Chloramphenicol resistance in *Streptomyces*: cloning and characterization of a chloramphenicol hydrolase gene from *Streptomyces venezuelae*

ROY H. MOSHER,¹ NEELIMA P. RANADE,¹ HILDGUND SCHREMPF² and LEO C. VINING¹*

¹ Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
² Institut für Genetik und Mikrobiologie der Universität München, D8000 Munich 19, FRG

(Received 4 September 1989; accepted 30 October 1989)

A 6.5 kb DNA fragment containing a chloramphenicol-resistance gene of *Streptomyces venezuelae* ISP5230 was cloned in *Streptomyces lividans* M252 using the high-copy-number plasmid vector pIJ702. The gene was located within a 2.4 kb *KpnI*-*SstI* fragment of the cloned DNA and encoded an enzyme (chloramphenicol hydrolase) that catalysed removal of the dichloroacetyl moiety from the antibiotic. The deacylated product, *p*-nitrophenylserinol, was metabolized to *p*-nitrobenzyl alcohol and other compounds by enzymes present in *S. lividans* M252.

Examination of the genomic DNA from several sources using the cloned 6.5 kb *SstI* fragment from *S. venezuelae* ISP5230 as a probe showed a hybridizing region in the DNA from *S. venezuelae* 13s but none in the DNA from another chloramphenicol producer, *Streptomyces phaeochromogenes* NRRLB 3559. The resistance phenotype was not expressed when the 6.5 kb *SstI* fragment or a subfragment was subcloned behind the *lac*-promoter of plasmid pTZ18R in *Escherichia coli*.

Introduction

Chloramphenicol resistance in many Gram-positive and Gram-negative bacteria is mediated by the enzyme chloramphenicol acetyltransferase (CAT; EC 2.3.1.28) which inactivates the antibiotic by catalysing its O-acetylation (Shaw, 1975). However, CAT activity could not be detected in the chloramphenicol-producing actinomycete *Streptomyces venezuelae* (Shaw & Hopwood, 1976) and does not appear to have a role in protecting this organism from the toxic product of its own metabolism (Vining & Westlake, 1984). Chloramphenicol is bacteriostatic and acts primarily by inhibiting protein synthesis (Pongs, 1979). It binds to prokaryotic ribosomes, including those of *S. venezuelae*. In *vitro* protein synthesizing systems derived from chloramphenicol-producing or non-producing mycelia are equally sensitive (Malik & Vining, 1972). Non-producing cultures exposed to chloramphenicol are initially inhibited but grow after a lag that varies with the drug concentration. The bacteria are then resistant to chloramphenicol at the concentration to which they were exposed, but are returned to the sensitive state by one passage through unsupplemented medium (Vining & Westlake, 1984).

S. venezuelae possesses an intracellular enzyme that inactivates chloramphenicol by removing the dichloroacetyl substituent (Malik & Vining, 1971). Since this chloramphenicol hydrolase was found in comparable amounts in producing or non-producing cultures, it was presumed not to be responsible for the inducible characteristics of resistance in *S. venezuelae*. To account for inducibility, Malik & Vining (1970, 1972) suggested that the mycelium becomes less permeable to chloramphenicol after exposure to exogenous antibiotic; the activity of chloramphenicol hydrolase might then reduce the intracellular concentration. To clarify the mechanisms by which *S. venezuelae* is resistant to its own antibiotic, we have cloned a fragment of *S. venezuelae* genomic DNA conferring chloramphenicol resistance in a heterologous host, *Streptomyces lividans* M252. Some features of this resistance are described.

Methods

Bacterial strains and plasmids. The sources and characteristics of these are described in Table 1.

Chemicals and enzymes. Lysozyme, phage λ DNA, restriction endonucleases and T4 DNA ligase were purchased from Boehringer Mannheim or BRL. Ultrapure agarose was obtained from Bio-Rad Laboratories. Chloramphenicol, ampicillin and 1,3-diacetoxychloramphenicol were purchased from Sigma; 1,3-diacetoxychloramphenicol...
Cultures (100 ml per 500 ml Erlenmeyer flask) were grown in GNY soy (TS) medium [sucrose, 10% (w/v); tryptic soy broth, 3% (w/v); (50 ml per 500 ml Erlenmeyer flask) were grown in YEME 0-5 Streptococcus lactis S. alboniger S. lividans Streptomyces lividans Streptomyces phaeochromogenes NRRLB 3559 Streptomyces lividans 1326 S. lividans M252 S. lividans M417 S. lividans JG10 Streptococcus lactis NCDO 496 Escherichia coli TG1

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomyces venezuelae</td>
<td></td>
<td>Stuttard (1982)</td>
</tr>
<tr>
<td>ISP5230</td>
<td>Wild-type</td>
<td>Ahmed & Vining (1983)</td>
</tr>
<tr>
<td>S. venezuelae 13s</td>
<td>Wild-type</td>
<td>Dobell et al. (1983)</td>
</tr>
<tr>
<td>Streptomyces phaeochromogenes</td>
<td></td>
<td>John Innes Institute, Norwich, UK</td>
</tr>
<tr>
<td>NRRLB 3559</td>
<td></td>
<td>John Innes Institute, Norwich, UK</td>
</tr>
<tr>
<td>Streptomyces lividans 1326</td>
<td>Wild-type</td>
<td>Betzler et al. (1987)</td>
</tr>
<tr>
<td>S. lividans M252</td>
<td>Wild-type</td>
<td>Gil & Hopwood (1983)</td>
</tr>
<tr>
<td>S. lividans M417</td>
<td>Cmm</td>
<td>National Collection</td>
</tr>
<tr>
<td>S. lividans JG10</td>
<td>Pab-</td>
<td>of Dairy Organisms, Shinfield, Reading, UK</td>
</tr>
<tr>
<td>Streptococcus lactis NCDO 496</td>
<td>Wild-type</td>
<td>Carter et al. (1985)</td>
</tr>
<tr>
<td>Escherichia coli TG1</td>
<td>Δlac-pro supE thi hsdD5/F’ traD16 proA B’ lacIlacZAM15</td>
<td>Katz et al. (1983)</td>
</tr>
<tr>
<td>pIJ702</td>
<td>Streptomyces vector: pIJ701 replicon with mel and tsr; insertion at SspI site inactivates mel</td>
<td>This paper</td>
</tr>
<tr>
<td>pJV3</td>
<td>pJJ702 carrying a 6-5 kb S. venezuelae ISP5230 DNA fragment containing the chloramphenicol hydrolase gene</td>
<td>This paper</td>
</tr>
<tr>
<td>pJV4</td>
<td>pJV3 with deletion in mel promoter and 6-5 kb insert; carries 2.4 kb DNA fragment from S. venezuelae ISP5230 containing the chloramphenicol hydrolase gene</td>
<td>This paper</td>
</tr>
<tr>
<td>pTZ18/19R</td>
<td>E. coli plasmid vector from pUC18/19; contains T7 promoter and the 1 IG origin of replication</td>
<td>Medd & Kemper (1988)</td>
</tr>
<tr>
<td>pJY5/6</td>
<td>pTZ18R with a 6-5 kb DNA insert containing the chloramphenicol hydrolase gene from S. venezuelae ISP5230; inserts in pJY5/6 are oppositely oriented</td>
<td>This paper</td>
</tr>
<tr>
<td>pJY7/8</td>
<td>pTZ18R/19R with a 2.4 kb DNA insert containing the chloramphenicol hydrolase gene from S. venezuelae ISP5230</td>
<td>This paper</td>
</tr>
</tbody>
</table>

was purified by TLC and recrystallization. Both p-nitrobenzoic acid and p-nitrobenzyl alcohol were purchased from Kodak. N-Acetyl-p-nitrophenylserinol was a gift from Parke-Davis. Thiostrepton was a gift from S. J. Lucania, E. R. Squibb & Sons, New Brunswick, NJ, USA.

[U-14C]Chloramphenicol was labelled biosynthetically from [U-14C]glucose (Malik & Vining, 1970); p-nitrophenyl[hydroxymethylene-14C]serinol was prepared by hydrolysis of [hydroxymethylene-14C]chloramphenicol (Rebstock et al., 1949) purchased from Amersham.

Media and culture conditions. Streptomyces venezuelae ISP5230 was maintained on MYM medium as described by Doull et al. (1985). Streptomyces lividans strains were maintained on R5(-S) medium which consisted of R5 regeneration medium (Hopwood et al., 1985) without sucrose. For plating S. lividans 3131 harbouring pIJ702, thiostrepton (30 µg ml-1) was included in R5(-S) medium. Minimal medium was as described by Hopwood (1967). Streptomyces cultures were grown at 30 °C until sporulation (4-5 d). Spores were harvested and stored as suspensions in 20% (v/v) glycerol at -20 °C (Hopwood et al., 1985).

Cultures of streptomyces grown in liquid media were incubated at 30 °C on a rotary shaker (220 r.p.m.; 3-7 cm eccentricity). Mycelium used for protoplast formation was from cultures (25 ml per 250 ml Erlenmeyer flask) grown for 48 h in YEME medium (Hopwood et al., 1985) supplemented with 34% (w/v) sucrose, 5 mM-MgCl2, and 0.5% (w/v) glycine. For assessing chloramphenicol resistance, cultures (50 ml per 500 ml Erlenmeyer flask) were grown in YEME or tryptic soy (TS) medium [sucrose, 10% (w/v); tryptic soy broth, 3% (w/v); MgCl2, H2O, 1% (w/v); yeast extract, 1% (w/v); and supplemented after autoclaving with CaCl2 to 1-5 mg ml-1]. For metabolite isolation, cultures (100 ml per 500 ml Erlenmeyer flask) were grown in GNY medium (Malik & Vining 1970). Cultures used for plasmid isolation or for vegetative inocula were initiated with spores harvested from agar plate cultures. Unless stated otherwise, vegetative inocula were grown for 48 h and added in amounts of 1% (v/v) to initiate cultures used to assess resistance, or 5% (v/v) to cultures used for metabolite isolation.

Cultures of E. coli on agar media were grown at 37 °C for 24 h. Shaken cultures (50 ml per 250 ml Erlenmeyer flask) used in plasmid isolation or to prepare competent cells were inoculated with 10-20 colonies and grown overnight at 37 °C in L-broth (Hopwood et al., 1985). Cultures of E. coli TG1 harbouring pTZ18/19R were grown on L-agar or in L-broth containing 50 µg ampicillin ml-1.

Plasmid and genomic DNA. Plasmid DNA from Streptomyces or E. coli was isolated by the rapid alkaline lysis method of Kieser (1984); for larger amounts the procedure was scaled up 10-fold and was followed by CsCl-ethidium bromide density gradient centrifugation. Genomic DNA was isolated and purified as described previously (Schreppe, 1982).

Restriction endonuclease digestion and ligation of DNA. Genomic DNA (10 µg) from S. venezuelae ISP5230 was digested with SstI under conditions (Thompson et al., 1982) that gave fragments predominantly 1-15 kb in size. The digest was combined with an SstI digest of pIJ702 (3 µg), heated to 65 °C for 10 min, placed on ice for 5 min and diluted with 2 vols absolute ethanol. After two washes with 70% (v/v) ethanol, the precipitated DNA was dissolved in ligation buffer (20 mM-Tris/ClCl pH 7.6, 10 mM-MgCl2, 10 mM-diithioerythritol, 0.6 mM-ATP) at a DNA concentration of 40 µg ml-1. The solution was incubated for 12-16 h at 14 °C with 1 unit of T4-DNA ligase, ligation being monitored by electrophoresis. The DNA was precipitated with ethanol, washed once with 70% ethanol and resuspended in TE buffer.
Protoplast transformation. Protoplasts in a small volume of P-buffer (Hopwood et al., 1985) were mixed with 20 μl of ligated plasmid DNA in TE buffer (10 mM-Tris/HCl, pH 9-0, 1 mM-EDTA) and 0.5 m 25% (v/v) polyethylene glycol 1000 in T-medium. They were immediately washed with P-buffer, recovered by centrifugation and spread (100 μl per plate) on partially dried R5 agar (Thompson et al., 1982). After 18-20 h at 30 °C, regenerating colonies were overlaid with soft nutrient agar (3 ml) containing enough thiotrehalon to give a plate concentration of 30 μg ml⁻¹. Transformants carrying the tsr gene of pJL702 were visible within 1-2 d, and the melanin excreted by those containing intact pJL702 was evident by the third day. At this time, all thiotrehalon-resistant colonies were transferred to minimal medium supplemented with 25 or 50 μg chloramphenicol ml⁻¹.

Cells of E. coli TG1 were made competent and transformed as described by Hopwood et al. (1985).

DNA hybridization. Genomic DNA samples were digested with SauI. Fragments were precipitated with ethanol, electrophoresed in a 0.1% (w/v) agarose gel and transferred to a nitrocellulose hybridization filter. The recombinant plasmid pJv3 containing the 6-50 kb DNA insert was digested with SauI, CiaI and BamHI; since only pJv702 DNA recognition sites for the latter two endonucleases, it was cleaved into fragments of 1-60, 1-70 and 2-50 kb which were readily separated from the 6-50 kb insert by electrophoresis overnight at 40 V in 0.6% (w/v) ultrapure agarose gels. The 6-5 kb DNA fragment was eluted from the gel into TBE buffer (89 m-Tris, 89 m-boric acid, 2 m-EDTA); the solution was extracted with phenol/chloroform and then chloroform. The DNA was precipitated with absolute ethanol, extracted with ethyl acetate and the extract was separated into non-measured with an LKB Wallac model 1215 liquid scintillation counter. The amount of radioactivity in solutions was measured with an LKB Wallac model 1215 liquid scintillation counter.

Analysis of cultures. Resistance to chloramphenicol and its metabolites was measured by comparing the mycelium dry weight of cultures grown in TS medium with or without the test compound at a range of concentrations. For S. lividans RM3 the inoculum medium was supplemented with 25 μg chloramphenicol ml⁻¹ to maintain selection for pJv3.

To identify metabolic products of chloramphenicol, cultures of S. lividans 1326, M252 and RM3 were supplemented with either chloramphenicol or p-nitrophenylseryl and harvested at 24 h intervals by centrifugation. In some cultures of S. lividans RM3, [U-14C]chloramphenicol or p-nitrophenyl[hydroxyethylen-14C]serinel was used as the supplement and cultures were grown for only 24 h. For all cultures, the supernatant solution collected by centrifugation was extracted with ethyl acetate and the extract was separated into non-acid/water (12:3:5, by vol.) for aqueous fractions. Aromatic compounds were detected by TLC on silica gel (Sil 60 F254; Merck) using chloroform/methanol (9:1, v/v) as the solvent system for extracts, and n-butanol/acetic acid/water (12:3:5 by vol.) for aqueous fractions. Aromatic compounds were visualized as fluorescence-quenching zones under light of 254 nm. Chromatograms were scanned for radioactivity with a gas-flow Geiger-Mueller detector (Packard model 7200) synchronized with a strip chart recorder. The amount of radioactivity in solutions was measured with an LKB Wallac model 1215 liquid scintillation counter.

To search for possible metabolites of chloramphenicol in E. coli strains transformed with plasmids pJv7 and pJv8, cultures were grown for 24 h in minimal medium containing chloramphenicol (0.2 μg ml⁻¹) and isopropyl thiogalactoside. The broth was extracted with ethyl acetate and the extracts were concentrated and examined by TLC on silica gel with chloroform/methanol (9:1, v/v) and ethyl acetate/acetic acid/water (4:17:1, by vol.) as solvent systems. Authentic samples of chloramphenicol, p-nitrophenylseryl and N-acetyl-p-nitrophenylserinol were included as reference compounds.

Isolation of metabolites. Cultures of S. lividans 1326 and RM3 that had been supplemented with the test compound were centrifuged and the pellet was resuspended in water; the pellet was then washed with acetone. The supernatant solution from the culture was extracted with ethyl acetate successively at pH 8-5, 5-0 and 2-5. The acetone and ethyl acetate extracts were each evaporated, redissolved in 250 μl ethyl acetate and chromatographed on preparative layers of silica gel using chloroform/methanol (9:1, v/v) as solvent. Fluorescence-quenching zones were scraped from plates; the adsorbed substances were eluted with acetone and the solutions were evaporated.

In the non-acidic (pH 8-5) extract from S. lividans RM3 cultures supplemented with [U-14C]chloramphenicol (3 μg ml⁻¹; 25-6 μCi mmol⁻¹), the residue from a zone with the same mobility (Rf 0.72) as p-nitrobenzyl alcohol contained 0-89 nCi of radioactivity. Admixture with unlabelled p-nitrobenzyl alcohol (25 mg) and three recrystallizations from water gave specific activities of 5-5, 6-5 and 6-1 nCi mmol⁻¹. A second radioactive zone in the non-acidic extract matched N-acetyl-p-nitrophenylseryl (Rf 0.34) in mobility. The eluate (1.3 nCi) was mixed with unlabelled N-acetyl-p-nitrophenylseryl (25 mg). In successive recrystallizations from water, its specific activity remained constant at 13-2 nCi mmol⁻¹. (1 Ci = 37 GBq.)

Metabolites with Rf values of 0.34 and 0.72 detected by TLC analysis of non-acidic extracts from S. lividans M252 cultures supplemented with p-nitrophenylseryl, and from S. lividans RM3 cultures supplemented with p-nitrophenyl[hydroxyethylen-14C]serinel (200 μg ml⁻¹; 1-06 μCi mmol⁻¹), were separated by preparative TLC, eluted and crystallized from water. The substances at Rf 0.34 from each source were obtained as needles, m.p. 129 °C, indistinguishable in melting point, infrared and 1H-nuclear magnetic resonance (NMR) spectra from authentic N-acetyl-p-nitrophenylseryl (Doulil et al., 1985). The specific activity of the product from the S. lividans RM3 was 1-01 μCi mmol⁻¹. The substances at Rf 0.72 were obtained as needles, m.p. 92 °C, unchanged on admixture with authentic p-nitrobenzyl alcohol. Its identity was confirmed by comparison of infrared and 1H-NMR spectra with those of p-nitrobenzyl alcohol.

In the non-acidic extract from S. lividans 1326 cultures supplemented with chloramphenicol, a zone at Rf 0.92 corresponded in mobility to 1,3-diacetoxychloramphenicol. When the product eluted from this zone was recrystallized from water, it yielded colourless needles, m.p. 141 °C alone or after mixing with authentic 1,3-diacetoxychloramphenicol. The 1H-NMR spectrum, recorded in deuterochloroform at 300 MHz on a Bruker model MSL-300 spectrometer with tetramethylsilane as the internal reference, contained signals at δ (p.p.m.) 2-11 (3H, acetoxyl CH₂), 2-19 (3H, acetoxyl CH₃), 4-06 (q, 1H, H-1'), Jₖ₂, 5-6 Hz, Jₖ₂, 5-6 Hz), 4-19 (q, 1H, H-16', Jₖ₂, 5-6 Hz, Jₖ₂, 5-6 Hz), 4-61 (q, 1H, H-7', Jₖ₂, 5-6 Hz, Jₖ₂, 5-6 Hz), 4-82 (bs, 1H, NH), 5-86 (s, 1H, CH₂O), 6-07 (d, 1H, H-3', Jₖ₂, 5-7 Hz), 7-89 (AA'BB', 4H, H-2, H-3, H-5, H-6, consisting of doublets at 7-53 and 8-24 p.p.m., Jₖ₂, 8-7 Hz). The data were consistent with the assigned structure and matched those obtained with the authentic sample.

Results

Sensitivity of S. venezuelae and S. lividans strains to chloramphenicol

The minimum inhibitory concentration (MIC) of chloramphenicol for S. venezuelae ISP5230 grown on MYM medium was 200 μg ml⁻¹. S. lividans strains 1326...
and JG10 had an MIC of 20 μg ml⁻¹ but strains M417 and M252, both of which had been selected for sensitivity to chloramphenicol (Betzler et al., 1987; Schottel et al., 1981), failed to grow at drug concentrations above 3 and 6 μg ml⁻¹, respectively.

Isolation and characterization of plasmid pJV3

After complete digestion with SstI, genomic DNA from S. venezuelae ISP5230 contained fragments of predominantly 1–15 kb. These were ligated to SstI-cleaved pIJ702 and the ligation mixture was used to transform protoplasts of S. lividans M252. Regeneration of the protoplasts under selective conditions yielded semi-confluent lawns of thiostrpton-resistant transformants. When these were replica-plated on minimal medium supplemented with 25 or 50 μg chloramphenicol ml⁻¹, three colonies from approximately 10000 melanin-negative transformants grew rapidly at both drug concentrations.

All three resistant transformants contained recombinant plasmids. Two of the plasmids, with inserts of 0.7 and 1.7 kb, failed to confer chloramphenicol resistance when they were isolated and reintroduced into S. lividans M252. The third plasmid, from transformant RM3, contained a 6.5 kb insert. When this plasmid (pJV3) was used to transform S. lividans M252, all of the 16 thiostrepton-resistant colonies tested were also chloramphenicol resistant. With a second host, S. lividans M417, all 12 colonies selected for resistance to 50 μg of thiostrpton ml⁻¹ after transformation with pJV3 were resistant to 12.5 μg chloramphenicol ml⁻¹.

Plasmid DNA from S. lividans RM3 was extracted by the rapid alkaline procedure of Kieser (1984) and was digested with restriction enzymes, both singly and in combination. Comparison of the fragments by agarose gel electrophoresis with those obtained from pIJ702 gave the restriction map shown in Fig. 1. To locate the region within the cloned fragment that conferred chloramphenicol resistance, pJV3 was digested with KpnI and the ligated mixture was used to transform S. lividans M252. From the transformants, a clone containing pJV4 was isolated; this had undergone a 4.1 kb deletion from the insert and carried the cmr determinant in a 2.4 kb KpnI-SstI segment of DNA. 2. pJV5 was formed by digesting both pJV3 and pTZ18R with SstI, ligating the mixture and using it to transform E. coli TG1; screening of the transformants yielded a clone containing pJV5. 3. pJV3 was digested with KpnI, ligated and used to transform E. coli; among the transformants was one in which the resident plasmid had undergone a 4.1 kb deletion to yield pJV7. 4. Digestion of pJV7 with KpnI and SstI gave a 2.4 kb fragment; this was ligated to pTZ19R digested with the same restriction enzymes and used to transform E. coli TG1. From the transformants, a clone containing pJV8 was isolated. The diagram is not drawn to scale.

Fig. 1. Restriction map of plasmid pJV3 linearized with BamH I; sizes were determined by comparison with HindIII- and PstI-digested λ phage DNA. The position of restriction sites in the 6.5 kb insert was determined by single and multiple digestions with the restriction enzymes indicated in the diagram. The position of sites in the vector region is as given by Hopwood et al. (1985).

Fig. 2. Derivation of recombinant plasmids. 1. pJV3 was digested with KpnI and the ligated mixture was used to transform S. lividans M252. From the transformants, a clone containing pJV4 was isolated; this had undergone a 4.1 kb deletion from the insert and carried the cmr determinant in a 2.4 kb KpnI-SstI segment of DNA. 2. pJV5 was formed by digesting both pJV3 and pTZ18R with SstI, ligating the mixture and using it to transform E. coli TG1; screening of the transformants yielded a clone containing pJV5. 3. pJV5 was digested with KpnI, ligated and used to transform E. coli; among the transformants was one in which the resident plasmid had undergone a 4.1 kb deletion to yield pJV7. 4. Digestion of pJV7 with KpnI and SstI gave a 2.4 kb fragment; this was ligated to pTZ19R digested with the same enzymes and the mixture used to transform E. coli TG1. From the transformants, a clone containing pJV8 was isolated. The diagram is not drawn to scale.
Chloramphenicol hydrolase gene of *S. venezuelae* 297

pIJ702 fragment is believed to carry the promoter region of the *mel* gene (Hopwood et al., 1985). Retransformation of *S. lividans* M252 with pJV4 gave thiostrepton-resistant colonies that were also chloramphenicol resistant.

The 6.5 kb fragment excised from pJV3 was shotgun-cloned into an *SstI* site within the polylinker sequence downstream of the *lac* promoter in pTZ18R to give two recombinant plasmids, pJV5 and pJV6. From single and double digestions of pJV5 and pJV6 with *SstI*, *KpnI* and *PstI*, and electrophoretic measurement of fragment sizes against a *HindIII*-digested DNA reference (data not shown), it was concluded that the 6.5 kb insert was present in opposite orientations in the two plasmids. In cultures grown with or without isopropyl thiogalactoside as an inducer, neither plasmid conferred chloramphenicol resistance on *E. coli* TG1. Subcloning the 2.4 kb *KpnI*–*SstI* *S. venezuelae* DNA fragment from pJV4 in the polylinker regions of pTZ18R and pTZ19R (vectors with the same polylinker sequence in reverse orientations to the *lac* promoter) gave the recombinant plasmids pJV7 and pJV8, respectively. These also failed to confer chloramphenicol resistance on *E. coli* transformants.

To ascertain whether the chloramphenicol hydrolase gene was expressed in the *E. coli* transformants without conferring resistance to the antibiotic, cultures were grown in a sub-inhibitory concentration of chloramphenicol and extracts were examined by TLC. Whereas unchanged antibiotic could be readily located, no substances corresponding in *R*$_f$ value with *p*-nitrophenylserinol or *N*-acetyl-*p*-nitrophenylserinol were detected, even when *lac* expression was induced with isopropyl thiogalactoside.

Southern hybridization

To confirm that the 6.5 kb insert of pJV3 hybridized to a region in the genomic DNA of *S. venezuelae* ISP5230,
Table 2. Effect of chloramphenicol on the growth of S. lividans strains M252 and RM3

<table>
<thead>
<tr>
<th>Chloramphenicol (µg ml⁻¹)</th>
<th>48 h</th>
<th>96 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M252</td>
<td>RM3</td>
</tr>
<tr>
<td>Nil</td>
<td>3.7</td>
<td>4.4</td>
</tr>
<tr>
<td>15</td>
<td>0.18</td>
<td>2.6</td>
</tr>
<tr>
<td>30</td>
<td>0.15</td>
<td>1.3</td>
</tr>
<tr>
<td>45</td>
<td>0.16</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Effect of chloramphenicol on growth

Cultures of RM3 and M252 in TS medium without antibiotic grew at the same rate and achieved a similar maximum yield after 2 d. However, S. lividans M252 was markedly inhibited by 6 µg chloramphenicol ml⁻¹ and little growth occurred at 15 µg ml⁻¹. In contrast, cultures of S. lividans RM3 containing chloramphenicol supplements of from 15 to 45 µg ml⁻¹ showed an approximately linear decrease in growth after 2 d incubation (Table 2). By the fourth day, all cultures had accumulated similar amounts of biomass.

Chloramphenicol metabolism by S. lividans RM3

To determine whether the antibiotic was metabolized, cultures of S. lividans RM3 were grown in a medium supplemented with [U-¹⁴C]chloramphenicol. Of the total radioactivity administered, 19% became associated with the mycelium; less than half of this was recovered by acetone extraction and examination of the extract by TLC and scanning for radioactivity showed the label to be distributed among numerous unidentified components. The combined ethyl acetate extracts of the culture supernatant accounted for a further 20% of the radioactivity initially added; the remainder was associated with non-extractable metabolites in the culture supernatant fraction.

When an extract from the culture supernatant at pH 7.3 was fractionated by TLC and scanned for radioactivity, two radioactive metabolites were detected. These were identified by co-crystallization with authentic material to constant specific activity as p-nitrobenzyl alcohol and N-acetyl-p-nitrophenylserinol (Fig. 4). Examination by TLC of the metabolites extracted at pH 2.5 gave a radioactive peak that co-migrated with p-nitrobenzoic acid. The amount of radioactivity eluted from the zone was too small to allow further characterization.

Chloramphenicol metabolism by S. lividans M252

Examination by TLC of ethyl acetate extracts from cultures of S. lividans M252 that had been supplemented after 24 h growth with a sublethal concentration (2 µg ml⁻¹) of chloramphenicol showed that the antibiotic was slowly metabolized. The main product was an aromatic compound with an Rf value matching that of 1,3-diacetoxychloramphenicol (Fig. 4). The same metabolite was formed in the more drug-tolerant parent strain, S. lividans 1326, when chloramphenicol was added to cultures at 15 µg ml⁻¹. The substance isolated from these cultures was confirmed from its spectroscopic properties to be 1,3-diacetoxychloramphenicol.

Metabolism of p-nitrophenylserinol by S. lividans

N-Acetyl-p-nitrophenylserinol and p-nitrophenylserinol added to 24 h cultures of S. lividans RM3 at concentrations of 100 and 200 µg ml⁻¹, respectively, did not affect the subsequent growth of the organism. In contrast, growth of S. lividans M252 was inhibited by these concentrations, and in the case of the acetyl derivative, by as little as 20 µg ml⁻¹. When added at 15 µg ml⁻¹, p-nitrophenylserinol was metabolized in cultures of S. lividans M252 to substances that were isolated and identified spectroscopically as N-acetyl-p-nitrophenylserinol and p-nitrobenzyl alcohol.

In cultures of S. lividans RM3 to which 190 µg p-nitrophenyl(α-hydroxymethylene-¹⁴C)serinol ml⁻¹ was added at inoculation, only 14% of the radioactivity in the culture 24 h later was in the non-acidic ethyl acetate extract. TLC of this fraction and scanning for radioactivity showed that the ¹⁴C was present in only one
metabolite, the R_F of which (0.34) coincided with that of N-acetyl-p-nitrophenylserinol. An unlabelled product at R_F 0.72 co-chromatographed with p-nitrobenzyl alcohol but no unmetabolized p-nitrophenylserinol could be detected. N-Acetyl-p-nitrophenylserinol and p-nitrobenzyl alcohol were isolated and identified spectroscopically as above.

Discussion

Since a 5·2 kb segment lying between a $KpnI$ site in the vector and the single $KpnI$ site in the 6·5 kb DNA insert in pJV3 could be removed without altering the chloramphenicol-resistance phenotype conferred by the plasmid, the cmr^R determinant is present on the remaining 2·4 kb of insert DNA. Besides the deleted 4·1 kb portion of the original insert, pJV4 also lacks a 1·1 kb $KpnI$–$SstI$ fragment of the pIJ702 vector. The latter DNA encodes all of the upstream portions of the melC1 gene (Lee et al., 1988). Thus the possibility that the cmr^R determinant in pJV3 might be expressed from melC1 promoter sequences is absent for pJV4. Although the opportunity for read-through from an upstream plasmid promoter remains, the results suggest that the 2·4 kb insert in pJV4 contains a promoter for cmr^R.

The absence of increased chloramphenicol resistance when the 6·5 kb insert from pJV3 was introduced into the polylinker site of pTZ18R and, in both orientations with respect to the upstream lac promoter, subcloned in
E. coli TG1, is probably due to the resistance gene not being expressed. In cultures of the E. coli transformants, sublethal chloramphenicol supplements remained unchanged and the products expected from their metabolism could not be detected. The lack of expression from the lac promoter in the vector is presumably due to an inappropriate reading frame or the presence of an intervening termination sequence. Absence of expression from the indigenous cml promoter is consistent with the observation (Bibb et al., 1985) that many Streptomyces promoters are not recognized by the DNA transcribing system in E. coli.

Cultures of S. lividans RM3 metabolized [U-14C]chloramphenicol to radioactive N-acetyl-p-nitrophenylserinol and p-nitrobenzyl alcohol. A small amount of a substance chromatographically similar to p-nitrobenzoic acid was detected as well but could not be conclusively identified. The absence of p-nitrophenylserinol is explained by the rapid conversion of this compound to N-acetyl-p-nitrophenylserinol, demonstrated by supplementing cultures with p-nitrophenyl[hydroxymethylene-14C]serinol. The p-nitrobenzyl alcohol also accumulated in these cultures was unlabelled, as anticipated from the location of the label in the supplement. In S. venezuelae 13s, labelled p-nitrophenylserinol as well as p-nitrobenzoic acid have been identified in cultures after the addition of [U-14C]chloramphenicol (Malik & Vining, 1970) but the products found were otherwise identical to those found in S. lividans RM3. The difference in amounts of p-nitrobenzoic acid may be due to a more active reduction of this compound to p-aminobenzoic acid demonstrated in S. lividans (N. P. Ranade, unpublished). The overall results suggest that the antibiotic is inactivated by a similar pathway in the two organisms (Fig. 4).

No conversion of chloramphenicol to these products could be detected in S. lividans strains not transformed with pJV3 or pJV4. Instead, S. lividans 1326 and M252 modified the antibiotic by O-acetylation. The inferred presence of CAT activity supports observations of weak CAT activity in strains M252 (Gil & Hopwood, 1985) and 1326 (W. Dittrich & H. Schrempf, unpublished), and would seem to conflict with earlier reports of its absence from strain 1326 (Shaw & Hopwood, 1976; Gil & Hopwood, 1985). However, O-acetylation of chloramphenicol by this strain depends on the composition of the growth medium and the age of cultures (N. P. Ranade, unpublished) and it is possible that CAT activity is catabolite-repressed under some conditions. The results suggest that S. lividans strains M252 and 1326 tolerate chloramphenicol at concentrations up to 6 μg ml⁻¹ and 20 μg ml⁻¹, respectively, because of inactivation of the antibiotic mediated by CAT. Consistent with this, and with the absence of chloramphenicol hydrolase activity in these strains, is the absence of hybridization between the 6-5 kb DNA insert of pJV3 and genomic DNA from S. lividans M252 and JG10 (a pab mutant of strain 1326 which exhibits wild-type resistance to chloramphenicol). Whether chloramphenicol resistance in 1326 is due primarily to CAT activity is nevertheless uncertain since W. Dittrich & H. Schrempf (unpublished) did not observe increased activity in cell extracts from hyper-resistant derivatives of this strain.

The absence of chloramphenicol degradation products in S. lividans M252 and their formation in S. lividans RM3 suggests that the resident S. venezuelae DNA of pJV3 confers resistance to the antibiotic by inactivation. The presence of metabolites derived from p-nitrophenylserinol and devoid of the dichloroaacetil substituent of chloramphenicol implicates chloramphenicol hydrolase (Malik & Vining, 1971) as the initial enzyme catalysing the reactions. Since S. lividans M252 metabolized p-nitrophenylserinol (but not chloramphenicol) to N-acetyl-p-nitrophenylserinol and p-nitrobenzyl alcohol, introduction of the DNA coding for chloramphenicol hydrolase from S. venezuelae would be sufficient to enable this strain to generate the range of metabolic products observed. Removal from pJV3 of a 4.1 kb segment of the DNA insert without affecting the chloramphenicol resistance phenotype conferred on S. lividans M252 by the plasmid is consistent with the assumption that the cloned fragment contains only the determinant for chloramphenicol hydrolase. Of potential interest is the observation that N-acetyl-p-nitrophenylserinol exhibits antibiotic activity (Suzuki et al., 1972). Accumulation of this product, especially in the absence of competing degradative reactions, might cause growth inhibition and mask phenotypic expression of resistance.

The results of the Southern hybridization experiment indicated that the 6-5 kb fragment from S. venezuelae ISP5230 had strong sequence similarity to a comparably sized DNA fragment from S. venezuelae 13s. The 8 kb hybridizing fragment in the S. venezuelae ISP5230 digest is probably due to incomplete digestion. Because S. phaeochromogenes NRRLB 3559, like S. venezuelae ISP5230 and 13s, produces chloramphenicol (Doufl et al., 1983), the lack of hybridization between the probe and its genomic DNA was surprising. It may be that S. phaeochromogenes possesses a chloramphenicol hydrolase gene with sufficient sequence similarity to be detected under less stringent conditions for hybridization and washing than those used, which were relatively severe. It is also possible that an S. phaeochromogenes gene possesses numerous StulI sites and was digested into small fragments not recognized in the hybridization. However, it is not known for certain whether the mechanism by which S. phaeochromogenes acquires resistance to its own antibiotic is of the same type as in S. venezuelae.

...
This research was supported by the Natural Sciences and Engineering Research Council of Canada. We thank C. Stuttard, J. L. Doull, J. M. Wright, D. A. Aidoo, D. A. Hopwood, J. A. Gil and E. Katz for gifts of cultures. We also thank J. A. Walter, Atlantic Research Laboratory, National Research Council of Canada, for the nuclear magnetic resonance spectra.

References

