line indicates the smallest restriction fragment containing the promoter sequence and the structure gene for chitinase C, as indicated by deletion analysis. Production of chitinases C and D was evaluated by SDS-PAGE of the culture supernatant of each subclone. ND, Not done.
of the insert DNA of pEMJ7, was cloned into the SmaI site of pUC18 to construct pEMU712. The BamHI–EcoRI restriction fragment of pEMU712 was subcloned into M13mp18 and M13mp19 to generate pEMM712 and pEMM712R, respectively. Single-stranded template DNAs were prepared from these M13 subclones. M13–M4 primer (0.1 μg, Takara Shuzo) was end-labelled in the presence of 200 μCi (7.4 MBq) [α-32P]dATP. After annealing of labelled primer to the single-stranded DNAs, the strands were extended with Sequenase Version 2 (United States Biochemicals), following the manufacturer’s instructions. The resulting double-stranded DNAs were cut by HindIII or EcoRI. Labelled single-stranded probes were isolated from 1:2 w/v low-melting-temperature agarose gel after alkaline agarose gel electrophoresis. The resulting single-stranded probes were used to detect transcripts of ORF1 and ORF2 were designated probes 712R and 712, respectively. Northern hybridization and washing of the membrane followed the method supplied by the manufacturer (Amersham).

DNA sequencing. Single-stranded DNAs were extracted from various recombinant M13 clones and sequenced using the 7-deaza DNA sequencing kit (Sequenase Version 2, United States Biochemicals), following the method supplied by the manufacturer. [α-32P]dCTP (Amersham) was used for labelling. The sequences were determined at least once for each strand.

N-terminal amino acid sequence analysis. Chitinases were partially purified by Mono-Q ion-exchange column chromatography of crude enzyme obtained from supernatant from a 5-d-old culture (500 ml) as described previously (Miyashita et al., 1991). The peak fractions of chitinase C and D were frozen, lyophilized, and subjected to SDS-PAGE (Laemmli, 1970). The gel was stained with Coomassie Brilliant Blue R250, and the protein bands were electrophoretically blotted onto polyvinylidene difluoride transfer membrane (Immobilon-P, Millipore). The bands corresponding to chitinase C and D were cut from the membrane and subjected to N-terminal amino acid sequence analysis using an automated protein sequencer (model 477A, Applied Biosystems).

S1 mapping. Synthesis of a single-stranded end-labelled probe for S1 mapping was performed as described under Northern hybridization, with the following modifications. To prepare templates for the primer extension reaction, the BglI restriction fragment (900 bp), which contained the translation initiation site and promoter sequence of chic, was cloned into the SmaI site of pUC18 to construct pEMU709. The BamHI–EcoRI restriction fragment containing the insert DNA of pEMU709 was subcloned into M13mp18 to construct pEMM709, and single-stranded DNA was prepared. The orientation of the BglI restriction fragment was confirmed by sequencing. A primer (5'TCGCGAGGCCGACCAGA3'), complementary to the sequence located 80 bp downstream from the putative translation initiation site, was synthesized and end-labelled with 200 μCi (74 MBq) of [α-32P]dCTP. After annealing to the single-stranded DNA, the strand was extended by Sequenase Version 2. The resulting double-stranded DNA was digested with Nael, which cut 200 bp upstream of the putative translation initiation site, and a labelled single-stranded probe was isolated from 1.2% low-melting-temperature agarose gel after alkaline gel electrophoresis. Total RNA was extracted from cultures of *S. lividans* containing plasmid pEMJ7 on inorganic salts colloidal chitin medium with or without 15 mg glucose ml−1. The labelled single-stranded probe (equal to 6–25 × 104 Cerenkov counts) and 50 μg of the resulting total RNA fractions were annealed, and non-hybridized strands were digested by 100 U or 300 U of S1 nuclease (Takara Shuzo) by the method of Ausubel et al. (1987). After treatment with S1 nuclease, the radioactive DNA was subjected to denaturing PAGE (using a 4%, w/v, polyacrylamide gel) with 7-deaza DNA sequencing reaction mixtures of pEMU709 prepared using the same synthesized primer, as a control sequence ladder.

Enzyme assay. Chitinase was assayed as described previously (Miyashita et al., 1991), using the fluorogenic substrate 4-methylumbelliferyl N,N',N"-triacetyl chitotriose [4-MU-(GlcNAc)₃] (Sigma). For evaluation of the chitinase activity in the supernatant of recombinants, supernatant from an 8–12 d culture was used as the
source of enzyme. One unit of chitinase activity was defined as the amount of enzyme that liberated 1 μmol 4-MU from the substrate in 1 min at 37°C.

SDS-PAGE. SDS-PAGE gels (12%, w/v) were purchased from Funakoshi Chemicals, and electrophoresis was done according to the manufacturer’s instructions. After electrophoresis, gels were stained with Coomassie Brilliant Blue G or R. To estimate the protein molecular masses, a marker protein kit (MW-SDS-70; Sigma) was used. A 1:5 ml portion of each supernatant from 8–12 d cultures of S. lividans TK24 containing recombinant plasmid was lyophilized. The residue was dissolved in 50 μl of the sample buffer and subjected to SDS-PAGE.

Results and Discussion

Subcloning of chitinase gene in S. lividans

The supernatant of S. lividans 66 TK24 containing pEMJ7 had 10-fold greater chitinase activity than that of the parent strain S. lividans TK24. When total extracellular protein from the transformants with pEMJ7 was subjected to SDS-PAGE, significant bands identical to those of chitinase C and D were observed (Miyashita et al., 1991). To determine the coding region for these enzymes, various restriction fragments of the insert of pEMJ7 were generated and ligated into the Streptomyces high-copy-number plasmid pIJ486. The transformants containing recombinants of pIJ486 were assayed for increased chitinase production by measuring the activity in the culture supernatant and by SDS-PAGE analysis of extracellular protein (Fig. 2). In recombinants of S. lividans containing pEMJ702, pEMJ703, pEMJ704 and pEMJ705, there was a significant increase in chitinase activity in the culture, and protein bands corresponding to chitinases C and D were observed. No subclones produced either chitinase C or chitinase D alone. These results implied that the coding region for chitinases C and D was on the SmaI–XhoI fragment (about 2 kb).

Analysis of transcriptional products encoded by the fragment

If chitinases C (64 kDa) and D (41 kDa) were encoded by different genes, the SmaI–XhoI fragment appeared too small to accommodate both genes. However, chitinase C and chitinase D could have been derived from different, overlapping ORFs on the same strand, or been encoded on opposite strands. To analyse mRNA transcribed from this region by Northern hybridization, we prepared single-stranded probes for each strand. Total RNA fractions were prepared from S. lividans containing pEMJ7, grown in the presence of chitin, chitin plus glucose, or without chitin as a control. When the single-stranded probe 712R, prepared from pEMM712R, was used, a single band was detected in RNA isolated from cells grown in the presence of chitin (Fig. 3, lane B). The probe did not hybridize to RNA isolated from cells grown in the presence of glucose plus chitin, or in the absence of chitin (Fig. 3, lanes A and C). This showed that chitinase production was induced by chitin and repressed by glucose at the stage of transcription. In contrast, probe 712, which was complementary to probe 712R, did not bind to RNA extracted from cells grown under the above conditions (Fig. 3, lanes D, E and F). The RNA molecule (1.8 kb) that hybridized with probe 712R (Fig. 3, lane B) was too small to encode two distinct chitinases of 65 and 41 kDa, suggesting that both chitinases C and D were translated from a single mRNA transcribed from a strand homologous to the 712R probe. It was therefore likely that chitinase D was a proteolytic derivative of chitinase C. This was supported by the similarity between the enzymic properties (K_m; pH optimum; degradation products of colloidal chitin; substrate specificity) of chitinases C and D (Miyashita et al., 1991).
Fig. 4. Nucleotide sequence and deduced amino acid sequence of the chic gene of S. lividans. Deduced amino acids are specified in single-letter code under the second nucleotide of each codon. Nucleotides and amino acids are numbered beginning at the start of the coding sequence. The Shine–Dalgarno sequence (SD) is double-underlined. The apparent transcription initiation sites determined by S1 mapping are indicated by asterisks. The –10 and –35 regions of a possible promoter sequence are underlined. The bold arrows indicate the twelve-nucleotide direct repeats in the promoter region. Nine amino acids which corresponded to the N-terminus of mature chitinase C are boxed. The regions of each domain are indicated by thin arrows under the amino acid sequence.

Sequencing

The DNA sequence of the coding region for chitinases C and D was determined by the dideoxy-termination method using single-stranded DNA prepared from various M13 subclones (Fig. 4). Two ORFs (ORF1 and ORF2), which were transcribed in opposite directions, were observed. The following data indicated that ORF1 encoded a precursor of chitinase C: ORF1 was complementary to mRNA detected in Northern hybridization; the size of ORF1 (1857 nucleotides) was similar to that of the mRNA species (1900 nucleotides) which hybridized to probe 712R (Fig. 4); and in the deduced amino acid sequence, ORF1 encoded a 619 amino acid polypeptide with a molecular mass of 65198 Da, which agreed with that of chitinase C as estimated by SDS-PAGE (Miyashita et al., 1991). Moreover, ORF1 had a codon distribution typical of Streptomyces; the base composition of ORF1 was 68.8 mol% G+C, with more than 90% G or C at the third position of each codon.
T. Fujii and K. Miyashita

Fig. 5. Analysis of transcription initiation sites of chic from S. lividans. A 5' terminus of the chitin-induced transcripts was identified by S1 mapping. RNA was isolated from the cells grown on chitin (lanes 1 and 3) or chitin plus glucose (lane 2). Non-hybridized strands were digested by 100 U (lanes 2 and 3) or 300 U (lane 1) of S1 nuclease. Letters above the lanes indicate the four separate dideoxynucleotide sequence reactions. Asterisks indicate the nucleotides at the transcription start sites.

(Bibb et al., 1984). To confirm that ORF1 actually encoded both mature chitinases C and D, we determined the N-terminal amino acid sequence of chitinases C and D secreted from S. lividans TK64 containing pEMJ7 grown in inorganic salts colloidal chitin medium. The N-terminal amino acid sequence of mature chitinase C (Ala-Thr-Ser-Ala-Thr-Ala-Thr-Phe-Ala) was identical to that beginning at Ala 31 of the deduced amino acid sequence of ORF1 (Fig. 4). The N-terminal amino acid sequence of chitinase D could not be determined.

A putative ribosome-binding site complementary to the 3' end of the 16S subunit of rRNA of S. lividans, AAGGAGG (Bibb et al., 1982), was located 5 bp upstream of the presumptive start codon of ORF1. The 30-amino-acid sequence from the ATG codon (Met) to Ala-30 exhibited characteristics typical of a signal sequence for peptide secretion (Perlman & Halvorson, 1983), i.e. a positively-charged hydrophilic N-terminus containing Arg-His-Lys residues followed by a long hydrophobic amino acid core sequence, and a serine residue located 5 amino acids upstream of the N-terminus of mature chitinase C, allowing a turn in the polypeptide which presumably exposes the cleavage site Ala-Gln-Ala to the signal peptidase. From these results, we concluded that ORF1 encoded a pre-protein of chitinase C (chiC).

Promoter region of the chic gene

The transcription initiation site of chic was determined by S1 mapping using a single-stranded DNA probe. Three major hybrids were located (Fig. 5), indicating that the chic transcription start sites were at positions -56, -57 and -58, with respect to the putative initiation ATG codon (Fig. 4). The probe did not hybridize to RNA extracted from cells grown on chitin plus glucose, indicating that the expression of chic was repressed by glucose. Sequences similar to the most common bacterial promoter consensus sequence were observed around -10 (TATTCT) and -35 (TTGACC) with respect to the apparent transcription initiation site. Two identical 12 bp direct repeat sequences (TGGTCCAGACCT) were present in the promoter region of chic overlapping the putative -35 sequence (TTGACC). Delic et al. (1992) found similar direct repeats in the promoter region of chitinase genes (chi63 and chi35) of S. plicatus, and suggested that these sequences were involved in the regulation of the expression of these chitinase genes. Similar direct repeat sequences were also observed in the promoter region of chiA of S. lividans (unpublished data).

The structure of chitinase C

Homology analysis of the deduced amino acid sequence of chitinase C precursor protein revealed that the enzyme
Domain 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Protein</th>
<th>Organism</th>
<th>Homology (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpCh13</td>
<td>Chitinase 63</td>
<td>Cellulomonas fimi</td>
<td>96.7</td>
<td>Robbins et al. (1988)</td>
</tr>
<tr>
<td>CcCenA</td>
<td>Endogucanase A</td>
<td>Cellulomonas fimi</td>
<td>40.0</td>
<td>Wong et al. (1986)</td>
</tr>
</tbody>
</table>

Domain 2

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Protein</th>
<th>Organism</th>
<th>Homology (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeCh1A-B1</td>
<td>Chitinase A1</td>
<td>Bacillus circulans</td>
<td>50.0</td>
<td>Watanabe et al. (1990b)</td>
</tr>
<tr>
<td>CcCenA</td>
<td>Endogucanase A</td>
<td>Cellulomonas fimi</td>
<td>48.9</td>
<td>Watanabe et al. (1990)</td>
</tr>
<tr>
<td>PfCenA</td>
<td>Endogucanase B</td>
<td>Cellulomonas fimi</td>
<td>48.6</td>
<td>Watanabe et al. (1992)</td>
</tr>
<tr>
<td>PfCenB</td>
<td>Endogucanase B</td>
<td>Cellulomonas fimi</td>
<td>48.9</td>
<td>Watanabe et al. (1990)</td>
</tr>
<tr>
<td>B2</td>
<td>Endoxylanase</td>
<td>Cellulomonas fimi</td>
<td>36.2</td>
<td>Hall & Gilbert (1988)</td>
</tr>
</tbody>
</table>

Domain 3

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Protein</th>
<th>Organism</th>
<th>Homology (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeCh1A-R2</td>
<td>Chitinase A1</td>
<td>Alkaliphillic eubacterium</td>
<td>51.1</td>
<td>Berger et al. (1989)</td>
</tr>
<tr>
<td>CcCenA</td>
<td>Endogucanase A</td>
<td>Cellulomonas fimi</td>
<td>48.9</td>
<td>Hall & Gilbert (1988)</td>
</tr>
<tr>
<td>PfCenA</td>
<td>Endogucanase B</td>
<td>Cellulomonas fimi</td>
<td>36.2</td>
<td>Hall & Gilbert (1988)</td>
</tr>
</tbody>
</table>

Domain 4

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Protein</th>
<th>Organism</th>
<th>Homology (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeCh1A</td>
<td>Chitinase A1</td>
<td>Alkaliphillic eubacterium</td>
<td>38.2</td>
<td>Watanabe et al. (1990b)</td>
</tr>
<tr>
<td>SmaChia</td>
<td>Chitinase</td>
<td>Serratia marcescens</td>
<td>31.8</td>
<td>Jones et al. (1986)</td>
</tr>
<tr>
<td>SmaChib</td>
<td>Chitinase</td>
<td>Serratia marcescens</td>
<td>24.9</td>
<td>Harpster & Dunsirn (1989)</td>
</tr>
<tr>
<td>KlaKi</td>
<td>Killer toxin</td>
<td>Kluyveromyces lactis</td>
<td>21.0</td>
<td>Stark et al. (1984)</td>
</tr>
</tbody>
</table>
had a multiple domain structure consisting of four discrete domains (Fig. 6).

Domain 1, consisting of the 30 N-terminal amino acids of the chitinase C pre-protein, showed 96% and 40% similarity to the signal sequence of chitinase-63 of Streptomyces plicatus (Robbins et al., 1988) and endoglucanase A of Cellulomonas fimii (Wong et al., 1986), respectively. The signal sequence processing sites of chitinase C and chitinase-63 were identical, both being between Ala-30 and Ala-31, while that of endoglucanase A was between Ala-31 and Ala-32. The three-amino-acid sequence Ala-Gln-Ala preceding the cleavage sites was conserved in these three proteins, which is consistent with the proposed signal peptidase recognition sequence Ala-X- Ala| (Perlman & Halvorson, 1983).

The 105 N-terminal residues of the mature secreted form of chitinase C (domain 2) were similar to cellulose-binding domains located in several cellulases and xylanases. The cellulose-binding domain was first identified in endo- and exoglucanases of Cellulomonas fimii (Gilkes et al., 1988), and has since been found in several plant cell wall hydrolases (Gilbert et al., 1990; Meinke et al., 1991a). The ten amino acids which are conserved in the cellulose-binding domains of cellulases and xylanases were also present in domain 2 of chitinase C. A region from amino acids 98 to 120 of chitinase C showed particularly high similarity to cellulase and xylanase cellulose-binding domains. This is the first report of a bacterial chitinase whose sequence exhibits homology with cellulose-binding domains of β-1,4-glycanases. However, the role of domain 2 in chitin degradation activity remains unclear. Deletion experiments should clarify the function of this domain.

The sequence of 94 amino acids from amino acids 136 to 229 (domain 3) showed < 50% similarity to the fibronectin-type-III-like sequences of bacteria. Watanabe et al. (1990b) found that two tandem repeats of 95 amino acids in chitinase A1 from B. circulans are closely related to the original form of type III repeating units of fibronectin. Fibronectin-type-III-like sequences have also been found in endoglucanase B from C. fimii as three random repeats (Meinke et al., 1991b). Homology analysis showed that domain 3 of chitinase C was similar not only to these sequences but also to amylase A-180 from an alkaliphilic eubacterium and poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis (Candussio et al., 1990; Saito et al., 1989). Thirteen out of 93 amino acids (140%) were identical in these sequences. It is notable that the fibronectin-type-III-like sequences are widespread in eukaryotic and prokaryotic proteins, especially in bacterial carboxyhdrases. Although the fibronectin-type-III-like sequence was also found in chitinase A from S. lividans (unpublished data), some chitinases lack the sequence, implying that the sequence does not contribute to hydrolytic activity. The function of these sequences and the reasons for their wide distribution are not yet clear.

Domain 4, the longest domain (390 amino acids), at the C-terminus of chitinase C showed similarity to some proteins with chitinolytic activity. In particular, the entire region of domain 4 of chitinase C showed similarity to chitinase A1 from Bacillus circulans and chitinase A from Serratia marcescens. These similarities suggest that the enzymes are closely related. The identical amino acid sequences among these proteins tended to form clusters (Fig. 6), and clusters 2, 3 and 4 have amino acid sequences which have been identified in a wide range of chitinases, including class III chitinase from higher plants, and are thought to play an important role in the activity of chitinases (Watanabe et al., 1992). Therefore, domain 4 was considered to be a catalytic domain of chitinase C.

Thus, chitinase C appears to be composed of four discrete domains. The domains do not overlap: the homologous regions between chitinase C and each protein are restricted to the domains shown in Fig. 6. Only chitinase A1 from B. circulans and endoglucanases A and B from C. fimii showed similarity to chitinase C through two domains. Among the proteins which showed similarities to chitinase C, chitinase A1 of B. circulans and endoglucanase B of C. fimii are noteworthy. These two proteins also have multiple domain structures (Fig. 7). Besides a catalytic domain, which is related to domain 4 of chitinase C, chitinase A1 has two tandem repeats of fibronectin-type-III-like sequences and a chitin-binding domain. Endoglucanase B of C. fimii also consists of four distinct domains: a catalytic domain, Bacillus subtilis End1-like sequences, three tandem repeats of fibronectin-
type-III-like sequences, and the cellulose-binding domain whose sequence is related to domain 2 of chitinase C. Many cellulases have been reported to have one or some of these domains in unique arrangements (Meinke et al., 1991b). Another chitinase of B. circulans, chitinase D, also has one copy of fibronectin-type-III-like sequence and a chitin-binding domain, but they are aligned differently than those in chitinase A1 (Watanabe et al., 1992). Thus, many carbohydrate-degrading enzymes share some common homologous domains, but the arrangements of these domains differ, suggesting that these sequences may have been shuffled during the evolution of these enzymes.

We thank Prof. D. A. Hopwood for his suggestions regarding ORF analysis. This work was supported in part by a Grant-in-Aid (Bio Media Program) from the Ministry of Agriculture, Forestry and Fisheries of Japan (BMP 92-11-2-6).

References

