Characterization and expression of the cbbE' gene of Coxiella burnetii

MICHAEL F. MINNICK,1 ROBERT A. HEINZEN,1,2 MARVIN E. FRAZIER2 and LOUIS P. MALLAVIA1*

1Department of Microbiology, Washington State University, Pullman, WA 99164-4233, USA
2Battelle, Pacific Northwest Laboratories, Richland, WA 99352, USA

(Received 31 October 1989; revised 8 January 1990; accepted 6 February 1990)

A gene which is unique to the QpRS plasmid from chronic isolates of Coxiella burnetii was cloned, sequenced, and expressed in Escherichia coli. This gene, termed cbbE', codes for a putative surface protein of approximately 55 kDa, termed the E' protein. The cbbE' gene is 1485 bp in length, and is preceded by predicted promoter regulatory sequences of TTTAAT (−35), TATAAT (−10), and a Shine-Dalgarno sequence of GGAGAGA, all of which closely resemble those of E. coli and other rickettsiae. The open reading frame (ORF) of cbbE' ends with a UAA codon followed by a second in-frame UAG stop codon and a region of dyad symmetry which may act as a rho-factor-independent terminator. The ORF of cbbE' is capable of coding for a polypeptide of 495 amino acids with a predicted molecular mass of 55893 Da. The E' protein has a predicted pl of ~8-7, and contains a distinct hydrophobic region of 12 amino acid residues. In vitro transcription/translation and E. coli expression of recombinant plasmids containing cbbE' produce a protein of approximately 55 kDa. The in vivo expression of cbbE' yields a novel protein that can be detected on immunoblots developed with rabbit antiserum generated against purified outer membrane from C. burnetii. DNA hybridization analysis shows that cbbE' is unique to the QpRS plasmid found in chronic isolates of C. burnetii, and is absent in chromosomal DNA and plasmids (QpH1, QpDG) from other isolates of C. burnetii. A search of various DNA and amino acid sequence data bases revealed no homologies to cbbE'.

Introduction

The rickettsia Coxiella burnetii is an obligate intracellular parasite that causes Q fever in humans. Although Q fever generally manifests as an acute, self-limiting, flu-like illness, approximately 5% of the reported cases develop chronic forms of the disease that may culminate in endocarditis and/or hepatitis (Kimbrough et al., 1979). Isolates from acute cases of Q fever are identical to the Nine Mile phase I isolate with respect to their lipopolysaccharide (LPS) (Hackstadt, 1986) and by having a cryptic plasmid, termed QpH1 (Samuel et al., 1983).

In contrast, isolates from chronic cases have LPS that is electrophoretically and antigenically distinct from that of acute isolates (Hackstadt, 1986; Moos & Hackstadt, 1987). Chronic isolates also lack the QpH1 plasmid; instead, they have a unique plasmid termed QpRS, or have chromosomal DNA sequences with homology to both QpH1 and QpRS (Samuel et al., 1985). The homology of the chromosome of the plasmidless-chronic isolates with QpH1 and QpRS suggests that the plasmids may have integrated into the chromosome of these isolates (E. Savinelli & L. P. Mallavia, unpublished results). The QpH1 and QpRS plasmids are approximately 36 kb and 39 kb, respectively, in size, and possess unique and common DNA sequences as determined by Southern blot analysis (Samuel et al., 1985).

A third plasmid, termed QpDG, has recently been purified from C. burnetii isolates from feral rodents collected near Dugway, Utah, USA (L. R. Hendrix, J. E. Samuel & L. P. Mallavia, unpublished results). Isolates that possess the QpDG plasmid do not cause apparent disease in guinea-pigs and have not yet been isolated from humans.

These observations suggest a correlation between plasmid type and the chronic or acute nature of disease per given isolate (Samuel et al., 1985; Vodkin et al., 1986). Our hypothesis is that DNA sequences which are unique to each plasmid type may code for virulence determinants which in turn determine the acute or chronic nature of disease. To investigate this possibility,
DNA sequences that are specific to either the QpHl or QpRS plasmids are being characterized. Only two genes, htpA and htpB, have been cloned and sequenced from the chromosome of C. burnetii. These genes were found to comprise a heat-shock operon which codes for both a 62 kDa and a 14 kDa protein (Vodkin & Williams, 1988). In this paper the first expression and sequence analysis of a C. burnetii plasmid gene is presented. The gene is termed cbbE; it is unique to the QpRS plasmid of chronic isolates and codes for a putative surface protein of approximately 55 kDa.

Methods

Bacterial strains, plasmids and growth conditions. Propagation and harvesting of C. burnetii was done as previously described (Samuel et al., 1983). C. burnetii plasmids and chromosomal DNA were isolated and purified as previously reported (Samuel et al., 1983) from acute or chronic isolates, including phase I Nine Mile RSA-493(QpHl), Priscilla Q177(QpRS), Dugway 7E9-12(QpDG), and the plasmidless-chronic isolates Ko Q229, S Q217, G Q212 and L Q216. Escherichia coli strain DH5α or DH5αF' (BRL) were used as hosts for all recombinant DNA. E. coli cultures containing plasmids were grown at 37°C in Luria-Bertani (LB) medium under antibiotic selection with ampicillin (100 μg ml⁻¹) for the pUC vectors (Vieira & Messing, 1983) and kanamycin (25 μg ml⁻¹) for the cosmid vector pHK17 (Klee et al., 1983). E. coli strain SG932 (lon-100) (Goff et al., 1984) was used for in vivo expression of the cloned cbbE gene, and was grown at 30°C in LB with ampicillin (100 μg ml⁻¹).

Construction of recombinant DNA. EcoRI (BRL) fragments of QpRS were separated by electrophoresis through 0.7% (w/v) agarose gels prepared by standard methods (Maniatis et al., 1982), excised from agarose gels and purified by Geneclean (Bio 101). Purified DNA was then cloned by standard procedures into pUC9 or pUC19 (Maniatis et al., 1982). E. coli DH5α was transformed with the ligation mixture following CaCl₂ treatment (Davis et al., 1980). Colonies that contained pUC recombinant plasmids were detected on LB with ampicillin (100 μg ml⁻¹), isopropyl β-D-thiogalactopyranoside (IPTG; 0.3 mM) and Blue-gal (BRL). All plasmid DNA was isolated from E. coli DH5α by alkaline extraction (Birnboim & Doly, 1979). Plasmid DNA was separated from chromosomal DNA by two CsCl density-gradient centrifugations.

DNA hybridization. Southern blot analysis was used to detect the cbbE gene in chromosomal and/or plasmid DNA isolated from typical isolates of the four known strains of C. burnetii. The QpH1 and QpRS plasmids, cloned in their entirety into the Sau3A site of the cosmid vector pHK17 (Klee et al., 1983) to produce pQH1 and pQRS, respectively, were also probed. The internal 695 bp PstI fragment of the cbbE gene (Fig. 1) was isolated from the pQME1 subclone as described above, and then labelled with [α-32P]dCTP by a random primer extension kit (New England Nuclear). The DNA to be probed was digested to completion with restriction enzymes, electrophoresed in 1% agarose, and then denatured and transferred to nitrocellulose (0.45 μm pore size, Schleicher & Schuell) by the method of Southern (1975). The nitrocellulose was prehybridized for 1 h at 68°C, then hybridized for 16 h at 68°C with approximately 10⁶ d.p.m. of the PstI fragment probe ml⁻¹ as previously described (Samuel et al., 1983). The filter was then washed four times at high stringency, for 30 min at 68°C with 45 mM-sodium chloride plus 4.5 mM-sodium citrate (0.3 x SSC) containing 0.1% SDS and 5 mM-EDTA.

Gene expression and immunoblot detection. A prokaryote-directed in vitro transcription/translation (IVTT) system was used as directed by the manufacturer (Amersham) to analyse proteins coded on the intact c fragment and its various subfragments. Translated proteins were labelled with 30 μCi (1-11 MBq) [35S]methionine (New England Nuclear) for 1 h at 37°C. IVTT samples of approximately 2 x 10⁶ d.p.m. were boiled for 5 min in an equal volume of electrophoresis sample buffer, then separated by SDS-PAGE (12.5%, w/v, acrylamide) (Laemmli, 1970). The [35S]-labelled proteins were visualised by autoradiography following overnight exposure to X-omat X-ray film (Kodak).

In vivo expression of the E' protein was achieved in E. coli SG932, which is defective in the degradation of abnormal proteins (Goff et al., 1984). A 250 μl volume of a fresh overnight culture of SG932 containing pQME3 served as the inoculum for 5 ml LB medium containing 1 mM-IPTG to induce expression. Mid-exponential-phase cells (OD₆₀₀ ~ 0.6) were harvested by centrifugation and washed twice with cold 0.15 M-NaCl, then stored at -20°C until needed. Following protein assay by the Lowry method, the pellets were resuspended in SDS-PAGE sample buffer, boiled for 5 min, then electrophoresed in SDS-PAGE gels (12.5%, w/v acrylamide) containing 30 μg protein per lane (Laemmli, 1970). Protein profiles were then analysed for expression of the E' protein by immunoblot analysis (Towbin et al., 1979). Unfixed and unstained gels were electrotransferred to prewetted nitrocellulose (0.45 μm pore size) for 16 h at 200 mA, with constant cooling. The filters were dried, then immersed for 1 h in phosphate-buffered saline (PBS) with 0.3% (v/v) Tween 20 and 2% (w/v) nonfat milk. The filters were then exposed for 16 h at 25°C to rabbit antisera against Priscilla outer membrane, diluted 1:1000 in PBS. Filters were washed five times in PBS, then exposed for 1 h to horseradish-peroxidase-conjugated goat anti-rabbit immunoglobulin (Tago) diluted 1:2000 in PBS. After four washes in PBS, the filters were developed in 50 ml PBS containing o-dianisidine (0.5 mg ml⁻¹) plus 75 μl 30% H₂O₂.

DNA sequence determination and analysis. The nucleotide sequence of both DNA strands of cbbE' was determined by the dideoxy chain-termination method of Sanger et al. (1977) using [α-32P]dGTP (3000 Ci mmol⁻¹; 111 T bq mmol⁻¹) as the radiolabel, and Sequenase (United States Biochemical). Single-stranded pGEM7 templates containing regions of the c fragment were primed using a T7 promoter primer (Promega). Double-stranded pGEM7 or pUC19 recombinants containing ϵ subfragments were primed using pUC forward or reverse primers (Promega). All double-stranded templates were purified twice on CsCl gradients. When necessary, oligonucleotide sequencing primers (17-25 mers) were synthesized using an Applied Biosystems DNA synthesizer (model 380A). Sequence data were compiled and analysed using CAGE/GEM (Battelle, Pacific Northwest Laboratories, Richland, Washington, USA), the University of Wisconsin Genetics Computer Group (Deveroux et al., 1984) and Pestell (International Biotechnologies) DNA sequence analysis programs.

Antibody preparation against C. burnetii outer membrane (OM). An adult male New Zealand White rabbit was used to generate polyclonal antisera against isolated outer membrane (OM) of the Priscilla isolate of C. burnetii. The OM was purified by modification of the SDS extraction procedure (Hurlbert & Gross, 1983), in which approximately 30 mg (dry weight) of freshly isolated cells was rinsed in 20 vols of 10 mM-HEPES buffer with 10% (w/v) sucrose (pH 7.4 at 4°C), then pelleted by centrifugation at 12100 g for 45 min at 4°C. The pellet was resuspended in 2 ml 10 mM-HEPES and extracted in 0.4% (w/v) SDS. To liberate OM, four sonications with a Sonifier 250 (Branson) were done on ice for 1 min at constant cycle with a 1 min cooling interval. Cell debris was removed from the suspended membranes by centrifugation at 12100 g, as described above. The supernatant was then ultracentrifuged at 260000 g for 1 h at 4°C, in a 60Ti rotor (Beckman). The insoluble transparent pellet was washed twice in the
10 mM HEPES buffer. The final pellet was resuspended in physiological saline (0.15 M NaCl). Approximately 200 µg of OM protein in saline, as determined by the Lowry method, was emulsified in an equal volume of incomplete Freund’s adjuvant and delivered as three subcutaneous 1 ml injections above the shoulders of the rabbit. Two subsequent injections of the same concentration and volume were administered in the same manner at 2-week intervals. Antiserum was collected 2 weeks after the last injection.

Results

Cloning of the cbbE' gene

A 3.6 kb EcoRI fragment of QpRS (the fifth-largest EcoRI fragment, hence the designation ε'), was cloned in both orientations in pUC19, to produce pQME1 and pQME2 (Fig. 1). The cloned ε' fragment was mapped by restriction enzymes (BRL), and various subfragments were cloned into pUC19 for IVTT analysis. A 3.2 kb EcoRI–HincII subfragment was directionally cloned into pUC9 to form pQME3 (Fig. 1) for in vivo expression of cbbE'.

Southern blot analysis

The ε' fragment was previously shown to contain unique sequences when probed with α-32P-labelled QpH1 in Southern blot analysis (Samuel et al., 1985). Further analysis showed that an internal PstI subfragment of ε' was unique to the QpRS plasmid by DNA hybridization (Fig. 2). Under the stringency employed, homologous sequences were detected in the DNA restriction digests of pQME1, of the QpRS-cosmid recombinant pQRS, and of the chromosomal DNA of the Priscilla isolate (Fig. 2). The latter sample probably contained nicked QpRS plasmid contaminant from the CsCl separations. Neither chromosomal nor plasmid DNA from either the Nine Mile isolate or the Dugway isolate had sequences homologous to the PstI fragment, nor did the vector controls (Fig. 2). No homologous sequences were detected in the chromosomal DNA of the plasmidless-chronic isolates Ko, S, G or L, although a number of sequences with homology to QpRS were previously detected in these isolates by similar analyses (E. Savinelli & L. P. Mallavia, unpublished results).

Expression of the cbbE' gene

Because of its uniqueness to QpRS, the ε' fragment was characterized by IVTT. IVTT of pQME3 produced a protein of approximately 55 kDa that was specific to the rickettsial DNA insert, when analysed by SDS-PAGE (Fig. 3). A protein of the same molecular mass was produced in IVTT analyses of pQME1 and pQME2 (M. F. Minnick, R. A. Heinzen, L. P. Mallavia & M. E. Frazier, unpublished results). The 55 kDa protein was transcribed and translated from the insert regardless of its orientation in the vector, suggesting that transcription occurred from a rickettsial promoter, and that the promoter was recognized by the E.coli S30 lysate in the
IVTT system. The gene coding for the 55 kDa protein was designated \(cbbE' \). \(E. coli \) SG932 containing pQME3 was capable of expressing the \(E' \) protein \textit{in vivo} (Fig. 4). The molecular mass (55 kDa) of the \(E' \) protein expressed \textit{in vivo} (Fig. 4) was the same as that of the \(E' \) protein from IVTT analysis (Fig. 3). \(E. coli \) SG932 which contained only the cloning vector, pUC9, did not produce the 55 kDa protein (Fig. 4). In addition to the \(E' \) protein, two cross-reactive bands of 51 and 53 kDa are uniquely present in \(E. coli \) containing pQME3 (Fig. 4, lane 2); these may be precursors or partial proteolysis products of the \(E' \) protein. Three \(E. coli \) protein bands of approximately 25, 29, and 35 kDa were also recognized by the anti-OM antiserum (Fig. 4), and may represent protein species of \(E. coli \) which are antigenically related to OM protein(s) of \(C. burnetii \).

Nucleotide sequence analysis of the \(cbbE' \) gene

To precisely locate the \(cbbE' \) ORF and determine its nucleotide sequence, a portion of the \(cbbE' \) fragment was sequenced following the strategy shown in Fig. 5. An ORF long enough to code for the 55 kDa \(E' \) protein...
The cbbE' gene of Coxiella burnetii begins with an AUG codon 196 bp downstream from the HindII site at map position 0.55 and ends 293 bp downstream from the PstI site at map position 1.95 (Fig. 5). The sequence of the 1485 bp cbbE' ORF was confirmed by sequencing both strands of DNA.

As the nucleotide sequence shows (Fig. 6) this ORF begins with an AUG initiation codon (position 196) and ends with a UAA termination codon at position 1681, followed by a second in-frame stop codon UAG at position 1687. Beginning 2 bases upstream of the AUG initiation codon, the ORF of cbbE' is preceded by a poly-purine-rich sequence of GGAGAGA, representing a potential Shine-Dalgarno (SD) ribosome-binding sequence. In addition, a predicted promoter sequence TTAAAT-N_{1.5}-TATAAT occurs between positions 157 and 183 (Fig. 6).

The cbbE' ORF is followed by a region of dyad symmetry that could contribute to rho-factor-independent termination (Fig. 6; nucleotides 1691 to 1713), as predicted by the TERMINATOR program (University of Wisconsin Genetics Computer Group; Deveroux et al., 1984). The G+C content of the sequenced coding region was 39 mol%, which compares favourably with the value of 43 mol% for C. burnetii total genomic G+C (Weiss, 1982). A distinct preference for U and A was observed in the first or third position of the codon (Table 1).

Table 1. Codon usage for the cbbE' gene of Coxiella burnetii, and the predicted amino acid composition of the gene product

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Residues</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Codons</td>
<td>No. % of total</td>
</tr>
<tr>
<td>Ala 35</td>
<td>GCU 12</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>GCC 6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>GCA 11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>GGG 6</td>
<td>6</td>
</tr>
<tr>
<td>Arg 15</td>
<td>CGU 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CGC 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CGA 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CGG 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AGA 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGG 2</td>
<td>2</td>
</tr>
<tr>
<td>Asn 18</td>
<td>AAU 15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>AAC 3</td>
<td>3</td>
</tr>
<tr>
<td>Asp 18</td>
<td>GAU 13</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GAC 5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>GGC 1</td>
<td>1</td>
</tr>
<tr>
<td>Cys 7</td>
<td>UGU 5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>UGC 2</td>
<td>2</td>
</tr>
<tr>
<td>Gln 22</td>
<td>CAA 12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CAG 10</td>
<td>10</td>
</tr>
<tr>
<td>Glu 41</td>
<td>GAA 28</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>GAG 13</td>
<td>13</td>
</tr>
<tr>
<td>Gly 26</td>
<td>GGU 6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>GGU 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GGA 13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>GGG 3</td>
<td>3</td>
</tr>
<tr>
<td>His 11</td>
<td>CAU 9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CAC 2</td>
<td>2</td>
</tr>
<tr>
<td>Ile 41</td>
<td>AUA 15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AUA 16</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>AUC 10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 6. Nucleotide sequence and deduced amino acid sequence (5' to 3') of the C. burnetii cbbE' gene. Nucleotide numbering begins with the Hincll site located at map position 0.55 of the ε' fragment (Fig. 1). Putative −35 and −10 promoter regions of cbbE are overlined. A putative SD region is marked by open circles. The 3' region of dyad symmetry is shown by arrows. The amino acid translation is shown below the sequence, beginning at the N-terminal methionine at nucleotide 196. The underlined area represents a 12-amino-acid region of hydrophobic character. Restriction sites are indicated.
Using the nucleotide sequence and the predicted amino acid sequence of the cbbE' gene, a computer search of the GenBank and NBRF data bases, respectively, was conducted; it revealed no DNA or amino acid homologies.

Features of the predicted amino acid sequence

The amino acid composition of the E' protein as deduced from the nucleotide sequence is given in Fig. 6 and Table 1. The ORF of the cbbE' gene is capable of coding for a polypeptide of 495 amino acids with a predicted molecular mass of 55,893 Da. This calculated molecular mass is in excellent agreement with the value of 55 kDa estimated for the E' protein on SDS-PAGE. The isoelectric point of the highly charged, basic protein is predicted to be 8-7. One discrete hydrophobic domain from amino acids 224 to 235 is depicted in Fig. 6, and in the hydropathy plot (Fig. 7), indicating a possible transmembrane domain. A hydrophobic amino-terminal signal peptide similar to those seen in other transmembrane polypeptides (von Heijne, 1985) was not observed.

Discussion

To date, all C. burnetii isolates from chronic cases of Q fever contain the QpRS plasmid or have chromosomal DNA sequences with homology to QpRS. Isolates from acute cases contain the QpH1 plasmid. Virulence determinants that distinguish between chronic and acute strains of C. burnetii are unknown. We have used a molecular approach to determine whether DNA sequences that are unique to QpRS or QpH1 plasmids possibly code for virulence determinants that are important to the chronic or to the acute nature of the disease.

This report presents the first cloning, sequence, and expression, in E. coli, of a plasmid-encoded gene from C. burnetii. It is also significant that the cbbE' gene is unique to a plasmid harboured by chronic isolates associated with goat abortions and chronic endocarditis in humans (Samuel et al., 1985). Whether the E' protein serves as a virulence determinant in strains which contain the QpRS plasmid is unknown. The cbbE' gene of QpRS may code for a protein which has functional significance to those isolates which possess this plasmid type. Although a number of QpRS sequences have integrated into the chromosome of plasmidless-chronic isolates such as Ko, L, G or S (E. A. Savinelli & L. P. Mallavia, unpublished results), the cbbE' gene cannot be detected (Fig. 2), and appears to have been lost. The loss of cbbE' has no apparent effect on the ability of plasmidless-chronic isolates to cause chronic endocarditis, given the fact that all such isolates were obtained from infected heart tissues (Peacock et al., 1983). One disease manifestation which is unique to those C. burnetii isolates which possess QpRS is their ability to cause abortion in goats and sheep (Samuel et al., 1985). Whether the E' protein is involved in causing such abortions is unknown.

The putative surface location of the E' protein is supported by the fact that antiserum generated against C. burnetii OM can recognize the E' protein on immunoblots. Further evidence is the observation that the E' protein from IVTT comigrates on SDS-PAGE with a radio-iodinated surface protein which is unique to Priscilla but absent in the Nine Mile isolate (M. F. Mimnick, R. A. Heinzen, M. E. Frazier& L. P. Mallavia, unpublished results). The radio-iodination data corroborate the DNA hybridization data which shows that cbbE' is present on QpRS from Priscilla, and is absent in the QpH1 plasmid or in the chromosomal DNA of the Nine Mile isolate (Fig. 2).

The predicted promoter regions for the cbbE' gene show considerable homology to the E. coli consensus promoter. The SD region is very similar to those found in E. coli (Gold et al., 1981) and differs by an A-to-G transition in the first base of the sequence AGAGAGA from the SD region of the Rickettsia rickettsii 17 kDa antigen gene (Anderson et al., 1987). The predicted -10 region of Priibnow box of cbbE' (TATAAT) precedes the AUG initiation codon by 12 bp, and is identical to the consensus sequence found in E. coli (Hawley & McClure, 1983). This -10 region of cbbE' differs from that of the 17 kDa antigen gene of R. rickettsii by a C-to-A
transition at base number 35 (Anderson et al., 1987). The
−35 region of cbbE' differs from the E. coli consensus
sequence TTGACA (Hawley & McClure, 1983) by
substitution of the last four bases with TAAT. The −35
region of cbbE' bears greater similarity to the −10
consensus sequence of E. coli and to the R. rickettsii
−35 sequence (TTTACA) in a gene coding for a 17 kDa
surface antigen (Anderson et al., 1987).

The only previous report of sequenced DNA from C.
burnetii is that of a heat-shock operon composed of htpA
and htpB genes (Vodkin & Williams, 1988). Unfortu-
nately, the −35 and −10 regions of the htpA/htpB operon
comprise a heat-shock promoter which is not compar-
able to the promoter sequences of htpA and htpB. The
htpB gene does have a SD sequence that is similar to that of cbbE', while htpA apparently lacks such a sequence.

The 15-base segment separating the −35 and −10
promoter sequences of cbbE' is marginal for recognition
by E. coli RNA polymerase (Hawley & McClure, 1983),
but it is similar to that of R. rickettsii (Anderson et al.,
1987). However, the ability of the IVTT system to
recognize the C. burnetii promoter and ultimately
produce the E' protein from pUC19 recombinants
containing the e' insert in both orientations, one of which
cannot utilize the lacZ' promoter (pQME2; Fig. 1),
suggests that the C. burnetii promoter is recognized by the
E. coli RNA polymerase. Detection of in vivo expression
of the pQME3 construct in E. coli SG932 also suggests
that the C. burnetii promoter is recognized by E. coli
RNA polymerase.

In vivo expression of cbbE' was not detected in E. coli
strains that were not Lom−, despite exhaustive attempts
in several strains containing recombinant plasmids with
cbbE'. Manipulation of the IPTG induction and/or
harvest times following IPTG induction did not increase
the yield of detectable amounts of the E' protein.
Although the E' protein could be detected in E. coli
SG932, the levels of cbbE' expression were disappoint-
ingly low, even on immunoblots (Fig. 4). This low level of
detectable expression may be due to the suboptimal
spacing between the −35 and −10 promoter regions of
cbbE'. Analysis of E' protein products by maxicell
analysis (Sancar et al., 1981) suggested that the synthe-
sized E' protein was being rapidly degraded, despite a
number of preventative measures (data not shown). Only
the protease-deficient Lom− E. coli strain SG932 pro-
vided an adequate host for accumulation of sufficient
levels of intact E' protein to be detected.

The U and A nucleotide preference in codons of cbbE'
is similar to that of sequenced genes of other rickettsiae,
including the citrate synthase gene of Rickettsia
prowazekii (Wood et al., 1987) and the htpB gene of C.
burnetii (Vodkin & Williams, 1988). This result would be
expected in an organism which has a 43 mol% G+C
content (Weiss, 1982).

A discrete hydrophobic domain of 12 amino acids,
flanked on both sides by an aspartic acid residue, was
observed at approximately the centre of the E' protein
(between amino acid residues 224 and 235). This region
can represent a membrane-spanning domain of the E'
protein, serving to anchor it to the OM. Twelve
hydrophobic amino acids have been shown to be
sufficient for a membrane-spanning domain (Adams &
Rose, 1985). The aspartic acid residues occurring at both
ends of the hydrophobic domain could possibly associate
with the charged heads of the OM phospholipid bilayer
(Adams & Rose, 1985). However, no apparent amin-
terminal signal peptide with consensus to other pro-
karyotes (von Hejne, 1985) was observed.

The purpose of cloning the cbbE' gene was twofold.
First, to obtain nucleotide sequence data for a C. burnetii
plasmid gene, in order to compare its regulatory regions
with those of genes of other rickettsiae and E. coli.
Secondly, to characterize the gene and gene product
because of their unique association with a plasmid,
QpRS, harboured by chronic strains of C. burnetii.
Although the presence of plasmid sequences appears
to correlate with the virulence of C. burnetii, a specific gene
coding for a virulence determinant has not yet been
determined to be present on the plasmid. Characterization
of strain-specific plasmid genes and proteins from C.
burnetii strains with unique virulence potential is a
logical first step to determining virulence function. The
putative surface location of the E' protein also suggests
that it might eventually serve in detection tests. Finally,
the unique DNA sequence of the cbbE' gene and the
unique gene product it encodes could also serve as a
diagnostic probe to distinguish between acute strains
that contain QpH1 and chronic strains of C. burnetii that
contain QpRS.

We would like to express our appreciation to Shirley Schmitt and
Elizabeth Savinelli for their excellent technical assistance, and to
Kathleen Postle for providing E. coli SG932. This work was supported
by grant AI20190 from the National Institutes of Health (NIAID), and
by the Northwest College and University Association for Science
(University of Washington) under contract DE-AM06-76-RLO225
with the US Department of Energy.

References

membrane-spanning domain for protein anchoring and cell surface
ANDERSON, B. E., REGNEY, R. L., CARLANE, G. M., TZIANABOS, T.,
of the 17-kilodalton-antigen gene from Rickettsia rickettsii. Journal of
Bacteriology 169, 2385-2390.
BIRNBOIM, H. D. & DOLY, J. (1979). A rapid alkaline extraction
procedure for screening recombinant plasmid DNA. Nucleic Acids
Research 7, 1513-1523.

