Reduced azole susceptibility of oral isolates of *Candida albicans* from HIV-positive patients and a derivative exhibiting colony morphology variation

PAUL J. GALLAGHER,1 DÉSIRÉE E. BENNETT,2 MARTIN C. HENMAN,1 RONNIE J. RUSSELL,2 STEPHEN R. FLINT,3 DIARMUID B. SHANLEY3 and DAVID C. COLEMAN3*

1Trinity College, Department of Pharmacology, School of Pharmacy, University of Dublin, 18 Shrewsbury Road, Dublin 4, Republic of Ireland
2Trinity College, Department of Microbiology, Moyne Institute, University of Dublin, Dublin 2, Republic of Ireland
3Trinity College, Department of Oral Medicine and Pathology, School of Dental Science, University of Dublin, Dental School Office, 30 Westland Row, Dublin 2, Republic of Ireland

(Received 12 March 1992; revised 11 June 1992; accepted 18 June 1992)

Approximately 50% (15/28) of a selection of oral isolates of *Candida albicans* from separate individuals infected with the human immunodeficiency virus (HIV) exhibited low susceptibility to ketoconazole as determined by hyphal elongation assessment. Nine of these isolates exhibited colony morphology variation or switching at 37 °C, of which six expressed low ketoconazole susceptibility. To determine whether colony morphology variation could give rise to derivatives with reduced azole susceptibility, several high-frequency switching variants of three HIV-patient isolates were recovered and assessed. All but one of the variants expressed similar azole susceptibility profiles to their respective parental strains. However, the *C. albicans* derivative 132ACR expressed significantly reduced susceptibility to ketoconazole in comparison to its parental strain 132A. In whole cells, on the basis of total growth the switched derivative 132ACR was markedly less susceptible than its parental isolate 132A to ketoconazole at 10 µM. A much smaller difference was observed with fluconazole at 10 µM, with the switched derivative 132ACR exhibiting a threefold lower susceptibility compared with the parental isolate 132A. The incorporation of [14C]acetate in control and azole-treated cells of both organisms was higher for the parental strain. When cell lysates of strain 132A and its derivative 132ACR were incubated with [14C]mevalonic acid and ketoconazole, the IC₅₀ for 14C-label incorporation into C-4 demethyl sterols was fivefold higher for lysates of the switched derivative 132ACR compared with those of the parental strain 132A. With fluconazole the IC₅₀ value for the derivative 132ACR was 25-fold higher than for strain 132A. The 14-sterol demethylase of the switched derivative 132ACR was possibly less sensitive to azole inhibition than that of the enzyme of strain 132A. These studies indicated that colony morphology variation *in vitro* can generate derivatives with stable, reduced azole susceptibility without prior exposure to azoles.

Introduction

Oropharyngeal candidosis caused by *Candida albicans* is one of the most common manifestations of opportunistic infection among individuals infected with the human immunodeficiency virus (HIV+) and patients with acquired immunodeficiency syndrome (AIDS; Gottlieb et al., 1981; Klein et al., 1984; Holmberg & Meyer, 1986; Tavitian et al., 1986a; Phelan et al., 1987; Redfield & Burke, 1988; Syrjanen et al., 1988; Samaranayake & Holmstrup, 1989; Mandal, 1989; Samaranayake, 1990). Persistence of oral candidosis in these individuals and relapse following treatment with antifungal drugs is very common (Glatt et al., 1988; Samaranayake & Holmstrup, 1989; Larsen, 1990). This is thought to be due to a variety of causes, including the underlying immunodeficiency, poor patient compliance, azole hepatotoxicity, gastrointestinal intolerance and the development of decreased drug susceptibility, and, in the case of the imidazole ketoconazole, poor absorption in the presence of achlorhydria (Tavitian et al., 1986a; Korting et al., 1988; Epstein, 1990; Larsen, 1990; Fox et al., 1991).

* Author for correspondence. Tel. +353 1 7021814; fax +353 1 6799294.
The N-substituted imidazole or triazole antifungal antibiotics, including ketoconazole and fluconazole, are commonly prescribed for the treatment of oral candidosis in HIV+ and AIDS patients (Van Den Bossche et al., 1990). Azoles probably act by inhibiting cytochrome P-450-dependent 14-sterol demethylase, an important enzyme in ergosterol biosynthesis in fungi (Borgers, 1980). Ergosterol is the main sterol found in Candida species and forms a vital constituent of cellular membranes. The depletion of ergosterol and the resulting accumulation of 14-methylated sterols disrupts membrane structure and function, resulting in inhibition of growth (Van Den Bossche et al., 1988).

Many oral isolates (≥30%) of C. albicans from Irish HIV+ and AIDS patients exhibit colony morphology variation at 37 °C on primary isolation, and these occasionally give rise to additional colony variants on subculture (D. C. Coleman & D. E. Bennett, unpublished data). Preliminary studies indicated that some of these variant or switched derivatives exhibited decreased susceptibility to azole antifungals in vitro, as determined by agar plate dilution and hyphal elongation assessment tests (Gallagher et al., 1991). Colony morphology variation is a common feature among isolates of both C. albicans and other Candida species (Soll et al., 1987; Rikerink et al., 1988; Odds & Merson-Davies, 1989; Soll, 1989; Suzuki et al., 1991; Wickes et al., 1991). Certain switched C. albicans derivatives can exhibit a variety of altered morphological, physiological, cell surface and genetic characteristics, including adhesion to epithelial cells, antigenicity, hypha formation, cell size, growth rate, karyotype and genotype variation and decreased susceptibility to the antifungal drugs nystatin, amphotericin B, miconazole nitrate and 5-fluorocytosine (Slutsky et al., 1985; Merz et al., 1988; Soll, 1989; Ghannoum et al., 1990; Iwaguchi et al., 1990; Rustchenko-Bulgac et al., 1990; Rustchenko-Bulgac, 1991; McEachern & Hicks, 1991). In HIV+ and AIDS patients, where the levels of oral C. albicans can be very high (Tylenda et al., 1989), this variability could allow the generation of altered forms which are better adapted for survival in the oral cavity. Recently Odds & Merson-Davies (1989) have shown that nutrient depletion in vivo can induce Candida isolates to form colony morphology variants. A parallel situation in vitro in the oral cavities of HIV-infected individuals could result in densely packed Candida cells depleting available nutrients, resulting in switching. Furthermore, the comprehensive therapeutic regimes often undertaken in HIV+ and AIDS patients could possibly also act as a trigger for switching. Thus, phenotypic switching in vivo may lead to the generation of substantial numbers of variants possessing altered phenotypes and/or genotypes, some of which may be better suited to survive in the oral cavity.

The aims of the present study were (1) to compare azole susceptibilities among a selection of C. albicans oral isolates from Irish HIV+ patients and from healthy carriers, and (2) to investigate the basis of significantly decreased azole susceptibility exhibited by one particular switched derivative generated from an azole-susceptible parental isolate.

Methods

Strains, derivatives and culture conditions. C. albicans isolates were routinely grown on Potato Dextrose Agar medium (PDA, Oxoid) at pH 5-6, supplemented with 0.4% (w/v) Noble agar (Difco) at 37 °C. For liquid culture, isolates were routinely grown in Yeast Peptone Dextrose Broth (YPD; per litre: 10 g yeast extract (Oxoid), 20 g peptone (Difco), 20 g glucose, pH 5-5) at 37 °C in an orbital incubator (Gallenkamp) set at 180 r.p.m. For 14C-labelling of whole C. albicans cells using [U-14C]acetate, YEPD (YPD containing 5 g glucose l⁻¹) was used as the liquid culture medium.

C. albicans isolates and derivatives were identified on the basis of positive germ-tube tests following growth in 2.0 ml fresh human serum at 37 °C for 2 h, by their ability to produce hyphae and chlamydospores on rice-agar-Tween agar (RAT agar; bioMérieux) and by their carbohydrate- and nitrogen-source assimilation patterns using the ID 32C yeast identification system (API Systems).

Forty oral isolates of C. albicans were included in this study. These were recovered from saliva or from swab specimens of the mid-dorsum of the tongue by plating on PDA alone and PDA supplemented with the dye phloxine B (5 μg ml⁻¹; PDAB) followed by incubation at 37 °C for 48 h. Differential staining of portions or sectors of oral C. albicans colonies with phloxine B following growth on PDAB agar allowed the detection of some clinical isolates which exhibited colony morphology variation (Anderson & Soll, 1987; Odds & Merson-Davies, 1989). For primary isolation purposes, PDA and PDAB plates were supplemented with chloramphenicol (50 μg ml⁻¹). Control isolates were oral-carriage strains recovered from saliva samples of 12 healthy individuals with no known predisposition to immunosuppression. At sampling none of these individuals had any clinical signs of oral candidosis and none were carriage wearers. Twenty-eight isolates were recovered from the oral cavities of individual HIV+ patients attending the Dublin Dental Hospital. All of these patients presented with overt clinical symptoms of erythematous or pseudomembranous candidosis, the clinical features and incidence of which have been described by Samaranayake & Holmstrup (1989). None of the control subjects or HIV+ patients had been treated with antifungal drugs or antibiotics for one month prior to presentation. Nine (32%) of the 28 isolates from HIV+ patients exhibited variation in colony morphology on primary isolation. From three of these, further independent derivatives exhibiting high-frequency switching of colony morphology were recovered in vitro following growth on nutrient-depleted medium (see below). Prior to these experiments, the parental isolates were single-colony purified ten times to eliminate the possibility of multiple strains being present. These derivatives were included in the study because this procedure ensured that they originated from a single strain. C. albicans cell counts were performed with diluted yeast suspensions freshly prepared in sterile water using an Improved Neubauer haemocytometer (Hudson & Hay, 1989).

Chemicals, enzymes, radioisotopes and antifungal drugs. Chemicals and enzymes were purchased from Sigma, BDH or Boehringer Mannheim. [U-14C]Acetate (sodium salt; 52 mCi mmol⁻¹; 1-92 GBq mmol⁻¹), RS-[2-14C]mevalonic acid (dibenzyl ethylenediamine salt; 52 mCi mmol⁻¹; 1-92 GBq mmol⁻¹) and [α-32P]ATP (3000 Ci
mmol⁻¹; 110 TBq mmol⁻¹) were purchased from Amersham. Ketoconazole was a gift from Janssen Pharmaceutical (Cork, Ireland) and fluconazole was a gift from Pfizer Central Research (Sandwick, Kent, UK). Stock solutions (1 mM) of ketoconazole and fluconazole were prepared in 0.2 M-HCl and in water, respectively. For azole-susceptibility testing experiments, dilutions of the respective drugs were made in distilled water immediately prior to use and sterilized by filtration through 0.22 µm pore diameter membrane filters (Gelman). Protein concentrations in supernatant fractions following homogenization of C. albicans cells were determined using a Bio-Rad Protein Assay kit with bovine albumin as the standard.

Isolation of morphological variants of C. albicans by nutrient depletion. Colony morphology variants of the C. albicans oral isolates 122A, 132A and 179A (all isolated from separate HIV⁺ patients) were recovered following growth in nutrient-depleted medium. YPD broth cultures (5 ml) of each organism were grown for 24 h at 37 °C and 1 × 10⁶ c.f.u. used to inoculate modified YPD medium (5 ml; YPD with the nutrient components diluted by a factor of 100 or 200), pre-warmed to 37 °C, followed by incubation at 37 °C for 48 h in an orbital incubator at 150 r.p.m. After incubation, cultures were resuspended in sterile water at a cell density of 1 × 10⁷ c.f.u. ml⁻¹ and 200 µl aliquots plated onto six PDA and six PDAB agar plates, followed by incubation at 37 °C for 48 h. PDA and PDAB plates were prepared in 9 cm Petri plates and cell density of 1 x 10⁶ c.f.u. ml⁻¹ was achieved using a Bio-Rad Protein Assay kit with bovine albumin as the standard.

Azole susceptibility tests. C. albicans clinical isolates and switched derivatives exhibiting colony morphology variation were assessed for their susceptibility to ketoconazole by a hyphal elongation assessment test using an N-acetylglucosamine-yeast nitrogen base-proline (NYP) medium (Marichal et al., 1986). This medium promotes growth in the hyphal form in a humidified atmosphere of 10% (v/v) CO₂ at 37 °C. The procedure exploits the differential effect of azole antifungal agents on the growth and morphology of the dimorphic yeast C. albicans. In susceptible strains, inhibition of hyphal outgrowth is observed at lower concentrations (0-0.0625-0.125 µM) than with less susceptible strains (≥10 µM). In susceptible strains only blastoconidia are observed at drug concentrations >0.125 µM.

Incorporation of [¹⁴C]acetate into sterols and lipids by C. albicans whole cells in vitro. The abilities of ketoconazole and fluconazole to affect the incorporation of [¹⁴C]acetate into sterols and lipids in vitro by whole cells of C. albicans strain 132A and its switched derivative 132ACR were determined by the method described by Van Den Bossche et al. (1978) with the following modifications. Separate 1 litre conical flasks containing 250 ml YEPD broth supplemented with 2.5 µmol sodium acetate and 6-25 µCi sodium [U-¹⁴C]acetate (52 mCi mmol⁻¹), with or without azole drugs, were inoculated with C. albicans strain 132A or its derivative 132ACR to yield a cell density of 4 × 10⁸ c.f.u. ml⁻¹ and placed in an orbital incubator for 20 h at 37 °C, after which the organisms were in late exponential phase with a cell density of approximately 1 × 10⁹ c.f.u. ml⁻¹. The inocula were prepared by diluting cultures from 4 h YEPD broth cultures in sterile saline to yield the required cell density. Cells were homogenized in a Braun cell homogenizer (model MSK; 4000 r.p.m.) using 12 × 20 s cycles with 10 s intermittent cooling using liquid CO₂.

Hydrofluor (National Diagnostics) was used as the scintillation fluid and the radioactivity in each sample was measured using a Packard Tri-Carb Liquid Scintillation 1500 spectrometer.

HPLC analysis of sterols from C. albicans whole cells. [¹⁴C]-labelled sterols isolated from C. albicans whole cells, treated or not treated withazole drugs, were analysed by high-performance liquid chromatography (HPLC) as described by Van Den Bossche et al. (1990).

Incorporation of [¹⁴C]mevalonic acid into sterols synthesized in vitro using C. albicans cell-free extracts. The ability of ketoconazole and fluconazole to affect the incorporation of [¹⁴C]mevalonic acid into sterols synthesized in vitro by cytochrome P-450-containing cell-free extracts of C. albicans strain 132A and its switched derivative 132ACR, and of a C. albicans fluconazole susceptibility testing reference strain Y0109 (obtained from Dr P. Troke, Pfizer Central Research, Sandwick, Kent, UK), was determined using a modification of the method described by Marriott (1980). Yeast cell suspensions prepared in 12 ml (2 × 10⁶ c.f.u. ml⁻¹) 100 mM-potassium phosphate buffer (pH 7.4) containing 30 mM-nicotinamide, 5 mM-N-acetylcysteine, 5 mM-MgCl₂ and 0.25 mM-phenylmethylsulphonyl fluoride were lysed using 12 g glass beads (0.45-0.5 mm) in a Braun homogenizer (MSK) using a cycle of 6 × 20 s with 10 s intermittent cooling with liquid CO₂. The homogenate was separated from the glass beads, unbroken cells and cell debris by centrifugation for 5 min at 1500 g. The resulting cell-free homogenate (11 mg protein ml⁻¹) was used as the enzyme-containing preparation for in vitro sterol biosynthesis.

The assay mixture for measuring sterol biosynthesis contained 0.5 µCi [²-¹⁴C]mevalonic acid (52 mCi mmol⁻¹) and the cofactor solution in addition contained 1 µmol NADPH.

Samples (100 µl) were removed for assay of total [¹⁴C]-incorporation by liquid scintillation counting. The remaining solution was concentrated to dryness and the sterols redissolved in 0.5 ml ethyl acetate. Aliquots (40 µl) were applied 2 cm from the bottom of silica gel F₂₅₄ pre-coated aluminium TLC plates (0-20 mm thick, 20 × 20 cm; Merck no. 5554) and the sterols and sterol precursors separated using a toluene/diethyl ether (9:1, v/v) solvent system (Hitchcock et al., 1989). Following chromatography,sterol bands were located by exposing the TLC plates to UV light (345 nm) both before and after spraying the plates with the autodagographic image intensifier Autofluor (National Diagnostics). Radioactive bands were located by autoradiography following exposure of TLC plates to Hyperfilm-fmax (Amersham). Sterol-containing bands were then scraped from the TLC plates and levels of [¹⁴C]-incorporation measured by scintillation counting as described above. Unlabelled squalene, lanosterol and ergosterol (40 µl of 0.75% w/v, solutions in ethyl acetate) were applied to all TLC plates as control standards (Barrett-Bee et al., 1986).

Molecular fingerprinting of C. albicans genomic DNA. Total cellular DNA from C. albicans isolates and colony morphology variants was isolated using a modification of the methods described by Durkae et al. (1985) and Pearce & Howell (1991) as follows. After RNAase treatment of the extracted DNA, proteinase K was added to a final concentration of 2 mg ml⁻¹ followed by incubation at 37 °C for 2 h. The DNA was then precipitated with 2 vol saline at −70 °C for 1 h, and the precipitate was recovered by centrifugation in a microfuge, washed gently with 100 µl 70% (v/v) ethanol, dried and resuspended in TE buffer (10 mM-Tris/HCl, 1 mM-EDTA, pH 7.0) and the solution was then extracted once with an equal volume of phenol/chloroform (1:1, v/v) and the resulting DNA-containing extract used directly in restriction endonuclease digestion experiments.

The procedures used for restriction endonuclease digestion of genomic DNA, agarose gel electrophoresis, Southern hybridization analysis, labelling of molecular probes with [α-³²P]dATP and autoradiography have all been described previously (Coleman et al., 1986, 1989).

A C. albicans-specific DNA fragment cloned from dispersed, repetitive sequence DNA was used as a molecular probe in hybridization experiments. The probe consisted of a 3.0 kb EcoRI fragment cloned in vector plasmid pUC18, and was identical to probe 27A described by Scherer & Stevens (1988). Escherichia coli strain 824 (strain JMB38 harbouring pUC18 containing the cloned 3.0 kb EcoRI insert) was obtained from Professor S. Scherer (Minnesota, Minneapolis, USA).
Results

Susceptibility of oral isolates of C. albicans and colony morphology variants to ketoconazole

In order to determine the susceptibility of oral isolates of C. albicans from Irish HIV+ patients to azole antifungals, 28 isolates from separate HIV+ individuals were tested for their sensitivity to ketoconazole using a hyphal elongation assessment test. The susceptibility of these isolates was compared with that of oral carriage strains from 12 healthy individuals and also with that of several derivatives of isolates from HIV+ patients, recovered in vitro by culturing the parental organisms in nutrient-depleted medium, which exhibited colony morphology variation or switching. The vast majority (11/12) of the control carriage isolates were susceptible to ketoconazole, whereas about half (15/28) of the isolates from HIV+ patients exhibited lower susceptibility (Table 1).

Nine (32%) of these isolates from HIV+ patients exhibited variation in colony morphology on primary isolation. In the case of six isolates, the colonies varied between two colony morphology phenotypes, whereas the remaining three isolates switched between three colony morphology phenotypes. To ensure that mixed strains were not responsible for the observed colony morphology variation, total cellular DNA from representative colonies of each phenotype, for all nine isolates, was recovered, digested with the restriction endonuclease EcoRI and hybridized with a 32P-labelled mid-repeat sequence probe identical to 27A (Scherer & Stevens, 1988). The probe was C. albicans-specific, with several copies dispersed throughout the genome. When total cellular DNA from the C. albicans isolates was digested and hybridized with the probe, the resulting multiple fragments detected following autoradiography constituted molecular ‘fingerprint’ patterns which could be used to distinguish between different strains (Scherer & Stevens, 1988; Fox et al., 1989). The molecular fingerprints of all nine isolates were clearly different from each other, whereas the fingerprints of spontaneous variant colonies of the same clinical isolate were in each case indistinguishable (data not shown). Fingerprint patterns generated with cloned, repeat sequence probes can readily distinguish between different strains of C. albicans but fingerprints of switched derivatives of a particular strain tend to yield indistinguishable patterns (Soll et al., 1987; Scherer & Stevens, 1988). These findings confirmed that the observed phenomenon of colony morphology variation by the nine oral isolates from HIV+ patients was not due to mixed strains. Of

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Ketoconazole susceptibility</th>
<th>Colony morphology</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>132A</td>
<td>High</td>
<td>Smooth-white</td>
<td>Oral isolate from HIV+ patient</td>
</tr>
<tr>
<td>132A-1</td>
<td>High</td>
<td>Rough-tan</td>
<td>Spontaneous derivative of 132A</td>
</tr>
<tr>
<td>132A-2†</td>
<td>High</td>
<td>Rough-tan</td>
<td>Derivative of 132A</td>
</tr>
<tr>
<td>132ACR†</td>
<td>Low</td>
<td>Wrinkled-tan</td>
<td>Derivative of 132A</td>
</tr>
<tr>
<td>132ACR-1</td>
<td>Low</td>
<td>Wrinkled-white</td>
<td>Spontaneous derivative of 132ACR</td>
</tr>
<tr>
<td>132ACR-2</td>
<td>Low</td>
<td>Smooth-white</td>
<td>Spontaneous derivative of 132ACR</td>
</tr>
<tr>
<td>122A</td>
<td>High</td>
<td>Smooth-white</td>
<td>Oral isolate from HIV+ patient</td>
</tr>
<tr>
<td>122A-†</td>
<td>High</td>
<td>Wrinkled-tan</td>
<td>Derivative of 122A</td>
</tr>
<tr>
<td>179A</td>
<td>Low</td>
<td>Smooth-white</td>
<td>Oral isolate from HIV+ patient</td>
</tr>
<tr>
<td>179A-†</td>
<td>Low</td>
<td>Wrinkled-tan</td>
<td>Derivative of 179A</td>
</tr>
</tbody>
</table>

* High susceptibility, hyphal outgrowth inhibited in the presence of ketoconazole concentrations in the range 0.0625-0.125 μM; low susceptibility, hyphal outgrowth inhibited in the presence of ketoconazole concentrations ≥10 μM.
† Derivatives recovered following growth in nutrient-depleted medium. Three colonies of each organism were tested in separate experiments.

Table 1. Susceptibility of oral C. albicans isolates from healthy carriers and HIV+ patients to ketoconazole determined by hyphal elongation assessment

<table>
<thead>
<tr>
<th>Isolate source</th>
<th>No. of isolates</th>
<th>No. of isolates with high susceptibility</th>
<th>No. of isolates with low susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy carriers</td>
<td>12</td>
<td>11†</td>
<td>1†</td>
</tr>
<tr>
<td>HIV+ patients</td>
<td>28</td>
<td>13†</td>
<td>15†</td>
</tr>
</tbody>
</table>

† Hyphal outgrowth inhibited in the presence of ketoconazole concentrations in the range 0.0625-0.125 μM.
†† Hyphal outgrowth inhibited only in the presence of ketoconazole concentrations ≥10 μM.

Table 2. Susceptibility of oral C. albicans isolates from HIV+ patients and of their derivatives to ketoconazole as determined by hyphal elongation assessment
Colony morphologies of *C. albicans* isolate 132A and its derivative 132ACR and of colony morphology variants of derivative 132ACR on PDA medium. *C. albicans* strain 132A (a) was an oral isolate recovered from a HIV+ individual. Derivative 132ACR (b) was a tan-coloured wrinkled colony morphology variant derived from strain 132A following growth in nutrient-depleted medium. Derivative 132ACR switches at a frequency of approximately 1% between three colony morphology phenotypes including tan wrinkled, white wrinkled and smooth white colony forms. Panel (c) shows examples of the white wrinkled and smooth white colony forms.

These findings indicated that colony morphology variation in vitro can, in some cases, lead to generation of derivatives exhibiting decreased ketoconazole susceptibility, as determined by hyphal elongation assessment experiments. Because the reduced ketoconazole susceptibility expressed by derivative 132ACR and its colony morphology variants was not acquired as a result of prior exposure to the drug, it was decided to investigate this phenomenon further. The effects of theazole antifungals ketoconazole and fluconazole were investigated with respect to (i) growth of 132ACR and its parental strain 132A, (ii) lipid and sterol patterns of whole cells of both organisms, and (iii) the biosynthesis of sterols in vitro using cytochrome P-450-containing cell-free extracts of strain 132A and its derivative 132ACR.

Effects of ketoconazole and fluconazole on growth of *C. albicans* strain 132A and its derivative 132ACR

Separate YEPD broth cultures of *C. albicans* strain 132A and its switched derivative 132ACR containing standardized inocula were incubated for 20 h at 37 °C in the presence or absence of varying concentrations of azole. In control experiments without azole the growth of the parental strain 132A was greater than that of its derivative 132ACR in more than ten separate experiments; following 20 h growth the cell density of broth cultures of strain 132A was 1.4 times greater than cultures of its derivative 132ACR. Ketoconazole had a greater effect in reducing the cell densities of broth cultures of *C. albicans* strain 132A than of broth cultures of its derivative 132ACR over a range of drug concentrations (Fig. 2a). Thus the cell densities (expressed as a percentage of those of drug-free control cultures) of broth cultures of derivative 132ACR were 5% greater than those of broth cultures of strain 132A at a ketoconazole concentration of 0.01 μM and 13% greater at 0.1 μM (Fig. 2a). The cell density of derivative 132ACR was reduced to 2% of the control value following growth in the presence of 10 μM-ketoconazole, whereas that of the parental strain 132A was reduced to 2% at a ketoconazole concentration of only 0.1 μM. Both organisms were less susceptible to growth inhibition by fluconazole than by ketoconazole over the same concentration range. Derivative 132ACR exhibited a greater susceptibility to fluconazole at the lower azole concentrations (0.1 and 1.0 μM) than its parental strain 132A, whereas it exhibited a decreased susceptibility in comparison to strain 132A at 10 μM-fluconazole (Fig. 2b).

Biosynthesis of lipids and sterols in whole cells of *C. albicans* strain 132A and its derivative 132ACR

In order to determine the effects of azoles on the biosynthesis of lipids and sterols in whole cells of *C. albicans* strain 132A and its derivative 132ACR, these
organisms were grown in the presence of $[^{14}C]$acetate and of various concentrations of ketoconazole and fluconazole.

Total lipid extract. An increase in the ^{14}C-incorporation into the lipid extracts of strain 132A and its derivative 132ACR grown for 20 h in YEPD with $[^{14}C]$acetate was observed with increasing concentrations of both ketoconazole and fluconazole compared with azole-untreated control cultures (Fig. 3). For both drugs, the incorporation of the ^{14}C-label was higher by the parental strain 132A than by its switched derivative 132ACR, with the greatest difference (approximately 10-fold) observed at 0.1 µM-ketoconazole (Fig. 3). However, gross lipid analysis of strain 132A and its derivative 132ACR by TLC showed no obvious differences (data not shown). The highest ^{14}C-incorporation (38.9%) was recorded in lipid extracts prepared from 250 ml YEPD broth cultures of strain 132A grown in the presence of 10 µM-fluconazole and $[^{14}C]$acetate (9×10^6 d.p.m. per 250 ml medium).

Sterols. Incubation of strain 132A and its derivative 132ACR for 20 h in the presence or absence of ketoconazole or fluconazole or solvent alone and $[^{14}C]$acetate followed by TLC of the lipid fractions demonstrated that almost 75% and 72%, respectively, of the total ^{14}C-label present in the cell extracts was incorporated into complex lipids (Table 3). ^{14}C-incorporation into free sterols recovered from cultures of strain 132A and its derivative 132ACR represented about 17% and 19%, respectively, of the total ^{14}C-incorporation with organisms grown in the absence of azoles (Table 3). There was no apparent difference in the amount of incorporated ^{14}C-label in the ergosterol-containing C-4 demethyl sterol fractions of azole-untreated control cultures of strain 132A and its derivative 132ACR (Table 3). However, clear-cut differences were observed in the ^{14}C-levels incorporated into C-4 demethyl, 4,14-dimethyl-, and 4,4',14-trimethyl sterols between control and azole-treated cells of either organism (Table 3). A 50% decrease in $[^{14}C]$acetate incorporation into the C-4 demethyl sterols fraction was obtained at a ketoconazole concentration of \sim0.01 µM and a fluconazole concentra-
Reduced azole susceptibility in Candida albicans

Table 3. Effects of ketoconazole and fluconazole on the incorporation of [14C]acetate into sterols and complex lipids in vitro by whole cells of C. albicans strain 132A and its derivative 132ACR

<table>
<thead>
<tr>
<th>Concn of azole (μM)</th>
<th>Complex lipids</th>
<th>C-4 demethyl sterols</th>
<th>4,14-dimethyl sterols</th>
<th>4,4',14-trimethyl sterols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>132A</td>
<td>132ACR</td>
<td>132A</td>
<td>132ACR</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>75</td>
<td>72</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.01</td>
<td>71</td>
<td>66</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>0.1</td>
<td>65</td>
<td>68</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10.0</td>
<td>ND</td>
<td>46</td>
<td>ND</td>
<td>2</td>
</tr>
<tr>
<td>Fluconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>74</td>
<td>71</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.01</td>
<td>75</td>
<td>78</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>0.1</td>
<td>67</td>
<td>70</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>10.0</td>
<td>64</td>
<td>76</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

ND, Not determined; insufficient growth of strain 132A for analysis. Complex lipids remained at the origin following chromatography.

*Total radioactivity found in the lipids and sterols extracted from whole cells was taken as 100% for each respective strain. Data are presented for a single set of experiments; similar data were obtained in three independent sets of experiments. Rf values of the sterols were determined by reference to the relative mobility of authentic standards (Rf values in parenthesis) as follows: C-4 demethyl sterols, (0.14); 4,14-dimethyl sterols, (0.20); 4,4',14-trimethyl sterols (0.22).

Table 4. Incorporation of [14C]acetate into sterols in whole cells of C. albicans strain 132A and its derivative 132ACR in the presence or absence of ketoconazole as detected by HPLC analysis

<table>
<thead>
<tr>
<th>C. albicans strain</th>
<th>Ketoconazole concn (μM)</th>
<th>Sterols & squalene*</th>
<th>Retention time:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>132A</td>
<td>3,6 diol</td>
<td>14ME</td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>38</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>132ACR</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>66</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>10.1</td>
<td>0</td>
<td>81</td>
<td>0</td>
</tr>
</tbody>
</table>

*Total radioactivity detected in sterol and squalene preparations was taken as 100%. Sterols were characterized on the basis of their retention times (min) as shown in the table. Abbreviations: E, ergosta-5,7,22-trien-3-ol (ergosterol); 3,6 diol, 14-methyl-ergosta-8,24 (28)-dien-3-ol; 14ME, 14-methylergosta-8,24 (28)-dien-3-ol; 4DE, 4,14-dimethylergosta-8,24-dien-3-ol; OF, 4,14-dimethylergosta-8,24 (28)-dien-3-ol; L, 4,4',14-trimethylcholesta-8,24 (28)-dien-3-ol; 24MET, lanost-8,24 (28)-dien-3-ol; S, squalene.

† Insufficient growth of strain 132A was obtained in the presence of 10 μM-ketoconazole for analysis to be performed.

Biosynthesis of sterols in vitro using cell-free extracts of C. albicans strain 132A and its derivative 132ACR

In order to investigate whether the decreased azole susceptibility exhibited by C. albicans derivative 132ACR could be correlated with decreased sensitivity...
of its 14-sterol demethylase, the effects of ketoconazole and fluconazole on the biosynthesis of sterols in vitro were investigated using cell-free extracts of strain 132A and its derivative 132ACR. Cell-free extracts of both organisms were prepared by homogenization and the biosynthesis of [14C]-labelled sterols from [2-14C]mevalonic acid as substrate was monitored in the presence and absence of azoles. The proportion of [2-14C]mevalonate incorporated into sterols by lysates of C. albicans strain 132A and its derivative 132ACR was 31% and 22%, respectively. Sterols were separated by TLC following isolation of non-saponifiable lipids. The identity of the separated sterols was determined by reference to the relative mobilities of authentic standards. Non-saponified lipids synthesized from extracts of both strain 132A and its derivative 132ACR were separated into the following compounds: C-4 demethylated sterols, 4,14-dimethylated sterols, 4,4',14-trimethylated sterols, an unknown compound and squalene.

In experiments with cell-free extracts from strain 132A, 0.01 µM-ketoconazole and 0.04 µM-fluconazole, respectively, inhibited sterol demethylation by 50% (IC₅₀ values). The corresponding IC₅₀ values for cell-free extracts of derivative 132ACR were 0.05 µM-ketoconazole and 1.0 µM-fluconazole, respectively. Not only were there differences in the IC₅₀ values between strain 132A and its derivative 132ACR but there were also differences in the IC₅₀ values obtained with ketoconazole and fluconazole. Liquid scintillation counting analysis of 14C-label incorporation revealed a concomitant increased incorporation of 14C-label into the 4,14-demethylated sterols and 4,4',14-trimethylated sterols with lysates from both organisms at azole concentrations above the IC₅₀ values.

For comparison with the results obtained with C. albicans strain 132A, additional IC₅₀ determinations were made with a fluconazole reference test C. albicans strain, strain Y0109, whose characteristics have been investigated (P. Troke, personal communication). The results for strain Y0109 were similar to strain 132A: IC₅₀ value of 0.01 µM-ketoconazole and 0.05 µM-fluconazole.

Discussion

Oral and oesophageal candidosis is a difficult condition to treat effectively. The introduction of the orally active azole antifungals ketoconazole and fluconazole has produced dramatic improvements in the management of the condition in immunocompromised patients (Fazio et al., 1983; Dupont & Drouhet, 1988; Epstein, 1990; Larsen, 1990; Hay, 1991). However, even with these drugs, protracted treatment is necessary if remission of infection is to be achieved and sustained (Esposito et al., 1990; Leen et al., 1990; Larsen, 1990). The situation has been compounded by an increasing number of reports of azole resistance in oral isolates of Candida species from HIV+ and AIDS patients (Tavitian et al., 1986b; Korting et al., 1988; Warnock et al., 1988; Fox et al., 1991; Kitchen et al., 1991; Fan-Havard et al., 1991).

The majority of C. albicans strains and many isolates of other Candida species have the ability to exhibit colony morphology variation or switching, which recent studies have shown is often associated with genetic variation and which may provide, non-sexual Candida species with the ability to adapt rapidly in their natural environment (Rustchenko-Bulgac et al., 1990; Rustchenko-Bulgac, 1991; Suzuki et al., 1991; Wickes et al., 1991). This ability may contribute to pathogenicity of the switched derivatives and to the development of derivatives with decreased susceptibility to antifungal drugs (Slutsky et al., 1985; Soll, 1989; Ghanouni et al., 1990). Approximately 30% of oral isolates of C. albicans recovered from more than 200 individual Irish HIV+ and AIDS patients exhibited colony morphology variation at 37°C on primary isolation (D. C. Coleman and others, unpublished). In the present study variants were readily generated from several oral C. albicans isolates from HIV+ patients and one of these was found to exhibit substantially reduced susceptibility to ketoconazole in vitro, in comparison to its parental isolate.

The discussion of the results of these experiments has to account for two interacting sets of variables: those arising from the differences between the parental strain 132A and its derivative 132ACR, and those that follow from the differences between the drugs ketoconazole and fluconazole. The results of the whole-cell studies showed that the derivative 132ACR grew less efficiently than its parental strain 132A. The pattern of growth inhibition for the two drugs differed: ketoconazole produced a dose-related effect, with 132A being more susceptible than 132ACR, while the pattern obtained with fluconazole was quite different. Derivative 132ACR was more susceptible to the effect of fluconazole at 0.1 and 1.0 µM than 132A and although this pattern was reversed at 10 µM, it is notable that 132A was still able to achieve substantial growth in the presence of fluconazole.

The chromatographic analyses showed that 132A and 132ACR produced a similar pattern of lipids and sterols, including ergosterol. Incorporation of [14C]-acetate in control and azole-treated cultures of both organisms was higher for the parental strain 132A than for the derivative 132ACR, reflecting the more efficient growth of the strain. This parameter was highest in the fluconazole-treated cultures of strain 132A and the greatest difference between incorporation into 132A and 132ACR was observed with 0.1 µM-ketoconazole, thus
Reduced azole susceptibility in Candida albicans

Reduced azole susceptibil...
References

Reduced azole susceptibility in Candida albicans

