Description of two anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population in vivo

VLADIMIR A. KOSTYUKOVSKY,1* OLEG N. OKUNEV1 and BORIS V. TARAKANOV2

1Laboratory of Microbial Physiology, Institute of Biochemistry and Physiology of Micro-organisms, USSR Academy of Sciences, Pushchino, Moscow Region 142292, USSR
2Laboratory of Animal Gut Microbiology, Institute of Animal Physiology, Biochemistry and Nutrition, Borovsk, Kaluga Region 249010, USSR

(Received 15 February 1991; accepted 15 March 1991)

Neocallimastix sp. NC71 and Piromyces sp. PC12 isolated from the calf rumen grew optimally at 39 °C and pH 6.5-6.7, utilized a wide range of mono-, oligo- and polysaccharides and exhibited CMCase, Avicelase, cellobiase, amylase and xylanase activities. The end-products of wheat straw fermentation by both strains were acetate, formate, ethanol and lactate. The number of Neocallimastix sp. zoospores in the rumen of cows in the first 3 h after feeding with hay-silage-concentrate diets varied from 7×10^3 to 5.4×10^5 ml⁻¹; the number of uniflagellate zoospores varied from 10^4 to 10^5 ml⁻¹. Fungal zoosporogenesis and colonization of plant substrates in the rumen were induced by feed intake and were favoured by increased levels of crude fibre in the diet.

Introduction

The number of anaerobic fungi in the rumen is maximal in animals fed high-roughage diets, as in animals fed low-fibre rations the chytridiomycete population is reduced or absent (Bauchop, 1979). However, despite considerable interest in anaerobic fungi, information on their development in the rumen of animals receiving different diets is limited (Grenet et al., 1988). The contribution of the anaerobic mycoflora to feed digestion in the rumen has yet to be quantified.

The purpose of this work was to study morphological, physiological and biochemical properties of anaerobic fungi from the bovine rumen, and the isolation of chytridiomycetes from ruminants in the USSR is reported for the first time. The extent of fungal colonization of the substrate was determined by incubating timothy hay in nylon bags in the rumen. Leaves were cut into 15-20 mm fragments and placed into 50-170 pm porosity nylon bags (15 pieces per bag). The bags (8 × 7 cm in size) were tied to a 500 mm nylon cord and introduced through the fistula into the rumen just before feeding, and were incubated for 16 h. After incubation, the bags were removed and washed with tap water. Leaf fragments were placed onto glass slides, dried with filter paper and stained for 50 s with lactophenol blue. The procedure (Akin, 1987) was modified by using methylene blue instead of trypan blue. Colonization was determined on a Goryayev haemocytometric chamber; genera were established using the descriptions of Orpin (1975, 1976, 1977a).

The extent of fungal colonization of the substrate was determined by incubating timothy hay in nylon bags in the rumen. Leaves were cut into 15-20 mm fragments and placed into 50-170 pm porosity nylon bags (15 pieces per bag). The bags (8 × 7 cm in size) were tied to a 500 mm nylon cord and introduced through the fistula into the rumen just before feeding, and were incubated for 16 h. After incubation, the bags were removed and washed with tap water. Leaf fragments were placed onto glass slides, dried with filter paper and stained for 50 s with lactophenol blue. The procedure (Akin, 1987) was modified by using methylene blue instead of trypan blue. Colonization was determined on a Goryayev haemocytometric chamber; genera were established using the descriptions of Orpin (1975, 1976, 1977a).

The extent of fungal colonization of the substrate was determined by incubating timothy hay in nylon bags in the rumen. Leaves were cut into 15-20 mm fragments and placed into 50-170 pm porosity nylon bags (15 pieces per bag). The bags (8 × 7 cm in size) were tied to a 500 mm nylon cord and introduced through the fistula into the rumen just before feeding, and were incubated for 16 h. After incubation, the bags were removed and washed with tap water. Leaf fragments were placed onto glass slides, dried with filter paper and stained for 50 s with lactophenol blue. The procedure (Akin, 1987) was modified by using methylene blue instead of trypan blue. Colonization was determined on a Goryayev haemocytometric chamber; genera were established using the descriptions of Orpin (1975, 1976, 1977a).

Isolation of anaerobic fungi. The primary isolation medium (Bauchop, 1979) contained (l⁻¹): main solution, 900 ml; reducing agents, 10 ml; 5% (w/v) K₂HPO₄, 10 ml; and 5-6% (w/v) NaHCO₃, 80 ml. The main
solution consisted of (NH₄)₂SO₄, 0.5 g; KH₂PO₄, 0.5 g; NaCl, 1.0 g; MgSO₄·7H₂O, 0.05 g; CaCl₂·2H₂O, 0.05 g; peptone (Serva), 1.0 g; yeast extract (Difco), 1.0 g; 0.1% (w/v) resazurin, 1 ml; clarified rumen fluid, 170 ml; distilled water to 900 ml (Orpin, 1975). The reducing agents solution consisted of (NH₄)₂SO₄, yeast extract (Difco), 1.0 g; 0.1 M MgSO₄·7H₂O, 0.05 g; CaCl₂·2H₂O, 0.5 g; Na₂S·9H₂O, 0.5 g; resazurin, 0.1 ml; distilled water (10 ml) and 0.1 ml of reducing agents solution were injected into each tube. Immediately before inoculation, 0.1 ml of a solution containing benzylpenicillin (sodium salt) and streptomycin sulphate was added into each test tube so that their concentrations in the medium were 1000 and 100 IU ml⁻¹, respectively. Pure cultures of the anaerobic fungi were isolated in this medium supplemented with 2% (w/v) agar and 0.2% (w/v) cellobiose, using the method of Joblin (1979). Purity of the cultures was checked microscopically after inoculation into a liquid medium containing glucose without antibiotics (Lowe et al., 1985). The isolates were subcultured at intervals of 2-4 d with a 5% (v/v) inoculum.

The fungi were also cultured on a semi-defined modification of the above medium in which the rumen fluid was replaced by solutions of volatile fatty acids (VFA, 10 ml), vitamins (10 ml), trace elements (10 ml), haemin (10 ml) and distilled water (130 ml). The VFA mixture contained (mg per 100 ml): CaCl₂·2H₂O, 140; FeSO₄·7H₂O, 250; MnSO₄·5H₂O, 220; ZnSO₄·7H₂O, 220; H₂BO₃, 10; Na₂MoO₄·2H₂O, 15; Na₂SeO₃, 1.5; Na₂SiO₃·6H₂O, 3.8; NH₄VO₃, 1.2; KI, 1.5; CuSO₄·5H₂O, 4; CoCl₂·6H₂O, 4; LiSO₄, 0.8; NiCl₂·6H₂O, 0.4; and AlCl₃·6H₂O, 0.9, as suggested for the cultivation of cellulolytic micromycetes (A. V. Shulga, unpublished data). The haemin (0.1%) was dissolved in a 1:1 (v/v) mixture of ethanol and 0.05 M NaOH. The trace element solution was sterilized by autoclaving (121 °C, 30 min) and the vitamin solution was filter-sterilized. After sterilization, solutions of haemin (10 ml), NaHCO₃ (80 ml) and K₂HPO₄ (10 ml) were mixed anaerobically and the combined solution (1 ml), vitamins (0.1 ml), VFA (0.1 ml) and reducing agents solution (0.1 ml) were injected into tubes of sterile medium.

Morphological, physiological and biochemical properties. Morphology of the zoospores and thalli was studied by phase-contrast microscopy. The life cycle was studied in the semi-defined liquid medium containing cellobiose (Lowe et al., 1987b). The ability of the strains to utilize various mono-, di- and polysaccharides was studied in a Yeast Nitrogen Base (YNB) medium (Difco), without antibiotics, prepared as follows: YNB (6.7 g) was mixed with VFA (10 ml) and haemin solution (10 ml), K₂HPO₄ (0.5 g) and NaHCO₃ (5 g); the volume was adjusted to 100 ml with distilled water. Test tubes were filled with 9 ml boiled distilled water, sealed by butyl rubber stoppers, and autoclaved (121 °C, 30 min). Filter-sterilized medium (1 ml) and reducing agents solution (0.1 ml) were injected into the tubes.

Temperature and pH optima for growth were determined by monitoring formate accumulation (Lowe et al., 1987a) after 3 d incubation in the semi-defined liquid medium with cellobiose at 27-45 °C and pH 4-8.

Fermentation end-products were determined after 4-6 d growth in the semi-defined medium with either wheat straw, filter paper or cellobiose. VFA and ethanol were determined by gas chromatography; formate was estimated colorimetrically (Sleat & Mah, 1984) and lactate enzymically (Noll, 1974).

The insoluble protein content of the fungal biomass in the cellobiose-containing medium was determined after extraction with 1 M NaOH at 100 °C for 10 min (Pavlostathis et al., 1988).

Enzyme activities. Extracellular enzyme activities against carboxymethylcellulose (CMC), crystalline cellulose (Avicel), starch and xylan were determined by measuring liberated reducing sugars (Ghose et al., 1981). One unit of polysaccharidase activity released 1 μmol of reducing sugar in 1 min. Cellobiose activity was determined by measuring glucose release by the glucose oxidase method (Sherbuhin et al., 1970). One unit of cellobiose activity degraded 1 μmol of substrate in 1 min.

Results

Characterization of strains isolated

Two principal morphological types of fungi that differed in thallus form and size as well as number of flagella and zoospore morphology were present. Cultures of anaerobic fungi with multiflagellate zoospores and with uniflagellate zoospores were isolated. One representative strain of each type, that grew well under the cultivation conditions used, was selected for detailed study.

Morphology and life cycle of strain NC71

The vegetative body was a branched septum-free colourless rhizoid that penetrated deeply into the plant tissue and reached 400 μm in length and 10-15 μm in thickness at the base. The thallus was monocentric. The zoosporangium formed on the surface of the substrate and was usually of ovoid or spherical form, 70-90 μm in diameter. The colonies that formed in the agar medium in roll tubes were round and hyaline, up to 2 mm in diameter, with irregular edges. A cluster of up to 250 sporangia with radial mycelial hyphae was visible in the centre of the colony. The zoospores, 15-20 x 10-12 μm in size, were oval, and possessed from 2 to 12 (7 ± 2, n = 40) flagella that were up to 40 μm in length. Living zoospores were refractile.

Attachment to the inner walls of the culture tubes usually occurred in 1-2 h. The attached zoospore encysted and germinated; the flagella were usually, but not always, rejected. After 2-2.5 h the rhizoid was 40-50 μm in length. The main rhizoid then began to branch and grew rapidly up to a maximum rate of 30 μm h⁻¹ by 15 h after inoculation. The sporangium growth rate during this period reached 248-8 μm h⁻¹. Subsequently, the size of the rhizoid increased, mainly by the growth of side hyphae. The rhizoid ceased to grow by 18-20 h after inoculation. At this stage a partition was formed between
Table 1. **Principal end-products of substrate fermentation by strains NC71 and PC12**

Composition of the fermentation end-products was determined after 4-6 d growth in the semi-defined medium with wheat straw, filter paper and cellobiose. The results are means ± standard error (n = 4). Gaseous end-products were not determined.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Concentration of metabolite (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acetate</td>
</tr>
<tr>
<td>Straw</td>
<td></td>
</tr>
<tr>
<td>NC71</td>
<td>9.8 ± 2.3</td>
</tr>
<tr>
<td>PC12</td>
<td>10.9 ± 0.9</td>
</tr>
<tr>
<td>Paper</td>
<td></td>
</tr>
<tr>
<td>NC71</td>
<td>13.4 ± 8.2</td>
</tr>
<tr>
<td>PC12</td>
<td>10.2 ± 2.4</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>5.3 ± 0</td>
</tr>
<tr>
<td></td>
<td>11.0 ± 3.4</td>
</tr>
</tbody>
</table>

Table 2. **Activities of hydrolases produced by strains NC71 and PC12 in liquid semi-defined medium with wheat straw**

Extracellular enzyme activities were measured in 3 d cultures and are expressed as nmol reducing sugars released min⁻¹ (ml culture)⁻¹ for CMCase, Avicelase, amylase and xylanase or as nmol glucose produced min⁻¹ (ml culture)⁻¹ for cellobiase. The results are means ± standard error (n = 4).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Activity</th>
<th>CMCase</th>
<th>Avicelase</th>
<th>Cellobiase</th>
<th>Amylase</th>
<th>Xylanase</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC71</td>
<td></td>
<td>98 ± 14</td>
<td>3.7 ± 2.1</td>
<td>59 ± 17.0</td>
<td>6.7 ± 1.9</td>
<td>398 ± 38</td>
</tr>
<tr>
<td>PC12</td>
<td></td>
<td>36 ± 10</td>
<td>0.6 ± 0.3</td>
<td>10 ± 0.8</td>
<td>12.3 ± 3.9</td>
<td>254 ± 24</td>
</tr>
</tbody>
</table>

Physiological and biochemical properties of the isolated strains

Growth of strains NC72 and PC12 was observed at 33–42 °C, and pH 6.0–7.0, with optima at 39 °C and pH 6.5–6.7 respectively. Both strains were strictly anaerobic and unable to grow in liquid medium in the presence of air.

Both fungi grew well in liquid semi-defined media with wheat straw, timothy hay, filter paper, Avicel, soluble starch, xylan, D-glucose, D-xylose, D-lactose, D-maltose, D-sucrose or D-cellobiose as sole substrates. Fructose and melibiose were utilized poorly by NC71 and PC12 respectively. Growth of the strains was poor with CMC and pectin in both liquid and agar media in roll tubes. Polygalacturonic acid, aesculin, L-arabinose, D-galactose, lyxose, D-mannose, L-rhamnose, D-ribose, L-fucose, erythrose, dulcitol, i-inositol, D-mannitol, D-sorbitol, D-raffinose and D-trehalose were not assimilated.

The principal fermentation end-products of wheat straw, filter paper and cellobiose produced by strains NC71 and PC12 are presented in Table 1. Gaseous end-products were not determined.

In the liquid semi-defined medium with wheat straw, strains NC71 and PC12 synthesized CMCase, Avicelase, cellobiase, amylase and xylanase. Extracellular activities of the enzymes in the culture supernatant after 3 d growth are given in Table 2. Temperature and pH optima for CMCase, cellobiase and xylanase were 50 °C and 6-0, 50 °C and 5-5, 45 °C and 6-0, respectively.
Table 3. Effect of diet on the fungal colonization of leaf material in the rumen

<table>
<thead>
<tr>
<th>Animal</th>
<th>Diet and period:</th>
<th>10^{-3} \times \text{Number of sporangia cm}^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>1</td>
<td>7.0 ± 1.7</td>
<td>120 ± 1.1</td>
</tr>
<tr>
<td>2</td>
<td>10.1 ± 1.0</td>
<td>40 ± 0.7</td>
</tr>
<tr>
<td>3</td>
<td>8.0 ± 0.8</td>
<td>40 ± 0.4</td>
</tr>
<tr>
<td>4</td>
<td>3.0 ± 0.3</td>
<td>5.1 ± 0.4</td>
</tr>
</tbody>
</table>

Fig. 1. Numbers of zoospores of (a) Neocallimastix and (b) Piromyces and Sphaeromonas (Caecomyces) in the initial 3 h of the postfeed period in cows fed one of four different rations: ■, I; ▲, II; ○, III; ▼, IV. Zoospore concentrations were determined in samples of rumen contents taken 30 min before feeding (zero point on the abscissa) and then at intervals of 30 min (period I) or 20 min (periods II, III and IV) for 3 h into the postprandial period.

Effect of diet on the anaerobic fungal population in the rumen

Uni- and multiflagellate zoospores of anaerobic fungi were found in the rumens of test animals fed all diets. The multiflagellate spores had an oval or round monad with granular cytoplasm and 2–15 flagella. The cell size varied from 12–20 μm. The number of multiflagellate zoospores observed in rumen fluid on diets I, II, III and IV was 7 × 10^3–5.4 × 10^4 ml^{-1}. Two types of uniflagellate zoospores were detected, i.e. large round or oval (10–15 μm in diameter) and small round (3–8 μm). The ruminal population of these zoospores on diets I, II, III and IV was 10^4–10^5 ml^{-1}. The multiflagellates were identified using morphological features, size and character of locomotion as reproductive cells of the fungus Neocallimastix sp. The uniflagellates were designated as zoospores of Sphaeromonas (syn. Caecomyces) and Piromyces spp. using the same criteria.

Before feeding, the concentration of all morphological types of zoospores was relatively low. After feeding, zoospore numbers increased significantly and were maximal after 90 min in period I and between 40 and 60 min in periods II, III and IV. By 3 h after feeding, zoospore numbers in the rumen fluid had fallen to the initial level (Fig. 1a, b). The number of zoospores was highest in the animals receiving the fibre-enriched diet III and was lowest in those fed pasture grass (diet IV).

Chitin-containing cylindrical, oval and fusiform bodies, identified as anaerobic fungal sporangia, were detected microscopically on the leaf surfaces after incubation in the rumen. Oval sporangia, 30–60 μm in length, predominated. The cylindrical sporangia reached 60–90 μm in length. The fusiform sporangia were the smallest (<30 μm), and probably represented immature forms of the other zoosporangia types. The sporangium surface was rough. Some preparations had distinct smooth hyaline rhizoids up to 10 μm thick that originated from the base of the sporangium. Fungal thalli were mostly attached to leaf veins. The extent of colonization varied with diet and correlated positively with the proportion of hay in the ration ($r=0.82$, $P<0.01$) and negatively with the quantity of beet ($r=-0.67$, $P<0.05$). When the animals were fed the maximal amount of hay and the minimal amount of beet (in diet III), the number of sporangia on the leaf surface reached 1.7 × 10^4 cm^{-2}, which was 2–5 times as high as with diet I (Table 3).

Discussion

The strains isolated differed in thallus and zoospore morphology, the composition and ratio of fermentation end-products and the level of extracellular enzyme activities. Using these features, strains NC71 and PC12 were assigned to the Chytridiomycete genera Neocallimastix and Piromyces, respectively. Neocallimastix sp. NC71 had similar zoospore morphology to N. frontalis (Heath et al., 1983) and N. patriciarum (Orpin & Munn, 1986) but differed from these Neocallimastix spp. in the
proportion of the main fermentation end-products formed from various substrates (Phillips & Gordon, 1988; Breton et al., 1989).

Strain PC12 was similar to *Piromyces communis* (Orpin, 1977a) but differed as it could use both sucrose and melibiose for growth, and was unable to utilize raffinose. This is the first description of a strain of *Piromyces* that is able to grow on melibiose (Phillips & Gordon, 1988). Strain PC12 also differed from other strains of *Piromyces* sp. that have been isolated (Fonty et al., 1988) in its zoospore morphology and in the nature and ratio of the main fermentation end-products. The paucity of detailed information on the physiological and biochemical properties of *Piromyces* sp. precluded the assignment of strain PC12 to a definitive species.

The marked increase in the concentration of zoospores of anaerobic fungi from the genera *Neocallimastix*, *Sphaeromonas* (*Caecomyces*) and *Piromyces* in rumen fluid in the first hour after feeding has been reported previously and highlights the dependence of the induction of zoosporogenesis on feed intake (Orpin, 1977b; Bauchop, 1979). The delayed release of zoospores in animals receiving diet I (high in concentrates) may have been due to this low-roughage ration being deficient in plant-associated inducers of zoosporogenesis (Orpin, 1977b).

In our experiments the concentration of zoospores in the rumen fluid and extent of colonization of timothy leaves were maximal when the animals were fed the high-roughage diet (III) and were minimal when they were fed diet IV. Although the experiments continued over a 12-week period and seasonal variations in the populations may have occurred, the observed differences are more likely to be due to diet effects, as reported by Bauchop (1979, 1981) and Grenet et al. (1988). In period II, with an increased proportion of hay and decreased concentrate and beet in the diet, a fall in the zoospore numbers and the extent of colonization of timothy leaves was observed in two of the four animals under study. However, the correlation analysis confirmed the dependence of the extent of colonization in the rumen on the proportion of hay and beet in the diet.

As zoospore concentration in filtered rumen fluid is not a reliable marker of the biomass and metabolic activity of anaerobic fungi in the rumen (Bauchop, 1979), a better estimate may be obtained by determining the extent of fungal colonization of the substrate in nylon bags *in situ*.

References

