N-Acetyl-6-hydroxytryptophan oxidase, a developmentally controlled phenol oxidase from Aspergillus nidulans

CHARLES E. BIRSET† and A. JOHN CLUTTERBUCK*

Department of Genetics, Glasgow University, Glasgow G11 5JS, UK

(Received 19 February 1990; revised 24 April 1990; accepted 11 June 1990)

We have purified a specific phenol oxidase which is produced during conidiophore development in the fungus Aspergillus nidulans. Two active forms (A and B) have molecular masses of 50 and 48 kDa respectively; they have identical N-termini (24 residues). We have analysed the metal ion content of the B form; it is unusual in consisting of one zinc and two copper atoms per molecule. A temperature-sensitive mutant (ivoB192) produces a thermolabile enzyme, implying that ivoB is the structural locus. The natural substrate of the enzyme is N-acetyl-6-hydroxytryptophan, but it can be assayed colorimetrically or polarographically using hydroquinone monomethyl ether (HME) as substrate. It will also oxidize p-cresol, but not tyrosine, 3,4-dihydroxyphenylalanine or o-methoxyphenol. Colour development with HME substrate is strongly enhanced by high ammonium ion concentrations. Activity against HME is inhibited by 2,3-dihydroxynaphthalene, phenylhydrazine, diethyl dithiocarbamate and 1-hydroxyquinolene.

Introduction

The upper conidiophore, vesicle, metulae and phialides of the asexual sporulation apparatus of the mould Aspergillus nidulans are normally pigmented grey-brown. This pigmentation requires the activity of two genes, ivoA and ivoB, which when mutated give 'ivory' (colourless) but otherwise normal conidiophores (Clutterbuck, 1969). ivoA is involved in the biosynthesis of a novel phenol oxidase substrate, N-acetyl-6-hydroxytryptophan (AHT; see Fig. 1a) (McCorkindale et al., 1983) while ivoB codes for the conidiophore-specific oxidase (AHTase) which we here describe in detail.

Methods

Standard culture and genetical methods for A. nidulans are described by Pontecorvo et al. (1953) and Clutterbuck (1974). Strains were derivatives of those in the Glasgow collection.

Production and extraction of AHTase. The enzyme was obtained from A. nidulans surface cultures (Clutterbuck, 1972), consisting of 20 ml of Aspergillus complete medium agar (Clutterbuck, 1974) overlaid with 5 ml of liquid complete medium containing an inoculum of 10⁴ conidia per dish of strain AJC7.46, genotype ivoA1; ornB7 brlA42. (brlA42 halts conidiophore development at the stage at which AHTase production is maximal and ivoA doubles AHTase yield, probably because of the absence of tanning: Clutterbuck, 1990). The plates were incubated at 37 °C for 5 d, after which the mycelium was scraped off and shaken with 2 ml per plate of extraction buffer (20 mM-Tris, pH 7.4, containing 1 mM-phenylmethylsulphonyl fluoride protease inhibitor). The extract was filtered through a coarse filter and centrifuged at low speed to remove mycelium.

The temperature-sensitive mutant ivoB192 was isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of an abaA6 strain (Clutterbuck, 1969). A recombinant substituting brlA7 for abaA6 as aconidal background was used for enzyme studies. Mycelium of this strain, along with the brlA7 ivoB+ control, was grown for 1 d at 37 °C and for 2 d at 22 °C, and ground with sand in a cold mortar. The extract was centrifuged at 4 °C, and kept on ice.

Purification of AHTase. This was done at room temperature. All solutions were made up in extraction buffer. Ion-exchange chromatography was carried out using a 280 × 16 mm column of DEAE-Sepharose Cl-6B, at a constant flow rate of 50 ml h⁻¹, eluting with a

Aspergillus complete medium agar (Clutterbuck, 1974) overlaid with 5 ml of liquid complete medium containing an inoculum of 10⁴ conidia per dish of strain AJC7.46, genotype ivoA1; ornB7 brlA42. (brlA42 halts conidiophore development at the stage at which AHTase production is maximal and ivoA doubles AHTase yield, probably because of the absence of tanning: Clutterbuck, 1990). The plates were incubated at 37 °C for 5 d, after which the mycelium was scraped off and shaken with 2 ml per plate of extraction buffer (20 mM-Tris, pH 7.4, containing 1 mM-phenylmethylsulphonyl fluoride protease inhibitor). The extract was filtered through a coarse filter and centrifuged at low speed to remove mycelium.

The temperature-sensitive mutant ivoB192 was isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of an abaA6 strain (Clutterbuck, 1969). A recombinant substituting brlA7 for abaA6 as aconidal background was used for enzyme studies. Mycelium of this strain, along with the brlA7 ivoB+ control, was grown for 1 d at 37 °C and for 2 d at 22 °C, and ground with sand in a cold mortar. The extract was centrifuged at 4 °C, and kept on ice.

Purification of AHTase. This was done at room temperature. All solutions were made up in extraction buffer. Ion-exchange chromatography was carried out using a 280 × 16 mm column of DEAE-Sepharose Cl-6B, at a constant flow rate of 50 ml h⁻¹, eluting with a

Abbreviations: AHT, N-acetyl-6-hydroxytryptophan; AHTase, N-acetyl-6-hydroxytryptophan oxidase; HME, hydroquinone monomethyl ether.

The N-terminal amino acid sequence reported in this paper has been submitted to PIR and assigned the number B33069.

Fig. 1. Substrates for AHTase. (a) N-Acetyl-6-hydroxytryptophan (AHT); (b) hydroquinone monomethyl ether (HME).
linear 0 to 0.5 M-NaCl gradient. The five fractions with highest AHTase specific activity from the ion-exchange column were pooled and made up to 4 M-NaCl before application to a 150 x 9 mm phenyl-
agarose column previously equilibrated with extraction buffer. The column was washed with 30 ml of 4 M-NaCl (flow rate 10 ml h\(^{-1}\)) and AHTase activity was eluted with a linear 4 to 0 M-NaCl gradient.

FPLC was carried out using a Sephadex Superose column HR 5/5 (Pharmacia) which was washed with extraction buffer until a constant basal A\(_{280}\) level was observed. The sample in 4 M-NaCl was loaded onto the column and washed with 4 M-NaCl. A linear 4 to 0 M-NaCl gradient was then applied to the column, and 0.5 ml fractions were collected and assayed for AHTase activity. Protein levels were assessed by measuring A\(_{280}\) using Centricon centrifugal microconcentrators.

Protein assay. This followed the method of Bradford (1976). Proteins on gels were stained with Coomassie blue. Silver staining of peptide gels used the method of Wray et al. (1981). Purification was monitored using SDS-PAGE in 9% (w/v) acrylamide gels (Laemmli, 1970). For non-denaturing SDS gels, samples were prepared without boiling and with no 2-mercaptoethanol in the sample buffer. Size markers for gels were obtained from Sigma: bovine serum albumin (66 kDa); egg lactalbumin (14 kDa). gel staining. Both A and B forms were digested with trypsinogen (24 kDa); bovine erythrocyte carbonic anhydrase (29 kDa); trypsin inhibitor (20 kDa); and bovine lactalbumin (14 kDa).

Metal analysis. This was performed by Dr D. J. Hall, Glasgow Royal Infirmary Institute of Biochemistry. Copper and chromium were detected by electrothermal atomic absorption spectrometry and zinc by flame atomic absorption spectrometry.

N-terminal sequencing. Samples of both forms, 250 pmol (11 μg) of the A-form and 500 pmol (22 μg) of the B-form, were washed three times with 0.1% trifluoroacetic acid, using Centricon filtration, and freeze-
dried. The samples were sequenced by the SERC facility at the Department of Biochemistry, University of Aberdeen, UK.

Colorimetric AHTase assay. The assay mixture contained 67.2 mM-
hydroquinone monomethyl ether (HME), 0.6 mM-catechol, 0.5 M-
ammonium tartrate (pH 7.0). Increase in A\(_{530}\) was followed at 37 °C in a cell of 1 cm pathlength with a Pye Unicam spectrophotometer.

Ascorbate delay assay. Low concentrations of ascorbate, e.g. 0.1 mM,
were added to the colorimetric assay and the additional time lag before the start of colour development (compared to ascorbate-free controls) was measured.

Polarographic assay. This was performed in an oxygen electrode cell supplied by Rank Bros, Bottisham, Cambridge, UK.

Preliminary substrate test. Potential substrates were initially tested for colour reaction with colonies of strains blocked at the conidiophore stage by means of the braf2 or aba1 mutations (Clutterbuck, 1969) and rendered colourless by an ino4 mutation, using a similar strain carrying the ino863 mutation as control. Some substrates were further tested using the polarographic assay.

Thermolability test. Extract samples were transferred to 60 °C for the stated time and then back to ice before assaying colorimetrically with HME substrate at 25 °C.

Diazotised sulphamic acid test for 6-hydroxyindoles. This was done as described by Jepson (1960) and Jepson et al. (1962). One ml of sulphamic acid reagent (0.9 g sulphamic acid in 9 ml concentrated hydrochloric acid, diluted 1/10 with water) was added to 0.1 ml 5% aqueous sodium nitrite, and left on ice for 5 min. A crystal of ammonium sulphamate was added to remove excess nitrous acid, 0.1 ml of the mixture was diluted with 2.9 ml 1 M-HCl, and 0.1 ml of the extract to be tested was added. The pink colour was allowed to develop in the dark for 20 min, and read as A\(_{530}\). Jepson et al. (1962) found that an A\(_{530}\) of 1.0 was equivalent to 13 μg of 6-hydroxyindole. To test colonies for 6-hydroxyindoles, they were overlaid with filter paper soaked in the reagent.

Results

Enzyme extraction, purification and composition

AHTase is an extracellular enzyme of unusual stability. Extraction and purification were carried out at room temperature, and extracts stored at 4 °C retained full activity for 3 weeks. Activity was also retained after electrophoresis through non-denaturing SDS-polyacryl-

amide gels.

A single extraction by shaking mycelium from surface cultures with buffer released approximately 45% of AHTase activity and 25% of total protein (as estimated from mycelium ground in a mortar). A high degree of purification leaving only one major contaminant (Fig. 2, lanes 3 and 4) was achieved in only two steps: Table 1 shows the results of purification of AHTase through ion-exchange and hydrophobic-interaction chroma-
tography. The latter separated two peaks of activity (forms A and B) which were also distinguishable by SDS-PAGE (Fig. 2).

For further purification, active fractions from the phenyl-agarose column were concentrated, pooled and passed through an FPLC Phenyl-Superose column. Electroelution from an SDS-polyacrylamide gel was employed as a final step for the A form. We estimate from Fig. 2 that the sizes of the two forms are 50 kDa (A-form) and 48 kDa (B-form).

Peptide mapping and N-terminal sequence

The structural similarity between the two forms of AHTase was demonstrated by peptide mapping (Cleveland, 1983). Both A and B forms were digested with chymotrypsin. Peptides were separated on a 15% (w/v) SDS-polyacrylamide gel and detected with silver staining. Both forms yielded three fragments, of sizes 13, 15, and 19 kDa for the A form and 13, 15 and 17 kDa for the B form (results not shown).

Fig. 3 shows the N-terminal sequences of the B form. Of the first 34 residues, 31 were resolved unambiguously. For the A-form, residues 1 to 24 were resolved, with ambiguities at positions 5, 8, 9, 16 and 22; the resolved residues however, were identical with those shown for the B-form.
Aspergillus developmental phenol oxidase

Enzyme properties

Assay with artificial substrate. In the colorimetric assay using HME as substrate (Fig. 1b), the maximum rate of colour development was not usually obtained immediately. This delay was minimized by the use of high substrate concentrations and the inclusion in the reaction mixture of catechol, as a primer for monophenol oxidation (Mayer & Harel, 1979). Activity measured by the colorimetric assay had a pH optimum of 7.0.

Estimates of the apparent K_m for HME in the presence of oxygen dissolved at atmospheric pressure, using crude or purified extracts, gave values ranging from 2 mM to 14 mM. Attempts to discover the source of this variation suggested that the purity of the enzyme had no effect, but the age of the substrate might be a factor: a fresh batch of HME initially proved a very poor substrate, but on storage, either as solid or in solution, gave higher activities and a lower K_m estimate.

The involvement of oxygen in the reaction was demonstrated by the lack of colour development in a nitrogen-flushed Thunberg tube, and by the use of an oxygen electrode.

High concentrations of ammonium ions ($K_m[\text{NH}_4^+] = 0.27$ M) in the assay mixture increased the rate of colour development four- to sixfold, but did not affect the K_m for HME. On the other hand, when assayed in the oxygen electrode, activity was only increased by 30%, suggesting that ammonium ions lead to enhanced colour development rather than affecting the primary oxidation steps. Removal of the added ammonium ions by dialysis returned the activity to the basal level. Ammonium ions also slightly accelerated the spontaneous oxidation to coloured products of both HME and catechol.

The conclusion that ammonium ions enhance secondary reactions of the oxidation products was supported by ascorbate delay assays. In these assays the primary oxidation products are re-reduced by ascorbate, and colour development is only seen when the ascorbate is exhausted. Although the eventual colour development was six times faster in the presence of ammonium ions than in their absence, the delay due to ascorbate was increased rather than decreased by ammonium ions, implying that the reaction products were less available for oxidation of ascorbate.

Methylammonium in place of ammonium ions gave a slight enhancement of apparent activity at 0.1 M, but was inhibitory at 1 M. Urea had no effect on reaction rates at 0.1 M, but was slightly inhibitory at 0.5 M.

The colorimetric assay was calibrated using both ascorbate delay and polarographic assays. In the absence of ammonium ions, an A_{470} of 1.0 in the colorimetric assay corresponded to the complete oxidation of 1.54 mM-ascorbate and to the incorporation of

Fig. 2. Purification of AHTase. Lane 1, crude extract; lane 2, after DEAE-Sepharose; lanes 3 and 4, A and B forms after phenyl-agarose; lanes 5 and 8, size markers; lane 6, A-form after Phenyl-Superose and electroelution; lane 7, B-form after Phenyl-Superose.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp-Val-Gln-Gln- ? -Asn-Ala-Glu-Asn-Ala-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>-Ser-Val-Arg-Lys-Glu-Trp-Gly-Ser-Leu-Thr-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>-Pro-Asp-Glu-Gln-Leu-Gly-Gly- ? - ? -Ala-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Gly-Pro- ? -Leu-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metal ion content

A sample of the B form of AHTase purified by ion-exchange and hydrophobic-interaction chromatography, and finally by fast-phase hydrophobic-interaction chromatography, was analysed for heavy metal content. Assuming a molecular mass for the B form of 48 kDa, it was calculated that the AHTase contains 2.1 copper and 0.9 zinc atoms per polypeptide. Chromium content was less than 0.02 atoms per polypeptide.

Fig. 3. N-terminal amino-acid sequence of the B-form of AHTase.
Purification of AHTase

<table>
<thead>
<tr>
<th></th>
<th>Total volume (ml)</th>
<th>Total protein (mg)</th>
<th>Total activity ($A_{470} \text{ s}^{-1}$)</th>
<th>Specific activity ($A_{470} \text{ s}^{-1} \text{ mg}^{-1}$)</th>
<th>Purification factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>205</td>
<td>47.15</td>
<td>8.05</td>
<td>0.17</td>
<td>1.0</td>
</tr>
<tr>
<td>DEAE-Sepharose</td>
<td>47</td>
<td>5.40</td>
<td>4.80</td>
<td>0.89</td>
<td>5.2</td>
</tr>
<tr>
<td>Phenyl agarose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form A</td>
<td>12</td>
<td>0.24</td>
<td>1.92</td>
<td>8.00</td>
<td>47.1</td>
</tr>
<tr>
<td>Form B</td>
<td>12</td>
<td>0.42</td>
<td>1.81</td>
<td>4.31</td>
<td>25.4</td>
</tr>
</tbody>
</table>

1.58 mM O$_2$. In the presence of 0.5 M-ammonium ions, an A_{470} of 1.0 was equivalent to 0.41 mM ascorbate and 0.45 mM O$_2$.

Thermolability of AHTase from ivoB192. AHTase activity in crude mycelial extracts of ivoB192 strains was more thermostable than that in extracts of the wild-type obtained under the same conditions (Fig. 4). In addition, the activity of the mutant extract fell steeply during assay, giving only 48% of the initial activity after 4 min at 25°C, whereas the wild-type activity over the same period increased by 32%.

The ivoB192 enzyme differed from the wild-type in two further respects: ground mycelium was required for its detection, washings having very low activity; and activation by ammonium was 20- to 30-fold rather than 3- to 6-fold. In a mixed assay there was no evidence that addition of an ivoB192 extract affected the stability of wild-type enzyme.

Fig. 4 shows that both mutant and wild-type enzymes show residual activity after heat treatment, suggesting that the enzyme is heterogeneous. However, electrophoresis in non-denaturing SDS gels of heat-treated wild-type enzyme showed that the activity of A and B forms declined in parallel. We were unable to repeat this test with the ivoB192 extract because no activity was detectable after electrophoresis.

Oxidation of the natural substrate. The natural substrate is accumulated by ivoB mutants, which lack the phenol oxidase described in this paper (Clutterbuck, 1990). It has been purified in small quantities (McCorkindale et al., 1983) and shown to be N-acetyl-6-hydroxytryptophan (AHT: Fig. 1a).

Purified AHT extracted from ivoB strains has been compared with the synthetic product (McCorkindale et al., 1983). Both are substrates for the phenol oxidase as assayed polarographically and by destruction of substrate as determined with diazotized sulfanilic acid. Control extracts of ivoB strains failed to react with AHT in both tests.

A comparison of molecular extinction and response to the acid-diazotized sulfanilic acid test indicated that Jepson's calibration of A_{530} of 1.0 as equivalent to 13 µg of 6-hydroxyindole (Jepson et al., 1962) is applicable to AHT. Comparison of loss of substrate assayed in this way with oxygen utilization suggested that approximately two atoms of oxygen were absorbed per atom of pure substrate, but where unpurified natural substrate was used, up to four times as much oxygen was absorbed, and under these conditions oxygen absorption accelerated during the assay (a few minutes). Measurement of the K_m for AHT was unsuccessful due to the limited availability of natural or synthetic AHT and to the apparently non-linear kinetics in the one experiment attempted.

In vitro oxidation of purified AHT gave a brown solution, while crude methanol AHT extracts gave a blue
Table 2. Inhibitors of AHTase

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Inhibitor concn (mM)</th>
<th>Substrate concn (mM)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-Dihydroxynaphthalene</td>
<td>2.5</td>
<td>5</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>5</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>40</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>40</td>
<td>87</td>
</tr>
<tr>
<td>Phenylhydrazine</td>
<td>1.0</td>
<td>67</td>
<td>86</td>
</tr>
<tr>
<td>Diethyl dithiocarbamate</td>
<td>0.1</td>
<td>67</td>
<td>100*</td>
</tr>
<tr>
<td>8-Hydroxyquinoline</td>
<td>3.0</td>
<td>67</td>
<td>44</td>
</tr>
<tr>
<td>α-Phenanthroline hydrate</td>
<td>3.0</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td>Phenylthiourea</td>
<td>1.0</td>
<td>67</td>
<td>94</td>
</tr>
<tr>
<td>Sodium metabisulphite</td>
<td>0.1</td>
<td>67</td>
<td>99*</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>3.0</td>
<td>67</td>
<td>0</td>
</tr>
</tbody>
</table>

* Inhibition declined with prolonged incubation: see text.

colour. Addition of purified AHT to slots in conidio-
phore-bearing colonies of ivoB+ strains (but not ivoB
strains) on agar also gave a blue coloration.

Other substrates. A variety of potential substrates were
tested for colour reaction with ivoB+ strains using an
ivoB strain as control. The following substances gave
no coloration with either test strain: caffeeic
acid; p-coumaric acid; dihydroquercetin; hydroquinone
monobenzyl ether; 5-hydroxytryptophan; 4-o-methyl-
ortellinic acid; α-naphthol; quercetin; resorcinol; rutin;
tryosine; while the following gave similar coloration with
both test strains: p-tertiary-butylcatechol; D-catechin;
catechol; chlorogenic acid; 2,6-dimethoxyphenol;
dihydroxyphenylalanine; aesculin hydrate; hydro-
quione; o-methoxyphenol (guaiacol); 3-methyl-
catechol; 4-methylcatechol; tannic acid.
The following gave sightly more coloration with wild-
type or ivoA strains than with ivoB strains: p-cresol;
3,4-dihydroxyphenylacetic acid; p-hydroxydiphenyl;
m-methoxyphenol. The last of these compounds was also
tested in the polarographic assay, but no oxidation was
detected.

5-Hydroxytryptophan, 6-hydroxytryptamine and
N-acetyl-6-hydroxytrytophan methyl ester were also
tested polarographically, and the latter two were tested
for loss of diazotized sulphanilic acid staining after
treatment with the oxidase, but none showed significant
activity.

Inhibitors. Table 2 gives a list of inhibitors acting on the
colorimetric assay. 2,3-Dihydroxynaphthalene is a com-
mpetitive inhibitor of the cresolase reaction (Mayer et al.,
1964), and kinetic data (not shown) indicated that
inhibition of AHTase was also competitive, although the
kinetics were not strictly linear. Likewise phenyl-
hydrazine is a non-competitive inhibitor of AHTase and
of catechol oxidase (Mayer et al., 1964). The remaining
inhibitors are believed to act by reacting with the copper
component of the enzyme. Inhibition by sodium met-
abisulphite and diethyl dithiocarbamate declined with
prolonged incubation, and in the latter case a white
precipitate developed. This suggests that these com-
ounds are incomplete inhibitors and can be destroyed
by the primary products of the reaction.

Inhibition of the oxidase in vivo for colonies grown on
2 mM-sodium metabisulphite led to the accumulation of
material which stained as a 6-hydroxyindole with
diazotized sulphanilic acid. This method has been used
to test for the presence of this substrate in a variety of
Aspergillus species (A. J. Clutterbuck, A. Clutterbuck,
unpublished).

Discussion

The enzyme described here has an unusual natural
substrate, but in other respects its properties suggest that
it is a monophenol monoxygenase (EC 1.14.18.1) (Bell
& Wheeler, 1986; Mayer & Harel, 1979; Mayer et al.,
1964). While we have no evidence that AHTase catalyses
the oxidation of the standard substrate tyrosine or
catechol, it does oxidize HME and p-cresol and is
inhibited by a number of typical phenol oxidase
inhibitors.
The presence of copper in this enzyme is also typical of
phenol oxidases (Fling et al., 1963) and we have evidence
from the ygA mutant, which is believed to limit the
intracellular availability of copper (Clutterbuck, 1972,
1990), that this metal is required for activity.

On the other hand the finding of zinc in AHTase is
unexpected and we have no evidence of its function.
Its presence, however, may imply a relationship with
other cuprozinc proteins such as superoxide dismutase
(Fridovich, 1975) and cytochrome oxidase (Moubarak et
al., 1987).
The observation that there are two forms of the
enzyme separable by hydrophobic interaction chromato-
graphy and SDS-PAGE is not unusual for phenol
oxidases. In this case we have detected no difference in
activity or prevalence of the A and B forms. They share a
common N-terminus and differ in one out of three
peptides. Both forms bind to concanavalin A (Birse,
1989), which implies that they are glycoproteins, so it is
possible that the difference between them lies in the
degree of glycosylation, as in Podospora anserina laccase
II (Esser & Minuth, 1971). Another possibility is that the
smaller isoenzyme has suffered partial proteolytic degra-
dation, but if so this has neither destroyed its activity nor
affected the N-terminal residues. The presence of a
variable lipid C-terminal anchor (Ferguson & Williams,
1988) is a third possibility.
The enzyme was fully active on extraction, and there
was no evidence of the latency found with other phenol oxidases (Mayer & Harel, 1979). Enhancement of activity by ammonium ions is clearly not an enzyme-activation process, but a modification of secondary reactions leading to pigment formation, and hence to a fivefold increase in activity in the colorimetric assay. The 30\% increase in oxygen utilization in the presence of ammonium ions can be attributed to more efficient product removal. It is interesting that activity of extracts of the ivoB192 mutant were more sensitive to ammonium ions than wild-type extracts; if ammonium ions affect only the later stages of melanin formation, this implies that the enzyme is involved here as well as in oxidation of the initial substrate.

The enzyme is remarkably resilient. It maintains its activity for days at room temperature, and is extractable as an extracellular product of conidiating cultures grown for 5 d at 37 °C. Cultures of this age produce extracellular protease (Cohen, 1977; A. J. Clutterbuck, unpublished) to which the enzyme is evidently resistant. The enzyme is also readily purified from extracellular extracts, in which it appears to constitute at least 1\% of the total protein, although the conidial apparatus which produces it forms only a minority of the mycelium harvested.

Our main interest in this enzyme is that it is an identifiable biochemical step in the conidial development of A. nidulans. The ivoB gene is known from biological evidence (Clutterbuck, 1969, 1990) and from molecular analysis (Adams et al., 1988) to be under control of the brlA gene. In this paper we have given evidence, in terms of the thermolability of AHTase from the ivoB192, that ivoB is the structural gene for this enzyme. We have confirmed this (Birse & Clutterbuck, 1990) by using the N-terminal amino acid sequence to construct a DNA probe which hybridizes with an ivoB clone isolated by mutant complementation. We now plan to use the ivoB clone to investigate the nature of its developmental control by brlA.

We are indebted to the SERC protein sequencing facility at the Department of Biochemistry, University of Aberdeen, for the N-terminal sequence, to members of the Department of Biochemistry, Glasgow University, for assistance with polarographic assays and to Dr D. J. Halls, Glasgow Royal Infirmary Institute of Biochemistry, for metal analysis. C. E. B. gratefully acknowledges receipt of an SERC postgraduate studentship.

References

