PBS2, a yeast gene encoding a putative protein kinase, interacts with the RAS2 pathway and affects osmotic sensitivity of *Saccharomyces cerevisiae*

GEORGE BOGUSLAWSKI*

Departments of Medicine and of Microbiology and Immunology, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA

(Received 13 May 1992; revised 13 July 1992; accepted 24 July 1992)

The yeast gene PBS2 encodes a presumed protein kinase. The gene is essential for manifestation of resistance to the antibiotic polymyxin B. Deletion of PBS2 enables a ras2-530 null mutant to grow on nonfermentable carbon sources; overexpression of PBS2+ enhances viability of a RAS2vδ19 mutant. Overexpression of PBS2+ also diminishes cellular response to mating pheromone MFa. These results suggest that the PBS2 and RAS2 genes affect a common pathway that may communicate with the pheromone response pathway. In addition, disruption of PBS2 renders cells sensitive to high osmolarity: exposure to 0.9 M-NaCl causes growth arrest, appearance of bizarre morphological forms, and eventual death. A mutation suppressing pbs2 deletion has been found. That mutation restores full polymyxin B resistance but only partially corrects the osmotic sensitivity defect. These observations indicate that PBS2 is involved in diverse physiological pathways in yeast.

Introduction

Polymyxin B, a complex antibiotic produced by cells of *Bacillus polymyxa*, is very toxic to bacterial, fungal and animal cells. The drug exerts its effects by damaging the integrity of cell membranes (Storm et al., 1977), and at high concentration it causes cell lysis.

Polymyxin B has several important uses in biological studies. First, high concentrations of the antibiotic, a positively charged molecule, displace calcium ions from anionic phospholipids and cause disorganization of cell membranes (Storm et al., 1977). Thus, the topography of eukaryotic membranes, as well as the role of calcium ions in the maintenance of membrane structure and activity, can be elucidated with the help of this antibiotic (Bearer & Friend, 1980; Kubesch et al., 1987). Second, the drug produces interesting pharmacological effects. For example, it is one of the most potent neuromuscular blocking agents known (Singh et al., 1980), and it promotes the conversion of membrane acetylcholine receptors from the resting activatable state to the desensitized state (Brazil et al., 1989; Brown & Taylor, 1983). Third, the antibiotic inhibits Ca2+-activated K+ channels in mouse skeletal muscle (Weik & Lonnendonker, 1990) and in human red blood cells (Varecka et al., 1987). In addition, polymyxin B interferes with insulin-induced activation of hexose transport and metabolism in whole animals and in isolated muscle of mice and rats (Amir & Shechter, 1985; Amir et al., 1987). In *Saccharomyces cerevisiae* polymyxin B is a powerful inhibitor of mating (Boguslawski, 1986).

Studies on polymyxin B resistance in yeast have revealed the existence of two genes, PBS1 and PBS2 (polymyxin B sensitivity), whose activities are essential for the resistance phenotype (Boguslawski, 1985; Boguslawski & Polazzi, 1987). The deduced amino acid sequence of the PBS2 gene product bears a strong resemblance to polypeptides of the serine/threonine protein kinase family (Boguslawski & Polazzi, 1987; Hanks et al., 1988), making it likely that the gene does encode a protein kinase. The pbs1 mutation confers a high level of resistance to polymyxin B on yeast cells, but only if an intact PBS2+ gene is present (Boguslawski & Polazzi, 1987). Disruption of this gene results in a drug-sensitive phenotype. Conversely, overexpression of PBS2+ makes cells resistant to the drug even in the wild-type background.

The results discussed in the present communication show that, in addition to abolishing polymyxin B resistance, disruptions in the PBS2 gene can suppress a recessive null mutation of the yeast RAS2 gene, and that overexpression of PBS2+ attenuates the effect of a dominant RAS2vδ19 mutation. Furthermore, enhanced expression of PBS2+ diminishes the ability of cells to...
respond to a mating pheromone. These observations suggest that PBS2 may be a part of the signal transduction circuitry in yeast.

Methods

Strains. All yeast strains and plasmids used in this work are listed in Table 1. The media, growth conditions, and methods of genetic manipulation have been described by Sherman et al. (1983). YEPD medium contains 2% (w/v) glucose, 2% (w/v) Bacto peptone and 1% (w/v) yeast extract. Solid YEPD medium includes 2% (w/v) agar. All strains described here grow very well on this medium at 30°C.

Pheromone sensitivity assay. Approximately 10^7 MATa cells were suspended in 3 ml of 0.7% agar in water and poured on synthetic minimal medium plates containing the necessary nutrients. After the agar overlay had solidified, sterile filter disks (6 mm diameter) were placed on the surface, and synthetic mating pheromone (MFa, Sigma) was applied to each disk. The plates were incubated at 30°C for 2-3 d until the zones of inhibition were easily observed.

Viability assays. The tests were performed essentially as described by Toda et al. (1985). Cells were grown at 30°C to stationary phase in liquid minimal medium supplemented with the necessary nutrients, washed with water, and resuspended in starvation medium (2% w/v, glucose and 0.17%, w/v, Difco yeast nitrogen base without nitrogen source or the nutrients) at 1 x 10^6 cells ml^-1 (Toda et al., 1985). After 96 h of shaking at 300 r.p.m. at 30°C, aliquots were plated on solid YEPD, and viability was determined by counting colonies on each plate after 2 d.

Heat shock. Cells were patched on minimal medium plates supplemented with the necessary nutrients and grown to confluence. The plates were sealed with Parafilm and floated in a 55°C water bath. After incubation, the plates were replicated onto YEPD and incubated at 30°C for 72 h and photographed. Survival of the cells was tested by incubating the patches on the 0.9 M-NaCl plate for 9 d and replica-printing onto YEPD containing 0.9 M-NaCl. The plate was incubated at 30°C for 72 h and photographed. Survival of the cells was tested by incubating the patches on the 0.9 M-NaCl plate for 9 d and printing onto fresh YEPD.

Phase-contrast and fluorescence microscopy. Methods described by Adams & Pringle (1991) were used to assess the effect of high salt concentration on cell morphology. Cells were scraped from a plate of YEPD containing 0.9 M-NaCl, washed, fixed in formaldehyde, and examined microscopically. Rhodamine-phalloidin conjugate (Molecular Probes) was used to determine actin distribution.

Plasmid constructions. Two integrating plasmids were used in this study (Fig. 1). Plasmid YIP5-AN117 carries a 1.17 kb internal fragment (AatII–NarI) of the PBS2 gene in the YIP5 vector (Boguslawski & Polazazzi, 1987). To create a disruption, pbs2-l, the plasmid was digested with restriction endonuclease ClaI. The linear molecule was integrated into the chromosomal site, disrupting the open reading frame at amino acid 141. Alternatively, a deletion, pbs2-2, was created by substituting the Tc2-URA3+ portion of YIP5 (as a 3.2 kb ClaI-XmnI fragment) for the 1.26 kb ClaI-Strom fragment. The resulting plasmid pGB5 was digested with AatII, and the 4.1 kb fragment was integrated into the chromosome to create pbs2-2, with the protein coding sequence truncated at amino acid 38. Southern analysis confirmed the nature of integration in each case (data not shown), and the two constructions displayed essentially identical phenotypes in the tests described in this communication.

For studies requiring overexpression of PBS2+, an episomal plasmid YEP24.PBS2 was constructed. For this purpose, the parent plasmid RSH (Boguslawski & Polazazzi, 1987) was digested with SacI restriction endonuclease, the ends made flush with T4 phage DNA polymerase, and a SalI linker added. After ligation and transformation of Escherichia coli, the plasmid was isolated, digested with DRAI and Sall, and a 3.2 kb DraI-Sall fragment, containing the entire PBS2 gene, was isolated by gel electrophoresis. The purified fragment was ligated into the YEP24 vector that had been digested with PvuII and Sall.

Table 1. Saccharomyces cerevisiae strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strains</th>
<th>Genotype or relevant markers</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>YNN27</td>
<td>MATa trp1-289 ura3-52</td>
<td>R. W. Davis (1985)</td>
</tr>
<tr>
<td>GBH21</td>
<td>MATa trp1-289 ura3-52 pbs1-273</td>
<td>This work, from GBH21</td>
</tr>
<tr>
<td>GBH37</td>
<td>MATa trp1-289 ura3-52 pbs1-273 pbs2-2</td>
<td>This work, from YNN27</td>
</tr>
<tr>
<td>GBH38</td>
<td>MATa trp1-289 ura3-52 pbs1-273 pbs2-2 PBS*</td>
<td>This work, from GBH37</td>
</tr>
<tr>
<td>GBH46</td>
<td>MATa trp1-289 ura3-52 pbs1-273 pbs2-2 PBS*</td>
<td>Cannon et al. (1986)</td>
</tr>
<tr>
<td>JC482</td>
<td>MATa his4 ura3 leu2</td>
<td>Cannon et al. (1986)</td>
</tr>
<tr>
<td>JC302</td>
<td>MATa ras2-530 LEU2* his4 ura3 leu2</td>
<td>Cannon et al. (1986)</td>
</tr>
<tr>
<td>GBH74</td>
<td>MATa ras2-530 LEU2* his4 ura3 leu2</td>
<td>This work, from JC302-26B</td>
</tr>
<tr>
<td>JC303-58</td>
<td>MATa ras2-530 LEU2* his4 ura3 leu2 yak1(SRA7-14)</td>
<td>This work, from JC303-58</td>
</tr>
<tr>
<td>X10</td>
<td>MATa ras2-530 LEU2* his4 ura3 leu2 yak1(SRA7-14)</td>
<td>This work, from JC303-58</td>
</tr>
<tr>
<td>SP1</td>
<td>MATa leu2 his3 ade8 ura3 trp1 can1</td>
<td>This work, from SP1</td>
</tr>
<tr>
<td>GBH83</td>
<td>MATa leu2 his3 ade8 ura3 trp1 can1 pbs2-2</td>
<td>Toda et al. (1985), from SP1</td>
</tr>
<tr>
<td>TK161-R2V</td>
<td>MATa leu2 his3 ade8 ura3 trp1 can1 RAS2*</td>
<td>Toda et al. (1985), from SP1</td>
</tr>
<tr>
<td>GBH65</td>
<td>MATa leu2 his3 ade8 ura3 trp1 can1 RAS2*</td>
<td>This work, from TK161-R2V</td>
</tr>
<tr>
<td>YEp24.PBS2</td>
<td>Episomal, Ap+, URA3*, complete PBS2* gene</td>
<td>This work</td>
</tr>
<tr>
<td>YIP5-AN117</td>
<td>Integrating, Ap+, URA3* (see Fig. 1)</td>
<td>Boguslawski & Polazazzi (1987)</td>
</tr>
<tr>
<td>pGB5</td>
<td>Integrating, Ap+, Tc*, URA3* (see Fig. 1)</td>
<td>This work</td>
</tr>
</tbody>
</table>

* Strain GBH46 carries a mutation that restores polymyxin B resistance (PBS). The nature of this mutation has not been elucidated (see text for details).
Suppression of RAS2 mutations

Fig. 1. Integrating plasmids YIp5-AN117 and pGB5. The details of plasmid construction are described in Methods. The PBS2 sequences used to promote chromosomal integration are shown as filled arrows.

Fig. 2. Reduction of sensitivity to mating pheromone α by overexpression of PBS2+. Increasing amounts of the synthetic pheromone MFα were applied to each filter disk (disk 1, 1.8 µg; 2, 3.6 µg; 3, 5.4 µg; 4, 7.2 µg; 5, 10.8 µg). The plates were incubated for 2 d at 30°C. A, GBH83, pbs2-2; B, SP1 transformed with YEp24.PBS2; C, SP1 transformed with YEp24 vector.

Results

Previous studies revealed that polymyxin B is a potent inhibitor of mating in Saccharomyces cerevisiae (Boguslawski, 1986). This observation suggested that genes involved in polymyxin B resistance may interact with some elements of signal transduction pathways in yeast. As shown in Fig. 2, overexpression of PBS2+ considerably reduces sensitivity of α cells to the mating pheromone α (disruption of PBS2 may slightly enhance sensitivity). Therefore, a component of the yeast pheromone signalling pathway may be influenced by PBS2-dependent phosphorylation. However, although PBS2 kinase belongs to the STE7 family of protein kinases (Hanks et al., 1988), and the STE7 gene is essential for mating in yeast (Teague et al., 1986), neither disruption nor overexpression of PBS2 can restore mating ability to cells lacking a functional STE7 gene (data not shown). Variation in copy number of PBS2 also has no effect on the activity of FUS1 gene (Truehart et al., 1987; data not shown).

An important subset of signal transduction pathways is known to be regulated by two RAS genes which act as
modulators of adenylyl cyclase activity (Field et al., 1990b; Toda et al., 1985). Mutations in the \textit{RAS2} gene confer pleiotropic effects on cells (Cannon et al., 1986; Toda et al., 1985). These effects include a decrease in cyclic AMP (cAMP) levels, enhanced sporulation in rich media, and accumulation of storage carbohydrates such as glycogen. In addition, \textit{ras2} mutants are unable to use nonfermentable carbon sources such as ethanol for growth (Cannon et al., 1986). However, these mutants grow very well on rich media such as YEPD that contain glucose as carbon source.

Disruption of the \textit{PBS2} gene in the strain bearing a null allele of the \textit{RAS2} gene (\textit{ras2-530 : LEU2+}) restores the ability of cells to grow on 3% ethanol (Fig. 3). However, the growth is not as robust as when a \textit{ras2} suppressor mutation in another protein kinase gene \textit{yak1} (Garrett & Broach, 1989) is present; this gene has been described as \textit{SRA7} by Cannon et al. (1986). In contrast to \textit{yak1/SRA7}, \textit{pbs2} at 37 °C cannot suppress a \textit{cyr1/cdc35} (adenylyl cyclase) temperature-sensitive defect (\textit{cyr1-2 and cdc35-10 alleles were tested}) or a \textit{ras1 ras2} double mutation (not shown). The disruption neither enhances nor diminishes growth of the two \textit{cyr1} mutants at room temperature. Although these negative results may be explained by the weak suppressive effect of \textit{pbs2} (Fig. 3), they do suggest a possibility that \textit{PBS2} acts downstream of or in parallel to \textit{RAS2} but not downstream of \textit{CYR1}; they also indicate that the targets for \textit{yak1} and \textit{pbs2} suppression are probably not related.

A dominant missense mutation that substitutes valine for glycine at position 19 (\textit{RAS2vd19}, activated \textit{RAS2}) results in an increased level of cAMP in the cells, poor sporulation, lack of carbohydrate accumulation, and loss of viability upon starvation or heating (Toda et al., 1985).

To assess the effects of changes in \textit{PBS2} copy number on the viability of \textit{RAS2vd19} mutants, the cells were transformed with either an integrating or an episomal plasmid (see Table 1) and subjected to a starvation regimen as described in Methods. The viability of the wild-type strain SP1 was excellent and appeared un-
affected by the condition of the PBS2 allele (Table 2, unpublished data). In contrast, most cells of the activated RAS2 mutant (strain TK161-R2V, quite unhealthy to begin with) died upon starvation. The survival of this strain was further depressed about fivefold by the pbs2 deletion but was enhanced about threefold by overexpression of PBS2+ (Table 2). These results are reinforced by the observation that pbs2 disruption enhanced heat-shock sensitivity, whilst overexpression of PBS2+ protected the cells from thermal death (Fig. 4).

Accumulation of glycogen by the various strains used in this study was examined by iodine staining (Cannon et al., 1986). There was no effect either of overexpression of PBS2+ or of pbs2 disruption or deletion on the staining, and the pattern of glycogen accumulation followed that of the corresponding parent. Thus, regardless of the status of the PBS2 allele, ras2-530 colonies became dark brown when exposed to iodine vapour, while the RAS2Δ10 colonies remained straw yellow (data not shown). As with adenyl cyclase mutants (cyr1), the lack of effect may be related to the weak suppression (perhaps because the threshold of sensitivity is different for growth on ethanol and carbohydrate accumulation). Nevertheless, PBS2 suppression, or lack of it, provides an additional means of discriminating between the several cellular effects of the RAS2 gene.

Polymyxin B is a membrane-active antibiotic, and genes controlling cellular responses to the drug may be logically thought to participate in membrane functions. One manifestation of membrane activity is osmoregulation or the ability of cells to cope with the increased salt concentration in the growth medium. As shown in Fig. 5, the wild-type cells and pbs1 (polymyxin B resistant) mutant grew well when 0.9 M NaCl was present. In contrast, a pbs2 mutant and pbs1 pbs2 double mutants were unable to grow under such conditions (Fig. 5, C and D), and continued incubation resulted in death of these cells. Microscopic examination of cells exposed to 0.9 M NaCl revealed (Fig. 6) that pbs2 mutant cells became morphologically aberrant, unable to form buds, but instead producing elongated, almost hypha-like extensions. However, as in normal cells, actin appeared to accumulate in the growing tip (Fig. 6, E). Cells grown in the absence of NaCl displayed normal morphology and viability (not shown). Interestingly, a strain selected as a polymyxin B resistant derivative of pbs1 pbs2 (i.e. bearing a suppressor of pbs2 disruption) showed only weak growth on 0.9 M NaCl (Fig. 5, E), even though its level of resistance to polymyxin B equalled that of the pbs1 parent. The suppressor strain, although clearly inhibited by the high salt concentration, was morphologically normal (data not shown). These results may be interpreted as meaning that the aberrant morphology is only partially related to osmotic sensitivity of the pbs2 disruptant, and that involvement of PBS2 kinase in antibiotic resistance could be separated from its role in osmoregulation. The above observations, coupled with suppression of RAS2 mutations, suggest that PBS2 is involved in several diverse physiological processes, all of which may relate to cell membrane function.

Table 2.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>Wild-type</td>
<td>95-3</td>
</tr>
<tr>
<td>TK161-R2V</td>
<td>RAS2Δ10</td>
<td>0-37</td>
</tr>
<tr>
<td>TK161-R2V(YEp24.PBS2)</td>
<td>RAS2Δ10 PBS2++</td>
<td>1-20</td>
</tr>
<tr>
<td>GBH65</td>
<td>RAS2Δ10 pbs2-2</td>
<td>0-07</td>
</tr>
</tbody>
</table>

* PBS2+ is overexpressed in cells transformed with YEp24.PBS2 plasmid.
Discussion

The results of this study indicate that the *RAS2* and *PBS2* genes may be involved in a common pathway. The fact that deletions of *PBS2* suppress the null *ras2* phenotype of JC302-26B suggests that *PBS2* acts (negatively) on an element downstream of *RAS2*; it also implies an antagonism between the products of the two genes. In addition, overexpression of *PBS2* weakens the effect of the enhanced *RAS2* activity of TK161-R2V, thus confirming the antagonistic relationship between *PBS2* and *RAS2*. It is possible that *RAS2* is a negative regulator of *PBS2* activity; another possibility is that *RAS2* overcomes the negative effect of *PBS2* on a component downstream from these two genes (for example, by promoting dephosphorylation of that component). Alternatively or simultaneously, deletion of *PBS2* may allow derepression of *RAS1* gene that is normally repressed in the presence of nonfermentable carbon sources (Breviario et al., 1986), thus permitting growth of the *ras2* *pbs2* double mutant on ethanol. It is important to note that the suppression is not very strong, and that neither overexpression nor deletion of *PBS2* allows cells to bypass other *RAS* functions or to restore a completely wild-type phenotype.

One cellular component directly downstream from *RAS2* is the adenyl cyclase complex (encoded by *CYRI*, *CAP*, *IRA1*, and perhaps other genes; Fedor-Chaiken et al., 1990; Field et al., 1990a; Mitts et al., 1992, Vojtek et al., 1991). The *RAS* proteins control the activity of this complex (Fedor-Chaiken et al., 1990; Field et al., 1990a; Toda et al., 1985; Vojtek et al., 1991). Since *PBS2* deletion or overexpression cannot suppress mutations either in the *CYRI* (CDC35) gene or in a double mutant *ras1* *ras2* (data not shown), changes in *PBS2* do not allow cells to bypass the cyclase step. Nevertheless, a specific interaction can be envisioned. It is possible that the antagonistic relationship between *RAS2* and *PBS2* is reflected, in part, in the phosphorylation–dephosphorylation state of the adenyl cyclase complex: *PBS2* kinase may down-modulate the complex activity, while *RAS2* could promote dephosphorylation. If so, in a *ras2* background, deletion of *PBS2* should decrease the amount of a phosphorylated complex, thereby enhancing its basal activity, and thus permitting the *ras2* mutant to grow on ethanol (Fig. 3). In *RAS2*"*PBS2*" cells, in which constitutive activation of the adenyl cyclase is the presumed reason for loss of viability upon starvation (Toda et al., 1985), diminished phosphorylation would lead to an increased cyclase activity (already enhanced by the activated *RAS2* protein) and further depression of viability. Conversely, overexpression of *PBS2* kinase would be expected to enhance cell survival (Table 2, Fig. 4), because it would counteract the overstimulation of the complex by the *RAS2*"*PBS2*" protein.

At least two additional cellular elements could be the targets for the *RAS2*–*PBS2* pathway or for *PBS2* alone. First, as shown earlier (Fig. 2), overexpression of *PBS2* diminishes mating factor sensitivity. It may be significant that the pheromone response pathway in yeast is mediated by *G* proteins that share some structural and biochemical features with *RAS* proteins (Blumer & Thorner, 1991). An independent suggestion of ‘cross-talk’ between the pheromone response elements and the *RAS*–adenyl cyclase pathway has been recently presented by Arkinstall et al. (1991).

Second, as already pointed out, *PBS2* is essential for the expression of polymyxin B resistance of *pbsl* mutants (Boguslawski & Polazzi, 1987). Thus, it is likely that the *PBS1* gene product is another substrate for *PBS2* kinase, and that resistance requires phosphorylation of the *PBS1* product. However, other interpretations are possible. For example, it could be that the mutation in *PBS1* results in an increase in *PBS2* expression and, thus, resistance. Two pieces of evidence argue against this possibility. First, there is no difference in the amount of *PBS2* mRNA detectable in either wild-type or *pbsl* cells (data not shown), and previous results indicate that at least four copies of intact *PBS2* are necessary to confer polymyxin B resistance in the wild-type, *PBS1*"*PBS2*" background (Boguslawski & Polazzi, 1987). Therefore, at least fourfold (and probably higher) derepression of *PBS2* would have to result from *pbsl* mutation. Second, the resistance due to overexpression of *PBS2* is not observed at 37 °C, whilst that due to *pbsl* mutation is equally strong at 25 °C and 37 °C (not shown). This means that the biochemical basis for resistance must be different in these two cases even though *PBS2* kinase (single gene copy) is essential for expression of the *pbsl*-conferred resistant phenotype.

pbsl mutants are deficient in net potassium uptake (R. Gaber and G. Boguslawski, unpublished data). This observation opens an attractive (but speculative) prospect that *PBS1* encodes a (component of) a potassium channel that is dependent on the activities of the *RAS2* and *PBS2* genes. Such a possibility is supported by the evidence that animal RAS and other *G* proteins are linked to eukaryotic potassium channel activity and regulation (Birnbauer et al., 1990; Colin et al., 1990; Rane, 1991), that phosphorylation state affects potassium channel functioning (Rudy, 1988), and that polymyxin B inhibits calcium-activated potassium channels in mammalian cells (Varecka et al., 1987; Weik & Lonendonker, 1990). A very recent report (Schultz et al., 1992) demonstrates that potassium flux regulates adenyl cyclase activity in Paramecium. The cloning and characterization of *PBS1* will be necessary to determine
whether and how the RAS2 gene product might interact with potassium channels and with the molecules involved in polymyxin B resistance in yeast.

Addendum. While this work was in progress, I was informed by Dr Richard Kahn of the National Cancer Institute, Bethesda, MD, USA, that the previously reported sequence of PBS2 (Boguslawski & Polazzi, 1987) is in error. The corrections are as follows: nucleotide 665 (C) is replaced by a G, and nucleotide 667 (G) is replaced by a C. These replacements change amino acids Ala222 and Val223 to Gly222 and Leu223, respectively. Further, an additional T residue is found in the nucleotide sequence at the position 2002 that results in a replacement of Tyr668 by Leu668 and in the appearance of a nonsense codon TAG immediately after the Leu668 residue. Therefore, the predicted PBS2 polypeptide contains 668 amino acids rather than the previously calculated 710 amino acids. The changes in the sequence have no bearing on the previous and current genetic data or on the surmised membership of the PBS2 product in the protein kinase family.

This paper is dedicated to the memory of my mother.

I thank Richard Gaber for his thoughtful comments on the manuscript and Mark Goebi for allowing me to use his fluorescence microscope.

References

G. Boguslawski

