Comparison of pathways for biodegradation of monomethyl sulphate in Agrobacterium and Hyphomicrobium species

TIMOTHY P. HIGGINS, JASON R. SNAPE and GRAHAM F. WHITE*

Department of Biochemistry, University of Wales College of Cardiff, PO Box 903, Cardiff CF1 1ST, UK

(Received 7 June 1993; revised 26 July 1993; accepted 4 August 1993)

Different mechanisms have been proposed previously for the biodegradation of monomethyl sulphate (MMS) in Agrobacterium sp. and Hyphomicrobium sp. Sulphate liberation from MMS in Agrobacterium sp. M3C was previously shown to be O$_2$-dependent, whereas in several Hyphomicrobium spp. the initiating step has been considered hitherto to be hydrolytic and catalysed by methyl sulphatase. In the present study, Agrobacterium and Hyphomicrobium strains were compared for their ability to oxidize MMS and its potential metabolites in the oxygen electrode. MMS-grown Agrobacterium sp. M3C and Hyphomicrobium sp. MS223 oxidized MMS with consumption of 0.5 mol O$_2$ per mol of substrate, but they were unable to oxidize methanol. By repeatedly challenging MMS-grown Hyphomicrobium with MMS in the electrode chamber, all the O$_2$ in the electrode became exhausted, at which point SO$_4^{2-}$ liberation stopped although excess MMS was available. SO$_4^{2-}$ release resumed immediately when O$_2$ was re-admitted to the electrode chamber. Thus liberation of SO$_4^{2-}$ from MMS in the oxygen electrode was dependent on the continuing availability of O$_2$. Hyphomicrobium sp. MS223 therefore closely resembled Agrobacterium sp. M3C in its obligatory requirement for O$_2$ in MMS degradation. Unlike Agrobacterium sp. M3C, Hyphomicrobium sp. MS223 was able to grow on methanol and methanol-grown cells oxidized methanol (0.5 mol O$_2$ per mol of substrate) but not MMS. Cyclopropanol, an inhibitor of methanol dehydrogenase, abolished oxidation of methanol by methanol-grown Hyphomicrobium sp. MS223 but did not affect oxidation of MMS by MMS-grown cells. Thus Hyphomicrobium sp. MS223 expresses enzymes for oxidation of methanol when needed for growth on this compound, but not when grown on MMS. These results are consistent with the absence of methanol from the pathway for biodegradation of MMS by Hyphomicrobium sp. MS223 and suggest that in at least some Hyphomicrobium spp. an oxidative mechanism initiates biodegradation.

Introduction

Monomethyl sulphate (MMS) enters the environment as a component in fly-ash from coal- and oil-burning power stations (Eatough et al., 1981; Lee et al., 1980) and as a waste byproduct of the use of dimethyl sulphate in industrial methylation processes (Ghisalba et al., 1985a). Dialkyl sulphates are very reactive and transfer the first alkyl group readily to acceptors such as OH and NH functional groups, but the residual monoalkyl sulphates are (relatively) much more stable (Heiner et al., 1962). Studies of the bacterial biodegradation of MMS are thus pertinent to assessing its environmental impact and acceptability, and to the development of methods for industrial waste-treatment which might replace current methods such as incineration (Ghisalba et al., 1985a).

Mechanisms of bacterial biodegradation of MMS are also of particular fundamental interest because this compound lies at the interface between two groups of organic compounds which separately have attracted considerable attention and for which metabolic pathways are quite distinct. On the one hand, MMS is a C$_1$ compound and thus a potential addition to the list of compounds that support growth of methylotrophic organisms (Anthony, 1982; Higgins et al., 1980; Large, 1983). On the other hand it is a sulphate ester, in fact the shortest in the homologous series of linear primary alkyl sulphates, the longer of which are surfactants. Much is now known about the biochemical mechanisms and enzymology of alkyl sulphate biodegradation. Long-chain esters undergo hydrolysis catalysed by alkyl sulphatases in Pseudomonas sp. (Bartholomew et al., 1978; Bateman et al., 1986; Cloves et al., 1980; Dodgson & White, 1983; Dodgson et al., 1982; Matcham et al., 1977a, b; Shaw et al., 1980; White & Russell, 1993) but these enzymes cease to function when the alkyl chain...
length falls below C₅. A coryneform species has been shown recently to produce an alkyl sulphatase restricted to primary esters in the C₃–C₅ chain length range (White & Matts, 1992). The degradation of the shortest secondary alkyl sulphate, propyl 2-sulphate, is initiated by oxidation of a methyl group to lactate 2-sulphate before a specific d-lactate-2-sulphatase removes inorganic sulphate (Crescenzi et al., 1984, 1985).

A methyl sulphatase has been reported to initiate biodegradation of MMS in *Hyphomicrobium* spp. (Ghisalba et al., 1985a, 1986; Ghisalba & Kuenzi, 1983; Schar & Ghisalba, 1985), based on the detection of methanol in culture fluids during growth on the ester and on the ability of *Hyphomicrobiunm* spp. to produce methanol dehydrogenase (Schar et al., 1985). In contrast, the pathway proposed for MMS biodegradation in *Agrobacterium* sp. M3C is initiated by monoxygenase-catalysed conversion of the ester to formaldehyde without formation of methanol. This mechanism was based on results of oxygen electrode studies and on the dependence of SO₄²⁻ release on the availability of O₂. The present study was undertaken to make a closer comparison of the pathways for MMS biodegradation in *Hyphomicrobium* and *Agrobacterium* species.

Methods

Chemicals. Except where otherwise stated, all chemicals were of analytical grade supplied by Merck (BDH) or Sigma. Noble agar was obtained from Difco, and helium from British Oxygen Corporation. MMS was prepared from dimethyl sulphate (Fluka) as described elsewhere (Davies et al., 1990). Elemental composition determined by combustion analysis was carbon, 80.6% (theoretical 79.9%), and hydrogen, 1.99% (2.01%), indicating a purity of 99%. The infra-red spectrum contained strong absorption bands at 1210 cm⁻¹ and 770–810 cm⁻¹ corresponding to vibrational modes in O-S-O bonds of R-O-SO₃⁻ (Lloyd et al., 1961). Spectra lacked absorption bands at 3320 cm⁻¹ (unsubstituted hydroxyl groups) as would be found in methanol. The natural-abundance ¹³C-NMR spectrum (100.6 MHz, Brucker Aspect 2000) of MMS gave a single resonance (58.2 p.p.m.) with no sign of resonance at 50.0 p.p.m. characteristic of methanol. HPLC ion chromatography of the sample (see below) yielded a single major peak, and contamination of the sample by SO₄²⁻ so low as to be indistinguishable from that in the Type I water used to prepare the sample.

Cyclopropanol, as a 4 mM solution in water, was kindly supplied by Dr O. Ghisalba, CIBA Geigy Corporation, Basel, Switzerland. Axenic culture was established by repeated subculturing on minimal-medium agar plates containing MMS as sole source of carbon.

For the present study culture media for both *Agrobacterium* and *Hyphomicrobium* spp. contained, per litre of distilled water: NH₄NO₃, 2.0 g; Na₂HPO₄, 1.4 g; KH₂PO₄, 0.6 g; MgSO₄.7H₂O, 0.2 g; CaCl₂.2H₂O, 0.01 g; FeSO₄.7H₂O, 0.001 g; and 1 ml of trace elements solution (Ghisalba & Kuenzi, 1983). Trace elements solution contained 20 mg each of Na₂MoO₄.2H₂O, Na₂B₄O₇, 10H₂O, ZnSO₄.7H₂O, MnSO₄.H₂O and CuSO₄.5H₂O per litre of distilled water. This basal salts medium (45 ml in 100 ml Erlenmeyer flasks) was autoclaved at 0.1 MPa, 121 °C for 20 min. MMS or methanol (0.33 M) dissolved in 1 M-phosphate buffer pH 7, was filter-sterilized and added aseptically to the basal salts medium to give a final concentration of 33 mM. The additional phosphate buffer (0.1 M final concentration) was necessary to accommodate significant release of H⁺ during utilization of MMS (Ghisalba et al., 1985a; Ghisalba & Kuenzi, 1983) and other short chain sulphate esters (Crescenzi et al., 1985). Cultures were incubated at 30 °C in an orbital shaker (150 r.p.m.) and growth was monitored by culture optical density (OD₅₄₀, LKB-Pharmacia Novaspek H spectrophotometer). Stock cultures were maintained on slopes of the same medium solidified with 1.5% (w/v) Noble agar.

Preparation of cell suspensions. Cells at the end of the exponential phase of growth (OD₅₄₀ in the range of 0.4–0.7) were harvested by centrifugation (9000 g, min. GS3 rotor in a Sorval RC-5B refrigerated centrifuge), washed at least four times and resuspended in phosphate buffer pH 7, usually to one-tenth of the original culture volume.

Analysis of MMS and SO₄²⁻. MMS and SO₄²⁻ were analysed by ion chromatography with suppressed conductivity detection. Samples were individually injected onto an Omnipac PAX-500 column installed in a DX300 series ion chromatography system (Dionex). The column was eluted isocratically at 1 ml min⁻¹ with eluent containing 30 mM-sodium hydroxide (low in carbonate) and 5% (v/v) methanol (HiPerSolv grade) which was initially degassed and stored under helium, to prevent the elevation of carbonate ions from dissolved CO₂ and the production of gas bubbles in the HPLC detector. Peak areas were integrated using a Spectra Physics 4400 integrator and were corrected for any temperature drift during the elution. The correction factor for this particular equipment was 1.7% per °C, and all values were adjusted to correspond to 25 °C. Integrated temperature-corrected peak areas were then converted to molarity of MMS and SO₄²⁻ using separately determined calibration curves.

O₂-uptake measurements. *Agrobacterium* sp. strain M3C grown on MMS or *Hyphomicrobium* sp. strain MS223 grown on MMS or on methanol were harvested at the end of the exponential phase, washed in 0.1 M-phosphate buffer pH 7, and resuspended at 10-fold concentration as described above. Samples of the concentrated cell suspension (0.5 ml) were introduced into a Clark-type oxygen electrode (Rank Brothers) containing 2.7 ml 0.1 M-phosphate buffer equilibrated with air at 30 °C. The rate of O₂-uptake of the cells was recorded for 5 min to establish a basal rate, before addition of concentrated solutions of MMS or other test compounds (typically 20 µl, 200 nmol). The electrode was calibrated with NADH as described by Robinson & Cooper (1970).

O₂-uptake and liberation of SO₄²⁻. Water used for the preparation of all solutions in these experiments was Type 1 deionized 18 MΩ, 0.22 µm-filtered water. *Agrobacterium* sp. strain M3C and *Hyphomicrobium* sp. strain MS223 were harvested at the end of the exponential phase and washed in 5 mM-phosphate buffer pH 7. Cells were resuspended in one-tenth of the original culture volume, and 1 ml aliquots of the resuspensions were added to 2.7 ml of aerated 5 mM-phosphate buffer in the oxygen electrode. The rate of O₂-uptake was recorded for a period prior to the addition of MMS to establish the...
Biodegradation of monomethyl sulphate

Results

Both Agrobacterium sp. strain M3C and Hyphomicrobium sp. strain MS223 grew substantially (maximum OD₄₁₀ = 1.2) and at about the same rate (doubling time approximately 8 h) on 33 mM-MMS. However, only Hyphomicrobium sp. strain MS223 was capable of growth on methanol (33 mM), with a doubling time of about 6 h and final OD₄₁₀ of 1.5.

Agrobacterium sp. strain M3C grown on MMS (Fig. 1) and Hyphomicrobium sp. strain MS223 also grown on MMS (Fig. 2) each utilized about 1 mol O₂ for every 2 mol MMS added to the oxygen electrode chamber. When potential C₁ intermediates of the metabolic pathway were added to the electrode chamber (viz. methanol, formaldehyde and formate), the rate of oxygen uptake did not change from the basal rate for either isolate. In both organisms, the MMS-stimulated O₂-uptake was not affected by the presence of cyclopropanol (0.4 mM final concentration), a known inhibitor of PQQ (pyrroloquinoline quinone)-dependent methanol dehydrogenase (Dijkstra et al., 1984; Frank et al., 1989; Shimoda & Okura, 1991).

O₂-uptake by methanol-grown Hyphomicrobium sp. strain MS223 showed no deflection from the basal rate when MMS was added to the oxygen electrode chamber (Fig. 3). However, when the growth substrate, methanol, was added to the reaction chamber there was a sharp acceleration of O₂-uptake. The additional utilization of O₂ was equivalent to about 1 mol O₂ utilized for every
2 mol methanol added to the chamber. The methanol-stimulated O₂-uptake was abolished when cyclopropanol (0-4 mM final concentration) was added (Fig. 3).

Fig. 3. O₂-uptake by methanol-grown cells of *Hyphomicrobium* sp. MS223. Substrates (200 nmol aliquots) were added at the indicated points without allowing the entry of O₂ into the electrode chamber. Cyclopropanol was added to give a final concentration of 0.4 mM.

Fig. 4 shows O₂-uptake when serial additions of MMS were made to MMS-grown *Hyphomicrobium* sp. strain MS223. Simultaneously, the oxygen electrode chamber was sampled and analysed for residual MMS and SO₄²⁻ production. After the first addition, MMS was converted almost stoichiometrically to SO₄²⁻, with the expected consumption of 0.5 mol O₂ per mol of ester added. After a second addition (29 min), the oxygen electrode became depleted of O₂ (42 min) and after this point relatively little conversion of MMS to SO₄²⁻ occurred, despite continued presence of MMS from further additions at 51 and 75 min. Biotransformation of MMS to SO₄²⁻ resumed at an appreciable rate only when O₂ was re-admitted to the electrode chamber (96 min).

Discussion

Two possible metabolic pathways for the degradation of monomethyl sulphate have been formulated (Fig. 5). Davies *et al.* (1990) proposed that the initial step in the degradation of MMS involved a monooxygenase enzyme, which oxidized MMS to methanediol monosulphate via a 4-electron transfer. The proposed mechanism showed that the electrons were derived equally from NADH and MMS and, because oxidation of NADH is subsumed in the basal rate, the addition of MMS to cells was expected to increase demand for electrons by 2e⁻ per molecule added. The methanediol sulphate produced from the initial step decomposed spontaneously to form SO₄²⁻ and formaldehyde, a central intermediary metabolite in C₁ metabolism (Attwood & Quayle, 1984). The formaldehyde can either be assimilated by the organism via the serine pathway or oxidized to CO₂ via formate in sequential 2-electron transfers.

The alternative proposed pathway (Ghisalba & Kuenzi, 1983) involved the hydrolytic cleavage of MMS by a sulphatase enzyme to yield methanol and SO₄²⁻. The methanol was then oxidized to formaldehyde via a 2-electron step by a PQQ-dependent methanol dehydrogenase enzyme (Schar *et al.*, 1985). The formaldehyde produced by this pathway then undergoes the same fate as that from the monooxygenase pathway.

The present study has shown that *Agrobacterium* sp. strain M3C grown on MMS required 0.5 mol O₂ per mol MMS added to resting cells in the oxygen electrode, i.e. a 2-electron transfer for each molecule of MMS. Bearing in mind that these cells did not oxidize exogenously added formaldehyde or formate, the 2-electron transfer was consistent with the operation of either the monooxygenase pathway (2-electron transfer prior to sulphate release) or the hydrolytic pathway (2-electron transfer after sulphate release) up to the formaldehyde stage. Previous work (Davies *et al.*, 1990) has established that sulphate release from MMS in *Agrobacterium* sp. strain M3C is dependent upon the immediate availability of O₂. This, together with the inability of *Agrobacterium* sp. strain M3C to grow on methanol and the inability of MMS-grown cells to oxidize methanol, argues in favour of the oxygenolytic pathway (Fig. 5) for degradation of MMS in this isolate.

Hyphomicrobium sp. strain MS223 resembles *Agrobacterium* sp. strain M3C in its capacity for growth on MMS and its ability to oxidize MMS in the oxygen electrode (2-electron transfer per molecule of MMS, Fig. 2). Moreover, the conversion of MMS to SO₄²⁻ only occurred when molecular O₂ was freely available (Fig. 4). As with *Agrobacterium* sp. strain M3C, *Hyphomicrobium* sp. strain MS223 grown on MMS was unable to oxidize methanol in the oxygen electrode. The similarity in results for the two strains argues for the oxygenolytic cleavage mechanism in both cases.

Hyphomicrobium sp. strain MS223 and *Agrobacterium* sp. strain M3C differed significantly in the ability of the former, but not the latter, to grow on methanol. Methanol-grown cells of *Hyphomicrobium* sp. strain MS223 were capable of oxidizing methanol in the oxygen electrode (0.5 mol O₂ per mol methanol). This 2-electron transfer corresponds to oxidation of methanol to formaldehyde but no further, and is consistent with failure of exogenous formaldehyde or formate to elicit a response from the same cells in the electrode. Methanol oxidation by methanol-grown cells was inhibited by cyclopropanol, a known inhibitor of PQQ-dependent methanol dehydrogenase (Dijkstra *et al.*, 1984; Frank *et al.*, 1989; Shimoda & Okura, 1991). These results are in agreement with observations of O. Ghisalba’s group.
Hydrolytic pathway

Monooxygenation pathway

CH₃OSO₃

Monomethyl sulphate (MMS)

Sulphatase hydrolysis

CH₃OH

Methanol

CH₂OH

Methanol dehydrogenase

HCHO

Formaldehyde

SO₄²⁻

Methanol monosulphate

Spontaneous elimination

Fig. 5. Hydrolytic and oxidative mechanisms for bacterial biodegradation of MMS.

(Ghisalba et al., 1985a, b; Ghisalba & Kuenzi, 1983; Schar et al., 1985) for growth on, and oxidation of, methanol. Evidently *Hyphomicrobium* sp. strain MS223 can synthesize enzyme(s) for the oxidation of methanol when the situation demands it (e.g. growth on methanol as sole source of carbon). However, in our hands the capacity to oxidize methanol was not expressed during growth on MMS. Moreover, although methanol oxidation by methanol-grown cells was inhibited by cyclopropanol, MMS oxidation by MMS-grown cells was unaffected by cyclopropanol. This provides strong evidence for the absence of methanol from the catabolic pathway for MMS, and thus lends further weight to the operation of the oxyenolytic pathway (Fig. 5) rather than the hydrolytic pathway proposed hitherto (Ghisalba et al., 1985a, 1986; Ghisalba & Kuenzi, 1983; Schar & Ghisalba, 1985).

Our data for *Hyphomicrobium* sp. MS223 are thus inconsistent with a sulphatase-initiated metabolism of MMS. The claim for the existence of a hydrolytic pathway in a group of MMS-degrading *Hyphomicrobium* spp. has been repeated in several papers (Ghisalba et al., 1985a, 1986; Ghisalba & Kuenzi, 1983; Schar & Ghisalba, 1985) but the data supporting the generalization are limited. Methanol was detected (Ghisalba et al., 1985a) in stirred-tank reactors in which MMS was used to support growth of *Hyphomicrobium* sp. MS72 (NRRL-B-12573). It may be significant that, in several of its biochemical characteristics, this particular isolate was different from other MMS degraders, including *Hyphomicrobium* sp. MS223 used in the present study (Ghisalba et al., 1985b; Ghisalba & Kuenzi, 1983). Thus, while the conclusion that methanol was formed via a methyl sulphatase may be valid for *Hyphomicrobium* sp. MS72, the extrapolation to the other strains of *Hyphomicrobium* spp. is difficult to sustain, at least on the basis of published data. *Hyphomicrobium* sp. MS223 does synthesize a methanol dehydrogenase (Schar et al., 1985) but this was produced during growth on methanol. To the best of our knowledge there is no published data to indicate production of methanol dehydrogenase during growth on pure MMS.

Location of the MMS-degrading activity in the cell-membrane of *Hyphomicrobium* sp. has been noted (Ghisalba et al., 1986), and this location has hindered attempts to purify and characterize the enzyme. In contrast, all alkyl sulphatases studied to date are soluble and located either in the cytosol or in the periplasmic space (Dodgson et al., 1982; Thomas et al., 1988). On the other hand, some monooxygenases are known to be...
located in the cell membrane (Large, 1983; Fox et al., 1990; Pilkington & Dalton, 1990). Thus in terms of cellular localization the MMS-degrading enzyme is closer to the monoxygenases than to sulphatases. Efforts are currently underway to establish and compare MMS-degrading activities in cell-free extracts of Hyphomicrobiurn.

T. P. Higgins is grateful to the SERC Biotechnology Directorate for the award of a studentship. We thank Dr O. Ghisalba, CIBA-GEIGY, Basel, for providing cultures of Hyphomicrobiurn sp. MS223, Professor I. Ochura, Tokyo Institute of Technology, for supplying cyclopropane, and Dr M. J. E. Hewins, Department of Chemistry, University of Wales Cardiff, for NMR analyses.

References