Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases

RUBEN G. KOK, VINCENT M. CHRISTOFFELS, B. VOSMAN† and KLAAS J. HELLINGWERF*

Department of Microbiology, E.C. Slater Institute, BioCentrum Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands

(Received 27 January 1993; revised 26 April 1993; accepted 14 May 1993)

Acinetobacter calcoaceticus BD413, when grown in batch culture in nutrient broth, produces both extracellular lipase activity and cell-bound esterase activity during and after the transition between exponential growth and the stationary phase. From a library of A. calcoaceticus DNA in Escherichia coli, plasmids were isolated that enabled E. coli to grow on media with tributyrin as the sole carbon source. Assays with model substrates classified the product of the cloned gene as an esterase. Via deletion analysis, the esterase gene was mapped on a 1.8 kbp chromosomal DNA fragment. This fragment was sequenced and found to contain one open reading frame, termed estA, which encodes a protein of 40.0 kDa. The amino acid sequence of this protein shows homology to a number of lipolytic enzymes, most notably to esterases. Deletion of estA only partially abolished cell-bound esterase activity in A. calcoaceticus, indicating that BD413 forms at least two esterases. Both esterases show the same temporal regulation of expression. β-Galactosidase activity was measured in strains in which a promoterless lacZ gene was inserted into estA. Induction of lacZ expression in these strains also occurred at the end of exponential growth in batch cultures, indicating that production of the esterase is regulated at the genetic level.

Introduction

Cessation of growth in bacterial batch cultures triggers the coordinate expression of many important processes. Amongst these are sporulation (Losick et al., 1989), starvation and stringent response (Cashel & Rudd, 1987; Goldman & Jakubowski, 1990), induction of competence for natural transformation (Dubnau, 1991), the production of secondary metabolites (Hopwood et al., 1986; Martín & Liras, 1989) and the production of a wide variety of enzymes (Daza et al., 1991; Lange & Hengge-Aronis, 1991).

The molecular mechanisms underlying the regulation of these phenomena are gradually being elucidated. Recent reports suggest that the expression of several of these growth-phase-dependent processes is controlled through central regulatory programmes (Lange & Hengge-Aronis, 1991; Matin, 1991; Siegele & Kolter, 1992). They may involve specific nutrient limitations, uncharged tRNAs (Goldman & Jakubowski, 1990), positive and negative transcriptional regulators (Hoopes & McClure, 1987), highly selective and specific promoter structures (Stragier & Losick, 1990), alternative σ-subunits of RNA polymerase (Helmann & Chamberlin, 1988; Stragier & Losick, 1990) and post-transcriptional control of regulatory enzymes (Craig & Gross, 1991).

We are interested in the physiological and genetic factors that regulate and control the expression of growth-phase-dependent genes. As a model we selected the lipolytic system of Acinetobacter calcoaceticus BD413 (Juni & Janik, 1969). Several Acinetobacters have been shown to produce lipolytic enzymes (Breuil & Kushner, 1975; Shabtai & Gutnick, 1985; Haferburg & Kleber, 1983). However, the regulation of the production of these enzymes has not been addressed at the molecular level. Esterases and lipases are carboxylic ester hydro-
lases (EC 3.1.1.1) that generally have an essential serine residue at their active site (Brady et al., 1990). The carboxylesterases (EC 3.1.1.1) hydrolyse water-soluble or emulsified esters with relatively short fatty acid chains, whereas lipases (triacylglycerol acyl hydrolases; EC 3.1.1.3) preferentially attack emulsified substrates with long-chain fatty acids. *A. calcoaceticus* strain BD413 produces cell-bound esterase activity (Gutnick et al., 1991) and extracellular lipase activity. Additionally, the state of high competence for natural transformation makes this organism, more than other Acinetobacters, ideally suited for molecular studies (Juni, 1972; Palmen et al., 1993).

In this report, we describe the expression of the lipolytic system of *A. calcoaceticus* BD413, as well as the cloning and characterization of one of the genes involved, encoding a cell-bound esterase.

Methods

Bacteria and plasmids. These are listed in Table 1.

Media and culture conditions. Strains of *Acinetobacter* and *E. coli* were grown in LB medium [5 g NaCl, 5 g Yeast Extract (Difco) and 10 g Bacto-Tryptone (Difco) per litre (pH 7-4)] or nutrient broth (N-broth; Gibco). The basis for the minimal medium, with tributyrin as the sole carbon and energy source, consisted of 100 mM-NaCl, 10 mM-KCl, 2 mM-NaSO₄, 1.25 mM-MgCl₂, 20 μM-CuCl₂, 2 mM-citric acid and, per litre, 5 ml of a trace-element solution containing 5 mM-ZnO, 20 mM-FeCl₃, 10 mM-MnCl₂, 1 mM-CuCl₂, 2 mM-CoCl₂, 1 mM-H₂BO₃, 16 μM-Na₂MoO₄ and 100 mM-HCl. After sterilization, 50 mM-NaP buffer (pH 7.0) and 1% (v/v) tributyrin were added to the basal medium. Proline and thiamin were added to a final concentration of 100 μM and 1 μg ml⁻¹, respectively. For plates, liquid media were solidified with 1.5% (w/v) agar.

For esterase indicator plates, 3 ml of an emulsion of 50% (v/v) tributyrin and 5% (w/v) gum arabic was added to 100 ml of molten N-broth agar medium. Tributyrin was emulsified, using a Branson 250 sonifier and a microtip, for 3 min at 75 W (duty cycle 100%). Esterase production on these plates was detected by the formation of a zone of clearance around the colonies.

Two types of lipase indicator plates were used. (1) Egg-yolk plates. For these, 1.5% (v/v) egg-yolk emulsion (Oxoid) was added to molten N-broth agar medium. Tributyrin was emulsified, using a Branson 250 sonifier and a microtip, for 3 min at 75 W (duty cycle 100%). Esterase production on these plates was detected by the formation of a zone of clearance around the colonies (Kouker & Jaeger, 1987).

Antibiotics were used at the following final concentrations, in plates and in liquid media: ampicillin, 100 μg ml⁻¹; chloramphenicol, 50 μg ml⁻¹ for *A. calcoaceticus* and 20 μg ml⁻¹ for *E. coli*; kanamycin, 15 μg ml⁻¹ for *A. calcoaceticus* and 50 μg ml⁻¹ for *E. coli*; tetracycline, 15 μg ml⁻¹.

Chemicals. Restriction enzymes and T4 DNA ligase were used as recommended by the manufacturer (Pharmacia LKB Biotechnology).

DNA isolation. Chromosomal DNA was isolated as described by Vosman & Hellingwerf (1991). Plasmid DNA was purified by the method of Ish-Horowicz & Burke (1981). All additional molecular genetic techniques were performed according to Sambrook et al. (1989).

Transformations. Plasmids were transformed into *E. coli* as described by Mandel & Higa (1970). Introduction of plasmid DNA into *A. calcoaceticus* BD413 by natural transformation was performed as described by Palmen et al. (1993).

Sequence analysis. The nucleotide sequence of fragments, cloned in M13mp18 and M13mp19, was determined from both strands by the dideoxy-chain-termination method as described by Sanger et al. (1977), adapted for Sequenase version 2.0 (US Biochemical Corp.) with either the M13 universal primers or synthesized primers. The sequence data were analysed using PC/Gene (release 6.5; IntelliGenetics, California) and the University of Wisconsin Genetics Computer Group (UWGCG) software (GCG package, version 7.0). The nucleotide sequence of the 1829 bp PvuII/Hpal fragment of *A. calcoaceticus* BD413 encoding the esterase will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under accession number X71598.

Southern hybridization. Southern hybridization experiments, using non-radioactive digoxigenin-DNA-labelled probes, were performed as indicated by the supplier (Boehringer Mannheim).

SDS-PAGE and immunodetection of β-galactosidase on Western blots. β-Galactosidase and the EstA-β-galactosidase fusion protein in *Acinetobacter* estA–lacZ fusion strain AAC313-1 (see below) were separated by SDS-PAGE (5%, w/v, acrylamide) according to Laemmli (1970). Proteins were then blotted onto nitrocellulose according to Towbin et al. (1979) in a Bio-Rad Trans-Blot Semi-Dry Transfer Cell, for 1 h at 15 V (current limit 0.5 A per gel). Western blots were immunostained using polyclonal rabbit antibodies raised against β-galactosidase (kindly provided by Dr J. Tomassen) and horseradish-peroxidase-conjugated goat anti-rabbit IgG (Bio-Rad), in combination with HRP-Color Development Reagent (Bio-Rad). Prior to incubation with antibodies, the transfer of proteins to the nitrocellulose membrane was verified by staining with 0.1% (w/v) Ponceau S in 5% (v/v) acetic acid. Broad-range SDS-PAGE molecular mass standards, ranging from 6.5 to 200 kDa (Bio-Rad) were used to calculate the difference in molecular mass between native β-galactosidase and the EstA-β-galactosidase fusion protein.

Measurement of enzyme activities and protein concentration. Esterase and lipase production was measured in 300 ml cultures of strains grown in N-broth without antibiotics (*A. calcoaceticus*), or in N-broth supplemented with 50 mM-KP (pH 7.0), 1 mM-glucose and the appropriate antibiotics (*E. coli*). Under these conditions, exponential growth and an abrupt transition to the stationary phase were observed. Cultures were inoculated at an OD₆₀₀ of 0.1, with cells from an overnight culture in the same medium. Cells were grown in MultiGen fermenter vessels (New Brunswick Scientific Co.), with saturating aeration at 30 °C (*A. calcoaceticus*) or 37 °C (*E. coli*). The OD₆₀₀ was recorded as a representation of growth.

Culture samples (5 ml) were centrifuged at 3000 g for 10 min at 0 °C. Part of the supernatant was retained for determination of extracellular lipase activity. Cells were washed once in ice-cold 20 mM-HEPES buffer (pH 7.0) and resuspended in the same buffer (5 ml). A small part of the suspension was then used for the determination of protein concentration (by the method of Bradford, 1976) and (when necessary) kept on ice for subsequent determination of β-galactosidase activity. The remainder of the suspension was sonicated on ice at 75 W (duty cycle: 50%) for 3 min using a Branson 250 sonifier with a microtip. These sonicated suspensions were immediately used for the determination of cell-bound esterase activity.

Esterase assay: 36 mg p-nitrophenyl acetate (pNPA; Sigma) was dissolved in 1 ml methanol. Of this stock solution, 100 μl was added to 20 ml 20 mM-HEPES (pH 7.0) to yield a final pNPA concentration of...
Characterization of an esterase gene from A. calcoaceticus BD413

Table 1. Strains of E. coli and A. calcoaceticus, plasmids and phages used in this study

<table>
<thead>
<tr>
<th>Strain/plasmid/phage</th>
<th>Relevant characteristics*</th>
<th>Marker(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli JM83</td>
<td>Δlac(proAB), thi, (Δ80 lacZAM15)</td>
<td>Yanisch-Perron et al. (1985)</td>
<td></td>
</tr>
<tr>
<td>E. coli DH5α</td>
<td>ΔlacU169 (Δ80 lacZAM15) recA1 thi-1 relA1</td>
<td>Hanahan (1983)</td>
<td></td>
</tr>
<tr>
<td>E. coli TG1</td>
<td>supE hsdA5 thi (Δlac-proAB) F' [traD36 proAB+ lacI^o lacZAM15]</td>
<td>Gibson (1984)</td>
<td></td>
</tr>
<tr>
<td>A. calcoaceticus BD413</td>
<td>Wild-type</td>
<td>Juni (1972)</td>
<td></td>
</tr>
<tr>
<td>A. calcoaceticus AAC311-2†</td>
<td>(Δ4-3 kbp estA, EI)::(3-5 kbp Cm, EI)</td>
<td>Cm', Km', Ap', Tc'</td>
<td>This study</td>
</tr>
<tr>
<td>A. calcoaceticus AAC312†</td>
<td>(Δ2-4 kbp HpaI/SmaI)::(3-5 kbp Cm, EI)</td>
<td>Cm', Km'</td>
<td>This study</td>
</tr>
<tr>
<td>A. calcoaceticus AAC313-1†</td>
<td>estA::(4-3 kbp lacZ-Km (+), S), (Δ9-34 kbp estA, S)</td>
<td>Km'</td>
<td>This study</td>
</tr>
<tr>
<td>A. calcoaceticus AAC313-2†</td>
<td>estA::(4-3 kbp lacZ-Km (+), S), (Δ9-34 kbp estA, S)</td>
<td>Km'</td>
<td>This study</td>
</tr>
</tbody>
</table>

Plasmids and phages

M13mp18	alacZ	Yanisch-Perron et al. (1985)	
M13mp19	alacZ	Yanisch-Perron et al. (1985)	
pAKA10	pUN121, Bc::estA (5-4 kbp, Sau)	Ap', Te'	This study
pAKA20	pUN121, Bc::estA (5-7 kbp, Sau)	Ap', Te'	This study
pAKA24	pUN121, Bc::estA (5-3 kbp, Sau)	Ap', Te'	This study
pAKA24-5	pUN121, Sm1/E1::estA (2-8 kbp, PvuI/El)	Ap', Te'	This study
pAKA10-1†	(7-4 kbp pAKA10, HpaI/SmaI)::(3-5 kbp Cm, Sm, of pM70L24p-Cm) (Δ2-4 kbp, HpaI/SmaI)	Ap', Cm', Te'	This study
pAKA1024-32†	(2-2 kbp pAKA10, EI/Sm1)::(5-6 kbp pAKA24, EI/El, (Δ4-3 kbp estA, EI)	Ap', Cm'	This study
pAKA20A†	pAKA1024-3::(3-5 kbp Cm, EI, of pM70L24p-Cm)	Ap', Cm', Km'	This study
pAKA20B†	pAKA20 Δ(0-34 kbp estA, S)::(4-7 kbp lacZ-Km (+), S)	Ap', Km', Te'	This study
pKOK6	pUC4K based; contains a 4-7 kbp lacZ-Km cassette	Ap', Cm', Km'	Kokotek & Lotz (1989)
pKT210	IncQ, replicates in E. coli and A. calcoaceticus	Cm', Sm'	Bagdasarian et al. (1981)
pM70L24p	alacZ	Ap'	Chambers et al. (1988)
pM70L24p-Cm	pM70L24p::(3-5 kbp Cm, P, of pKT210)	Ap', Cm', Te'	This study
pUN121	ColEl, Te(cl)	Ap', Te'	Nilsson et al. (1983)

*The sizes (in bp) of relevant DNA fragments and restriction enzymes used for their isolation are indicated. Restriction enzymes indicated are BamHI, Bc, EcoRI, HpaI, HpaII, PvuII, Sau3A. Cm, fragment encoding chloramphenicol resistance, originally isolated from pKOK6, is a 4-7 kbp fragment of pKOK6 containing a promoterless lacZ gene and the nptll gene encoding resistance to kanamycin. Ap', Cm', Km', and Te' refer to resistance to ampicillin, chloramphenicol, kanamycin, streptomycin, and tetracycline, respectively. †The construction of plasmids and strains of A. calcoaceticus carrying different deletions and insertions is described in Methods.

1 mM in the assay. Sonicated cell suspension (20-200 μl) was added to the substrate in a final volume of 2 ml. The reactions were carried out at 30 °C in a Beckman DU-40 spectrophotometer. The esterase activity was calculated from the initial rate of p-nitrophenol (PNP) formation, measured spectrophotometrically at 410 nm. The molar absorption coefficient of PNP at pH 7.0 was determined to be 10 000 M⁻¹ cm⁻¹. One unit of enzyme activity is defined as the amount of enzyme forming 1 μmol pNP min⁻¹.

Lipase assay: 37.5 mg p-nitrophenyl palmitate (pNP-P; Sigma) was dissolved in 2 ml 2-propanol at 60 °C. Thirty millilitres of a buffer containing 50 mM-Tris/HCl (pH 8.0) and 0.1% Triton X-100 was prewarmed to 60 °C. The pNP-P solution was suspended dropwise in this Tris buffer, while stirring vigorously, yielding a final pNP-P concentration of 2 mM. Culture supernatant (20-200 μl) was added to the substrate in a final volume of 20 ml. The reactions and activity calculations were carried out as described for the esterase assay. The molar absorption coefficient of pNP in the assay buffer (pH 8.0) was determined to be 15 100 M⁻¹ cm⁻¹.

β-Galactosidase assay: the β-galactosidase activity was determined in washed cell suspensions according to Miller (1982).

Construction of mutant strains of A. calcoaceticus BD413. Complete and partial deletions of the esterase encoding region in the chromosome of Acinetobacter BD413, were generated as follows.

(1) The 0.34 kbp SalI fragment of the esterase-encoding region was deleted from pAKA20 (see Results and Discussion, Fig. 2) and replaced by the lacZ-Km cassette of pKOK6, isolated as a 4.7 kbp SalI fragment. This cassette contains a promoterless lacZ gene and the nptll gene encoding resistance to kanamycin (Kokotek & Lotz, 1989). The resulting plasmids, pAKA20A and pAKA20B, containing this cassette in the two orientations, were introduced into A. calcoaceticus BD413 via natural transformation. Prior to transformation, the plasmids were digested with KpnI and BamHI, both cutting in the vector part of the plasmid, to prevent replication and Campbell-like integration into the chromosome. Several kanamycin-resistant strains were isolated from transformations with both plasmids. In all strains the SalI fragment of the esterase-encoding region was replaced by the lacZ-Km cassette. One of the transformants, carrying the deletion of pAKA20A, yielded strain AAC313-1; pAKA20B gave strain AAC313-2.

(2) A deletion of the complete esterase encoding region in A. calcoaceticus was constructed as follows. A 5.6 kbp EcoRI/EcoRV fragment of pAKA24 (left-hand fragment in Fig. 2), was ligated to a 22 kbp EcoRI/SmaI fragment of pAKA10 (right-hand fragment in Fig. 2). The latter fragment was isolated from a complete EcoRI/partial SmaI digestion of pAKA10. This indirectly deleted the 4.3 kbp EcoRI fragment present in pAKA20, containing the entire esterase-encoding region and simultaneously deleted the 890 bp SmaI/EcoRV fragment of the vector, carrying part of the tetracycline-resistance gene. The
resulting plasmid (pAKA1024-3) contained the chromosomal fragment of pAKA10 flanking the right-hand EcoRI site on the insert in pAKA20, and the region of pAKA24 flanking the left-hand EcoRI site on the insert of pAKA20 (see Fig. 2). The chloramphenicol-resistance gene of pKT210, isolated as a PstI fragment and cloned in the PstI site of pMTL24p (yielding pMTL24p-Cm), was subsequently isolated as a 3.5 kbp EcoRI fragment. This fragment was inserted into the unique EcoRI site of pAKA1024-3, between the two EcoRI-flanking sequences. This yielded plasmid pAKA1024-32, in which the fragment encoding resistance to chloramphenicol (Cm') replaced the entire 4.3 kbp EcoRI region encoding the esterase. pAKA1024-32 was then introduced into A. calcoaceticus BD413. ColEl replicons do replicate, although poorly, in Acinetobacter (Vosman et al., 1991). Therefore, kanamycin-resistant colonies were replica-plated onto plates containing ampicillin (reinfection). AAC11. Veri2ication

A. calcoaceticus BD413, like the psychrophilic Acinetobacter O16 (Breuil & Kushner, 1975), produces both esterase activity and lipase activity during growth on complex media such as N-broth (Fig. 1). The esterase activity, measured via hydrolysis of p-nitrophenyl acetate (pNPA), was cell-bound and remained so during prolonged incubation (not shown). In contrast, Breuil & Kushner (1975) reported that the Acinetobacter O16 esterase is cell-bound only during early growth and is detected in the extracellular medium late in growth. A similar situation was described for A. calcoaceticus RAG-1 (Shabtai & Gutnick, 1985). As has been described for Acinetobacter lwofi O16 (Breuil & Kushner, 1975) and A. calcoaceticus 69 V (Haferburg & Kleber, 1983), lipolytic activity in cultures of BD413, measured with p-nitrophenyl palmitate (pNPP), was secreted into the culture supernatant. This activity could also be detected titrimetrically, using olive oil as a substrate.

In cultures of A. calcoaceticus BD413 grown in N-broth, 99% of the pNPA-hydrolysing activity was cell-bound, whereas roughly 96% of the pNPP-hydrolysing activity could be detected in the culture medium. Therefore, we conclude that the cell-bound activity is esterase activity and that a lipase is secreted into the medium. This lipase has been purified to homogeneity and characterized biochemically (R. G. Kok and others, unpublished experiments).

During growth in batch cultures in N-broth, A. calcoaceticus BD413 produced high amounts of esterase activity specifically during the transition between exponential growth and the stationary phase (Fig. 1). Within

Results and Discussion

The lipolytic system of A. calcoaceticus BD413

A. calcoaceticus BD413, like the psychrophilic Acinetobacter O16 (Breuil & Kushner, 1975), produces both esterase activity and lipase activity during growth on complex media such as N-broth (Fig. 1). The esterase activity, measured via hydrolysis of p-nitrophenyl acetate (pNPA), was cell-bound and remained so during prolonged incubation (not shown). In contrast, Breuil & Kushner (1975) reported that the Acinetobacter O16 esterase is cell-bound only during early growth and is detected in the extracellular medium late in growth. A similar situation was described for A. calcoaceticus RAG-1 (Shabtai & Gutnick, 1985). As has been described for Acinetobacter lwofi O16 (Breuil & Kushner, 1975) and A. calcoaceticus 69 V (Haferburg & Kleber, 1983), lipolytic activity in cultures of BD413, measured with p-nitrophenyl palmitate (pNPP), was secreted into the culture supernatant. This activity could also be detected titrimetrically, using olive oil as a substrate.

In cultures of A. calcoaceticus BD413 grown in N-broth, 99% of the pNPA-hydrolysing activity was cell-bound, whereas roughly 96% of the pNPP-hydrolysing activity could be detected in the culture medium. Therefore, we conclude that the cell-bound activity is esterase activity and that a lipase is secreted into the medium. This lipase has been purified to homogeneity and characterized biochemically (R. G. Kok and others, unpublished experiments).

During growth in batch cultures in N-broth, A. calcoaceticus BD413 produced high amounts of esterase activity specifically during the transition between exponential growth and the stationary phase (Fig. 1). Within

Fig. 1. Production of cell-bound esterase and extracellular lipase by A. calcoaceticus BD413. Cultures were grown in N-broth in fermenter vessels (see Methods). ●, Growth (OD_{540}); ○, specific extracellular lipase activity, measured in the culture medium with pNPP as the substrate; ▲, specific cell-bound esterase activity (NB values were 1/10 those plotted), measured in sonicated cell suspensions, with pNPA as the substrate.
Characterization of an esterase gene from *A. calcoaceticus* BD413

90 min after growth had ceased, the specific esterase activity increased about fourfold, followed by a slower increase in activity during the next 3.5 h. From this point onwards, up to at least 19 h after exponential growth was completed, the specific esterase activity in sonicated cell suspensions remained constant (Fig. 1). This is in sharp contrast to the situation described for *A. calcoaceticus* RAG-1, which produces both cell-bound and extracellular esterase activity early during exponential growth in an ethanol/minimal salts medium. Cell-bound esterase activity in this strain decreases during further growth, and an increasing amount of esterase is detected extracellularly (Shabtai & Gutnick, 1985). Breuil & Kushner (1975) described a situation for *Acinetobacter O16* similar to *A. calcoaceticus* RAG-1 with respect to the growth-phase dependence of esterase production. Grown on complex media, *Acinetobacter O16* produces cell-bound esterase activity specifically during the exponential phase. Decreasing esterase activities are detected when the culture reaches the stationary phase.

During the transition period, late in the growth of *A. calcoaceticus* BD413 in N-broth, lipase activity appeared in the extracellular medium (Fig. 1). Extracellular lipase activity increased about fivefold within 60 min of the cessation of growth. Fisher *et al.* (1987) reported that the secretion of extracellular lipase of *A. calcoaceticus* 69 V is growth-phase dependent. Only the extracellular form of the enzyme would appear at the end of exponential growth. Similar to the production of esterase, *Acinetobacter O16* produces lipase specifically during exponential growth (Breuil & Kushner, 1975). Unlike esterase activity, the lipase activity in cultures of *A. calcoaceticus* BD413 decreased rather sharply 90 min after the stationary phase had been reached, to about the same level as was observed during exponential growth (Fig. 1). Similar lipase activity levels were detected in the extracellular medium of overnight cultures (not shown). The decrease in activity was caused by degradation of the enzyme (as could be shown with specific antibodies; data not shown).

The combination of cell-bound esterase and extracellular lipase activity, both produced at the moment of the transition of a culture to the stationary phase, has not been documented thus far. Therefore, we have selected the lipolytic system of *A. calcoaceticus* BD413 as a model for our studies on the regulation of late-growth gene expression at the molecular level.

Cloning of an esterase gene of *A. calcoaceticus* BD413 via E. coli

When grown on N-broth plates, containing 1.5% tributyrin as an indicator of lipolytic activity (Mourey & Kilbertus, 1976), *A. calcoaceticus* BD413 formed a zone...
produced by most of the other strains. One additional strain, JM83(pAKA22), only showed a zone of clearance within two weeks. This lack of hydrolytic activity in E. coli JM83 did not form significant haloes on tributyrin plates (V), indicating the production of lipolytic activity.

A partial Sau3A gene library of A. calcoaceticus BD413 chromosomal DNA was constructed in E. coli strain JM83. Chromosomal fragments, ranging in size from 5 to 10 kbp, were ligated into BclI-linearized pUN121 (Nilsson et al., 1983). The ligation mixture was introduced into E. coli JM83 and transformants were selected on LB plates containing tetracycline and ampicillin. A total of 12000 colonies were replica-plated onto N-broth plates containing 1.5% tributyrin as an emulsion. After 4 d incubation, 12 colonies had formed a zone of clearance, indicating the production of lipolytic activity. One of these strains, JM83(pAKA10), formed zones that were significantly smaller than the haloes produced by most of the other strains. One additional strain, JM83(pAKA22), only showed a zone of clearance on tributyrin plates after 8 d incubation.

Restriction analysis showed that the first 12 strains all contained a similar 350 bp SalI fragment, indicating that they were complemented by the same gene from Acinetobacter. The insert in pAKA22 differed entirely from the other 12. All 13 strains were able to grow in minimal medium with 1% tributyrin as the sole carbon and energy source, although JM83(pAKA22) had a lower growth rate than the other 12 (not shown). JM83(pUN121) could not grow with tributyrin as a carbon and energy source. A similar procedure (with triacetin instead of tributyrin) was used by Reddy et al. (1989) to identify clones of E. coli that carried the esterase gene from A. calcoaceticus RAG-1.

Mourey & Kilbertus (1976) described tributyrin to be a lipase-specific substrate. However, McKay et al. (1992) have cloned an esterase gene from a psychrotrophic pseudomonad, which hydrolyses tributyrin. Since A. calcoaceticus BD413 produces both extracellular lipase activity and cell-bound esterase activity, the first 12 positive E. coli strains were replica-plated onto lipase indicator plates, to further characterize the activity cloned. No turbid haloes were formed on plates containing egg-yolk, nor did fluorescent zones appear on plates supplied with olive oil plus rhodamine B. However, as in A. calcoaceticus BD413, esterase activity could be detected in sonicated cell suspensions of cultures of the complemented strains, using p-NPA as a substrate. JM83(pUN121) did not show significant esterase activity (not shown). No activity was detected using the lipase substrate p-NPP (not shown). From these observations we concluded that the fragment cloned in the 12 E. coli strains encoded an esterase.

Mapping the esterase gene: deletion plasmids in E. coli

To obtain information about the molecular structure of the DNA fragment encoding the esterase activity in E. coli, a detailed restriction map was constructed of the plasmid inserts in pAKA10, pAKA20 and pAKA24 (Fig. 2). A 20 kbp fragment was present in all three plasmids, suggesting that the information necessary for esterase production was contained within this region. The restriction map of this region differed entirely from the region of the esterase gene of A. calcoaceticus RAG-1, cloned by Reddy et al. (1989). JM83 carrying pAKA10 showed a reduction in esterase production as compared to the other two strains (Fig. 2). This could indicate that either (a part of) the regulatory region in front of the esterase gene, or sequences at the end of the gene, were not present on pAKA10. The 2.8 kbp PvuII/EcoRI fragment of pAKA24 (carrying a part of the vector), was subcloned in pUN121, digested with SmaI and EcoRI. This yielded plasmid pAKA24-5, which provided E. coli JM83 with the ability to degrade tributyrin, similar to pAKA20 and pAKA24 (Fig. 2), indicating that the additional 414 bp PvuII/Sau3A fragment present in this

Fig. 3. Production of esterase (a) and lipase (b) in wild-type and mutant strains of A. calcoaceticus BD413. Growth (OD₅₆₀; ○) and specific activity of cell-bound esterase and extracellular lipase was measured in batch cultures of A. calcoaceticus BD413 (○), AAC311-2 (△) and AAC313-1 (▽), in N-Broth, in well-aerated fermenter vessels. One typical growth curve is shown. The production of esterase by AAC313-2 was similar to the levels produced by AAC313-1 (not shown).
plasmid (in comparison with pAKA10) is important for maximal production of esterase activity.

A more detailed positioning of the esterase gene was obtained by constructing two deletion plasmids, which were subsequently used to generate the corresponding deletions in the chromosome of *A. calcoaceticus* BD413 (see below; for a more detailed description of the construction of mutants, see Methods). In the first deletion plasmid (pAKA10-1), a 2.4 kbp *HpaI/SmaI* fragment of pAKA10 was replaced by the Cm" fragment of pMTL24p-Cm (Fig. 2). pAKA10-1 only contained a 1.4 kbp fragment of the esterase-encoding region. JM83(pAKA10-1) did not show a reduction in esterase activity as compared to JM83(pAKA10) (Fig. 2). Since the esterase activity in JM83 carrying either pAKA10 or pAKA10-1 was somewhat reduced as compared to JM83 carrying pAKA20, pAKA24 or pAKA24-5, the information necessary for maximal esterase expression must be located on the 1.8 kbp fragment between the *PvuII* site bordering the insert in pAKA24-5 and the *HpaI* site (Fig. 2, indicated by dotted lines).

This was confirmed by constructing a second type of deletion plasmid (pAKA20A and pAKA20B) in which the 0.34 kbp fragment between the two *SalI* sites in the 1.8 kbp region was replaced by the *lacZ-Km* cassette from pKOK6 in two orientations. *E. coli* JM83(pAKA20A) (Fig. 2) and JM83(pAKA20B) (not shown) did not produce esterase activity.

Esterase mutants of *A. calcoaceticus* BD413

To test whether the esterase activity in *Acinetobacter* could be abolished by deleting the wild-type gene, the deletions of pAKA20A and pAKA20B, described above, were transferred to the chromosome of *A. calcoaceticus* BD413. In addition, a second esterase deletion mutant was constructed, that lacks the entire 1.8 kbp esterase-encoding region. This mutant was constructed via a plasmid (pAKA1024-32), in which the 4.3 kbp *EcoRI* fragment present in pAKA20 was replaced by the chloramphenicol-resistance gene of pMTL24p-Cm (see Methods and Fig. 2).

![Fig. 4](https://example.com/fig4.png)

Figure 4. Detailed restriction map of the esterase-encoding region in pAKA24-5 and the strategy for sequencing fragments of this region, cloned into M13mp18 and M13mp19. The nucleotide sequence was determined using either the M13 universal primers or synthesized primers as described in Methods. The esterase ORF (*estA*) is indicated with a bold arrow. Restriction sites: Bc, *BclI*; C, *ClaI*; EV, *EcoRV*; H, *HindIII*; Hpa, *HpaI*; S, *SalI*; Sp, *SphI*; (P), *PstI* site lost with construction of pAKA24-5; X, ligation *HpaI/SmaI*.

Table 2. Maximum cell-bound esterase activities as measured in cultures of *A. calcoaceticus* strains in N-broth

<table>
<thead>
<tr>
<th>Strain of A. calcoaceticus</th>
<th>Maximum esterase activity [U (mg protein)(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD413 (wild-type)</td>
<td>23 ±0.3 (n = 12)</td>
</tr>
<tr>
<td>AAC311-2</td>
<td>0.8 ±0.2 (n = 2)</td>
</tr>
<tr>
<td>AAC312</td>
<td>2.6 ±0.4 (n = 24)</td>
</tr>
<tr>
<td>AAC313-1/2</td>
<td>1.0 ±0.1 (n = 5)</td>
</tr>
</tbody>
</table>

A. calcoaceticus AAC311-2, a deletion mutant carrying the insertion of pAKA1024-32, showed reduced esterase activity on tributyrin plates (not shown) and approximately half of the wild-type activity in *in vitro* measurements in sonicated cell suspensions (Fig. 3a; Table 2). Strains AAC313-1 and AAC313-2, deletion mutants of BD413 carrying the *lacZ-Km* insertions of pAKA20A and pAKA20B, respectively, showed similar reduced esterase activity in sonicated cell suspensions (Fig. 3a) and on plates (not shown). However, cell-bound esterase could still be detected in these three strains, which implies that at least one additional cell-bound esterase is produced by *A. calcoaceticus* BD413. The remaining esterase activity, like the total esterase production in BD413, was produced at the onset of the stationary phase in these mutant strains (Fig. 3a). Although the increase in production of the remaining esterase activity showed a more gradual pattern than observed for the total esterase production of BD413, this implies that both esterases in BD413 are coordinately regulated and expressed in N-broth.

At present, it is not clear whether *A. calcoaceticus* BD413 carries two (or several) copies of the same esterase gene, or entirely different esterase genes. With
respect to this, it is relevant to note the identification of E. coli JM83 strain carrying pAKA22 (see above). The suggestion that the insert in pAKA22 encodes a second esterase from A. calcoaceticus is currently under investigation.

To our knowledge, the presence of two esterases has not been reported for other strains of Acinetobacter. It seems different from the situation described for A. calcoaceticus RAG-1 by Shabtai & Gutnick (1985): Mutants of RAG-1, defective in an esterase, were unable to grow on triacetin, whereas they could still grow on acetate. Transfer of the deletion of pAKA10-1 (which had no influence on the esterase production in JM83) to Acinetobacter yielded strain AAC312. As expected, this deletion mutant exhibited the full cell-bound esterase activity as found in BD413 (Table 2), showing that also in Acinetobacter the 2.4 kbp HpaI/SmaI region is not essential for the production of the esterase.

The production of extracellular lipase activity in the A. calcoaceticus strains mentioned above was not affected by the mutations in the esterase region (Fig. 3b). This shows that the two activities are not genetically related.

Sequence analysis of the esterase encoding region

The nucleotide sequence of the 1-8 kbp PvuII/HpaI fragment of pAKA24-5 was determined. The strategy for sequencing of this fragment is shown in Fig. 4, the nucleotide sequence and derived amino acid sequence in Fig. 5. The 1829 bp fragment contains one open reading frame (ORF), from nucleotide 580 to 1710. The ORF is followed by a UGA and a UAA stop codon, separated by only three bases. The ORF was termed estA, because of the esterase activity it encodes (see above).

The first ATG codon in the ORF is located at nucleotide position 805. If translation is initiated from this methionine codon, a stretch of 225 nucleotides of only three bases. The ORF was termed estA, because of the esterase activity it encodes (see above).

The ATG codon in the ORF is located at nucleotide position 805. If translation is initiated from this methionine codon, a stretch of 225 nucleotides of potentially coding DNA remains untranslated. The ORF would then encode a protein of 302 amino acids, with a calculated molecular mass of 33300 Da. However, the ATG codon is not preceded by a ribosome binding site (RBS). i.e. a sequence complementary to the 3' end of the 16S rDNA of A. calcoaceticus (5'-GATCACCTCGTT-3'; C. R. Woese, EMBL data library, acc. no. M34139; Fig. 5). An alternative translation start site in the same reading frame is the TTG codon at position 643.

Although a UUG codon is thought to be less efficient in initiation of protein synthesis, the TTG codon is preceded by a potential RBS (692GGAG), with a calculated free energy for binding to the 3' end of A. calcoaceticus 16S rRNA of -39.3 kJ mol\(^{-1}\) (Tinoco et al., 1973), and a spacing of 7 nucleotides. This TTG codon may therefore be a good alternative to start translation of the esterase gene (Thach et al., 1966; Kozak, 1983; Hershey, 1987).

If translation is initiated from this position, the protein encoded contains 356 amino acids, and has a predicted mass of 40.0 kDa.

The actual mass of the esterase has not yet been determined. However, the translation start site has been determined via lacZ fusion strain AAC313-1, in which the estA ORF has been fused in-frame to a promoterless lacZ gene (see Methods and below, Measurements of β-galactosidase in Acinetobacter lacZ fusion strains). The mass of the fusion product has been measured on Western blots, incubated with polyclonal rabbit antibodies raised against β-galactosidase. When the 805ATG is used as the start codon, the mass of the EstA-β-galactosidase fusion product should be increased by roughly 10 kDa, relative to the native β-galactosidase, since the fusion was made at the 1027SalI site. Translation initiated from the 643TTG should result in an increase in mass of about 16 kDa. A fusion product was found with a mass increase of about 17 kDa relative to the native β-galactosidase, identifying the 643TTG as the true translation start codon. The lacZ gene used carries its own RBS. Therefore, apart from the fusion product, native β-galactosidase can also be formed in AAC313-1. In fact, relatively small amounts of the EstA-β-galactosidase product were found; the main product formed was the native enzyme, as judged by the relative staining intensity of bands on Western blots. This may be due to the relative inefficiency of TTG as a translation start codon.

Codon usage and codon base composition of the esterase gene are similar to what has been calculated as the average for 20 Acinetobacter genes by White et al. (1991). The esterase gene has a combined A+T composition at codon positions one, two and three of 44.9, 61.6 and 66.3 mol\%, respectively, exactly matching calculations by White et al. (1991). The overall A+T content of the esterase gene (60 mol\%) is also in agreement with the A+T content of the Acinetobacter genome (55-62 mol\%; Henriksen, 1976).

Fig. 5. DNA sequence of the 1-8 kbp PvuII/HpaI chromosomal insert in pAKA24-5 encoding an esterase, and predicted amino acid sequence of EstA. The nucleotide sequence was determined via the strategy outlined in Fig. 4. The single large ORF on the nucleotide sequence is underlined. The amino acid sequence derived from this ORF is given, starting from the TTG codon at nucleotide position 643. The potential ribosome-binding site is doubly underlined. Relevant stop codons are marked **. The two large inverted repeats are overlined. Nucleotides and derived amino acids are numbered to the right. Relevant restriction sites are given above the sequence; 'pAKA10' indicates the Sma3A site at nucleotide position 414, bordering the insert in pAKA10 (see text).
The amino acid sequence deduced from the ORF shows homology to several proteins from the PIR and Swiss-Prot data libraries, as determined with the sequence comparison program FASTA (Pearson & Lipman, 1988). The homologous proteins are mainly esterases and some lipases (Table 3). In Fig. 6, the amino acid sequence of the BD413 protein (BD413 EstA) is aligned to the four proteins with the highest degree of homology, using the multiple sequence analysis program PileUp (see Methods). Although homology of the BD413 EstA sequence to the A. calcoaceticus RAG-1 esterase (P18773; Reddy et al., 1989) is found in a relatively large overlapping region (Table 3), it is clear from Fig. 6 that specific regions of EstA are more homologous to the other three proteins. For instance, the 12HGGGF sequence found in BD413, also present in all eukaryotic esterases of Table 3 (not shown), is one of the strikingly homologous regions in the sequences of the upper four proteins of Fig. 6, and is not found in the RAG-1 esterase. Some other amino acids, identical in all but the RAG-1 esterase, are also indicated in Fig. 6.

Several amino acids are conserved in all five proteins aligned in Fig. 6. The sequence 19GDSAG in the BD413 esterase is also found in the lipases of Moraxella and rat. The RAG-1 esterase also contains this box, but it contains a cysteine instead of an alanine. This sequence is identical to the Gly-X$_s$-Ser-X$_s$-Gly box found in lipases and esterases, as well as in serine proteinases (Brenner, 1988; Boel et al., 1988). The serine in this sequence is probably the nucleophilic residue in the catalytic triad of these enzymes, consisting of an additional histidine and aspartate (Blow, 1990; Brady et al., 1990; Winkler et al., 1990). Although Boel et al. (1988) showed X$_s$ to be either tyrosine or histidine in a number of prokaryotic and eukaryotic lipases, the sequences in Fig. 6 all have an aspartate at this position. Also several other residues have been described to occur at the X$_s$ and X$_s$ positions (Brenner, 1988; Dartois et al., 1992). Interestingly, like the lipolytic enzymes in Fig. 6, almost all serine proteases contain an aspartate at the X$_s$ position. However, in these enzymes the X$_s$ position is almost invariably a glycine (Brenner, 1988). A histidine (position 85 in EstA) and an aspartate residue (position 104 in EstA) are found in all five proteins, but whether these are the other two residues of the catalytic triad (Blow, 1990), still has to be confirmed for EstA.

No promoter-like sequences (Hoopes & McClure, 1987) could be identified in the sequence upstream of the esterase ORF. However, two large inverted repeats were found in the sequence of the PvuII/HpaI fragment. The first one is located upstream of estA, between nucleotides 360 and 396, potentially forming a perfect stem-loop structure, with a stem of 16 nucleotides and a loop of five. This structure has a strongly negative free energy ($\Delta G = -120.4$ kJ mol$^{-1}$; Tinoco et al., 1973). The program 'Terminator' identified this sequence (or part of it) as a possible rho-independent terminator for transcription (Rosenberg & Court, 1979), starting from the
Characterization of an esterase gene from A. calcoaceticus BD413

Fig. 6. Alignment of the predicted amino acid sequence of EstA (BD413 EstA), with the four proteins with the highest homology to EstA. Only part of the amino acid sequences is shown. Data were obtained from the Swiss-Prot protein sequence data library. The numbers at the beginning of each line are the accession numbers of the proteins in the Swiss-Prot library: P24484 is the lipase of Moraxella (Feller et al., 1991), P23872 is the E. coli hypothetical protein (Miyamoto et al., 1991), P15304 is the rat lipase (Holm et al., 1988) and P18773 is the esterase of A. calcoaceticus RAG-1 (Reddy et al., 1989). Homology is indicated above the amino acid sequences; asterisks denote amino acids perfectly conserved in all five proteins and dots denote well-conserved amino acids. Amino acid residues perfectly conserved in all but the RAG-1 esterase are shown between vertical lines. Gaps in the sequences, created by the program, are dashed. Numbers to the right refer to the number of the last amino acid residue on the line, relative to the first amino acid of the protein. Carboxy-terminal amino acids are underlined.

upstream region of estA. However, if the inverted repeat sequence between positions 360 and 396 is a terminator for transcription, the distance between it and the end of upstream ORFs is rather long (at least 262 nucleotides).

Interestingly, restriction analysis showed that the insert in pA10 starts at position 414 of the sequence in Fig. 5, just downstream of the inverted repeat. Since the level of esterase activity in E. coli JM83(pA10) is reduced in comparison with strains carrying the larger insert, it is tempting to speculate about the possible role of the 360–396 inverted repeat in regulation of estA. This structure, or other sequences on the 414 bp PvuII/Sau3A fragment, may carry promoter functions or form a binding site for a regulatory protein, involved in regulation of estA transcription (Hoopes & McClure, 1987).

Speculation about the possible role of the 360-396 inverted repeat in the regulation of estA expression is also fed by the identification of a second large inverted repeat, located 27 nucleotides downstream of the estA ORF (Fig. 5). This sequence, between nucleotides 1731 and 1762, may form a perfect stem-loop, with a stem of
The molecular mechanism underlying the regulation of estA expression is currently being investigated in lacZ fusion strains, carrying partial deletions of the upstream region of estA. The physiological factors involved in transcriptional regulation of the esterase gene will be analysed, as well as the regulation of the production of the extracellular lipase and the second cell-bound esterase.

We are grateful to W. Lotz (University of Erlangen, Germany) for kindly providing pKOK6, to P. Postma for his help in sequence analysis, to S. Staal and J. Kwakman for their assistance in sequencing, to M. Jebbink for synthesis of sequencing primers, to I. Nugteren-Roodzant for expert technical assistance and to K. van Dam and P. Rauch for critically reading the manuscript. This study was financially supported by a grant from the EC.

References

Characterization of an esterase gene from A. calcoaceticus BD413

2341

