Ammonia-dependent growth (Adg⁻) mutants of Rhodobacter capsulatus and Rhodobacter sphaeroides: comparison of mutant phenotypes and cloning of the wild-type (adgA) genes

V. V. ZINCHENKO,¹ M. M. BABYKIN,¹ S. SHESTAKOV,¹† PATRICE ALLIBERT,²‡ PAULETTE M. VIGNAIS² and JOHN C. WILLISON²*¹

¹Department of Genetics, Biology Division, Moscow State University, Moscow 117234, USSR
²Laboratoire de Biochimie Microbienne (CNRS UA 1130), Département de Recherche Fondamentale, Centre d’Études Nucléaires de Grenoble, 85 X, 38041 Grenoble cedex, France

(Received 12 February 1990; revised 2 July 1990; accepted 13 August 1990)

Mutants of Rhodobacter capsulatus deficient in growth on nitrogen sources other than NH₄⁺ were compared with mutants of a similar phenotype isolated from Rhodobacter sphaeroides. In addition to N₂ and some amino acids (glutamate, alanine, proline, arginine), mutants of R. sphaeroides and R. capsulatus strain AD2 were unable to utilize NO₃⁻ as sole nitrogen source for growth. Under conditions of nitrogen starvation, mutants of both species lacked the methylammonium (ammonium) uptake system, which was found in the wild-type strains under these conditions. The wild-type (adgA) genes complementing these mutants were isolated from gene banks of the respective species and localized to a 2-9 kb BamHI–SalI fragment in R. sphaeroides and to a 1-7 kb SmaI fragment in R. capsulatus. These two fragments hybridized strongly with each other, showing that they contain homologous sequences. Furthermore, the adgA gene from R. capsulatus fully restored the wild-type phenotype to Adg⁻ mutants of R. sphaeroides and vice versa. Inactivation of the chromosomal adgA gene by insertion of an antibiotic-resistance cassette resulted in a severe inhibition of growth in rich medium and in minimal medium containing NH₄⁺. This suggests that the adgA gene is required for normal growth under all growth conditions.

Introduction

The purple, non-sulphur photosynthetic bacteria are generally able to use a wide range of compounds as nitrogen source for growth, including NH₄⁺, N₂, amino acids, and, in some strains, NO₃⁻. In Rhodobacter capsulatus, much is known about the regulation of the genes for N₂ fixation (nif genes), and several regulatory nif genes have been identified (for reviews, see Haselkorn, 1986; Willison et al., 1990). However, little is known about the regulation of the utilization of other nitrogen sources, either at the genetic or at the physiological level (cf. Caballero et al., 1989).

In R. capsulatus, the regulatory genes nifR1, nifR2 and nifR4 have been shown to be homologous to the nitrogen regulatory genes ntrC, ntrB and ntrA, respectively (Kranz & Haselkorn, 1985; Jones & Haselkorn, 1989). In enteric bacteria, such as Escherichia coli and the N₂-fixing species Klebsiella pneumoniae, the ntr gene products are required for the synthesis of several enzymes involved in the utilization of nitrogen compounds, e.g. nitrogenase in K. pneumoniae, as well as of various amino acid transport systems (see Magasanik, 1982; Reitzer & Magasanik, 1987). The effects of ntr mutations are therefore usually pleiotropic. In contrast, disruption of the nifR1, nifR2 or nifR4 genes in R. capsulatus results in a Nif⁻ phenotype, but not in an Ntr⁻ phenotype, suggesting that the genes involved are specifically involved in controlling nitrogen fixation. However, a nifR1 mutant, J61, in addition to being unable to synthesize nitrogenase, is also unable to synthesize an inducible methylammonium (ammonium) uptake system (Haselkorn, 1986; Rapp et al., 1986).

Mutants of R. capsulatus which are unable to utilize a wide range of compounds, including N₂, NO₃⁻ and individual amino acids, as sole N source for growth have...
been isolated. These mutants have been variously referred to as Nit- (Wall et al., 1977), Nut- (Czichos & Klemme, 1980) and 'Ntr-like' (Willison et al., 1985), the latter on the basis of the similarity of their phenotype to that of the Ntr- mutants of *K. pneumoniae*. An *E. coli* gene which complements the 'Ntr-like' mutants of *R. capsulatus* has been isolated (Allibert et al., 1987) and nucleotide sequencing of the gene has shown it to be unrelated to the known *ntr* genes of *E. coli*. The approximate map position of the gene (34–39 min) was determined, and no gene involved in nitrogen metabolism has so far been mapped to this region.

Mutants with similar phenotypes to those of 'Ntr-like' mutants of *R. capsulatus* have also been described in *Rhodobacter sphaeroides* (Frolova et al., 1986; Shestakov et al., 1988). In the present article, we compare the phenotypic characteristics of 'Ntr-like' mutants from the two species, and describe the cloning of the wild-type genes which complement the respective mutations. Some differences were observed between mutants of the two species. However, the wild-type genes from the two species cross-hybridized, and were able to complement mutations in the heterologous gene, implying that a similar gene is involved in both cases. Since the *ntr* terminology has not been universally adopted (cf. Reitzer & Magasanik, 1987), and a regulatory role for the gene has not been unequivocally demonstrated, we propose the name *adgA* (ammonia-dependent growth) for the gene, and *Adg-* for the corresponding mutant phenotype.

Methods

Bacterial strains and plasmids. These are listed in Table 1. *R. sphaeroides* strain 2R was obtained from the collection of the Department of Genetics, Moscow State University. *Adg-* mutants derived from *R. capsulatus* strain B10 and *R. sphaeroides* 2R were isolated after chemical mutagenesis followed by penicillin selection, and reverted to the wild-type at frequencies consistent with the presence of single point mutations (Willison et al., 1985; Frolova et al., 1986).

Media and growth conditions. *E. coli* strains HB101 and C600, used as plasmid hosts, were grown either in complex LB medium or in minimal A medium (Miller, 1972) with appropriate supplements. *Rhodobacter strains* were grown either in Ormerod medium (Ormerod et al., 1961) containing 30 mM-sodium DL-malate and 10 mM-(NH₄)₂SO₄ as carbon and nitrogen sources, respectively, or in RCV medium (Weaver et al., 1975). For growth tests, (NH₄)₂SO₄ was replaced by specified amino acids at 10 mM final concentration. Diazotrophic cultures were grown under N₂ in Ormerod medium without added combined nitrogen source and illuminated with a bank of three 60 W incandescent lamps. Complex (YPS) medium was formulated as described by Weaver et al. (1975).

Bacterial matings and transformations. These were performed as described earlier (Saano & Zinchenko, 1987). The plasmid pAS8-121Δ3, which is not able to replicate in *R. sphaeroides* (Dubeikovsky & Kameneva, 1984), was used as conjugal mobilizing plasmid. In *R. capsulatus*, pRK2013 was used as the mobilizing plasmid for pRK290-derived plasmids (Ditta et al., 1980) and pDPT51 was used to mobilize pDPT14-derived plasmids (Taylor et al., 1983).

Isolation and purification of plasmid DNAs. For characterization of recombinant DNAs, plasmid DNAs were isolated from bacteria by the boiling method (Holmes & Quigley, 1981). DNAs required for plasmid construction experiments were purified by centrifugation in three-layer CsCl/ethidium bromide gradients for 6 h (Babykin & Zinchenko, 1984).

Analysis of plasmid DNAs. Standard techniques of molecular cloning were used (Maniatis et al., 1982). Restriction enzymes and T4 DNA ligase were purchased from commercial sources and used according to the manufacturer's instructions.

Construction of gene bank. *R. sphaeroides* chromosomal DNA was partially digested with BamHI and the fragments were separated by gel electrophoresis on 0·8% low-melting-point agarose. The fraction of BamHI fragments with an average size of 9–15 kb was isolated from the gel and ligated to the vector of direct selection pVZ361 digested with BamHI. The ligation mixture was used to transform *E. coli* C600 cells and transformant clones were selected for streptomycin resistance. The resulting gene bank consisted of approximately 8000 clones. The bank was then divided into 40 fractions (about 200 clones per fraction) and stored in 15% (v/v) glycerol at −70 °C.

Methylammonium uptake. Methylammonium uptake was assayed essentially as described by Rapp et al. (1986). Cells grown for transport studies (4 ml of a culture grown to mid-exponential phase in Ormerod medium) were harvested by centrifugation. After two washes with an equal volume of Ormerod medium lacking ammonium (pH 6·8), the cells were suspended in 0·6 ml of the same medium and incubated at 35 °C for 2 h. (Preliminary experiments showed that derepression of the methylammonium transport system was maximal after this time.) Uptake was then initiated by adding [¹⁴C]methylammonium hydrochloride (Amersham) to a final concentration of 7·5 μM (20 μCi ml⁻¹; 740 kBq μl⁻¹). At various times (30 s to 10 min after the addition of methylammonium), 0·1 ml samples were filtered through 0·45 μm pore-size nitrocellulose filters (Millipore). The filters were placed in vials with 5 ml Bray's scintillation cocktail and radioactivity was determined by scintillation counting. The rate of uptake was determined from the initial linear portion of the curve.

Enzyme assays. Nitrogenase activity was determined by measurement of acetylene reduction as described previously (Willison & Vignais, 1982). Glutamine synthetase (GS) was assayed by the γ-glutamyltransferase procedure (Shapiro & Stadtman, 1970). In *R. capsulatus*, GS was assayed at pH 7·45, in cells permeabilized with CTAB to stabilize the adenylation state of the enzyme (Johansson & Gest, 1977). Glutamate synthase (GOGAT) was assayed as described by Yelton & Yoch (1981). The protein content of whole cells was measured by the method of Lowry after digestion with 0·2 M-NaOH for 1 min in a boiling water bath.

DNA–DNA hybridization. DNA fragments were separated in 0·7% agarose gels. The Southern blotting technique (Southern, 1975) was used to transfer the DNA onto the surface of Hydrobon-N nylon membranes (Amersham). The DNA probes were labelled with biotin-11-dUTP (BRL) using a nick-translation kit (N5000; Amersham). Hybridization was carried out at 42 °C in the presence of 45% (v/v) formamide and 5 × SSC (1 × SSC contains 0·15 M-NaCl, 15 mM-sodium citrate, pH 7·0). Hybridization reactions of biotinylated probes were detected with a streptavidin-alkaline phosphatase kit from BRL.

Transposon and 'cassette' mutagenesis. Plasmid pAP127 was mutagenized in vivo either with Tn5-751 (Rella et al., 1985) or with mini-
Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant genotype or phenotype*</th>
<th>Source or reference and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB101</td>
<td>F- proA2 rpsL20 recA13 hsdS20 (r_{H} m_{G})</td>
<td>Maniatis et al. (1982)</td>
</tr>
<tr>
<td>C600</td>
<td>F- thr-1 thr-1 leuB6</td>
<td></td>
</tr>
<tr>
<td>Rhodobacter capsulatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>Wild-type</td>
<td>Marrs (1974)</td>
</tr>
<tr>
<td>RC28</td>
<td>adgA28 (ntr-28)</td>
<td></td>
</tr>
<tr>
<td>RC29</td>
<td>adgA29 (ntr-29)</td>
<td></td>
</tr>
<tr>
<td>RC34</td>
<td>adgA34 (ntr-34)</td>
<td></td>
</tr>
<tr>
<td>AD2</td>
<td>Wild-type</td>
<td>Czichos & Klemme (1982)</td>
</tr>
<tr>
<td>C1</td>
<td>Adg^- (Nut^-)</td>
<td></td>
</tr>
<tr>
<td>Y262</td>
<td>Prototroph</td>
<td>GTA-overproducing strain (Yen et al., 1979)</td>
</tr>
<tr>
<td>Rhodobacter sphaeroides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2R</td>
<td>Wild-type</td>
<td>Laboratory collection</td>
</tr>
<tr>
<td>NF-8</td>
<td>adgA8 (ntr-8)</td>
<td>Frolova et al. (1986)</td>
</tr>
<tr>
<td>NF-15</td>
<td>adgA15 (ntr-15)</td>
<td></td>
</tr>
<tr>
<td>NF-78</td>
<td>adgA78 (ntr-78)</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVZ361</td>
<td>IncQ Su Sm Km Tp + Mob^+</td>
<td>Zinchenko et al. (1985)</td>
</tr>
<tr>
<td>pNF114</td>
<td>IncQ Su Sm Km adgA</td>
<td>This work; derived from pVZ361</td>
</tr>
<tr>
<td></td>
<td>(R. sphaeroides) Mob^+</td>
<td>(13.9 kb BamHI insert)</td>
</tr>
<tr>
<td>pNF149</td>
<td>IncQ Su Sm Km adgA</td>
<td>This work; derived from pVZ361</td>
</tr>
<tr>
<td></td>
<td>(R. sphaeroides) Mob^+</td>
<td>(3.2 kb BamHI insert)</td>
</tr>
<tr>
<td>pJCW2</td>
<td>IncP Tc kcos adgA</td>
<td>Magnin et al. (1987)</td>
</tr>
<tr>
<td></td>
<td>(R. capsulatus) Mob^+</td>
<td></td>
</tr>
<tr>
<td>pRK290</td>
<td>IncP Tc Mob^+</td>
<td>Ditta et al. (1980)</td>
</tr>
<tr>
<td>pRK2013</td>
<td>Km</td>
<td></td>
</tr>
<tr>
<td>pAP127</td>
<td>IncP Tc adgA</td>
<td>This work; derived from pRK290</td>
</tr>
<tr>
<td></td>
<td>(R. capsulatus) Mob^+</td>
<td>(5.8 kb EcoRI insert)</td>
</tr>
<tr>
<td>pDPT44</td>
<td>Km Ap</td>
<td>Taylor et al. (1983)</td>
</tr>
<tr>
<td>pDPT51</td>
<td>Tp Ap</td>
<td></td>
</tr>
<tr>
<td>pRCN102</td>
<td>IncP Tc nifR1 nifR2</td>
<td>Avtges et al. (1985)</td>
</tr>
<tr>
<td></td>
<td>(R. capsulatus) Mob^+</td>
<td></td>
</tr>
<tr>
<td>pRCN106</td>
<td>IncP Tc Mob^+</td>
<td></td>
</tr>
<tr>
<td>pRCN200</td>
<td>IncP Tc nifR4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R. capsulatus) Mob^+</td>
<td></td>
</tr>
<tr>
<td>pBF71</td>
<td>Cm Tc ntrA (K. pneumoniae)</td>
<td>de Bruijn & Ausubel (1983)</td>
</tr>
<tr>
<td>pFB514</td>
<td>Cm glnA ntrB ntrC (K. pneumoniae)</td>
<td>de Bruijn & Ausubel (1981)</td>
</tr>
</tbody>
</table>

* Abbreviations: adg, ammonia-dependent growth; glnA, structural gene for glutamine synthetase (GS); nif, nitrogen fixation; ntr, nitrogen regulation; GTA, gene transfer agent; Icel, immunity to colicin E1; Inc, plasmid incompatibility group; Ap, ampicillin resistance; Km, kanamycin resistance; Sm, streptomycin resistance; Su, sulphonamide resistance; Tc, tetracycline resistance; Tp, trimethoprim resistance; Tra^+, encodes transfer functions; Mob^+, mobilizable plasmid. In brackets is shown either the original designation of adgA alleles, or the species origin of cloned genes.

† The streptomycin resistance marker of pVZ361 is only expressed when DNA fragments are inserted into the unique BamHI cloning site in topK.

MudI1734 (Castilho et al., 1984). Plasmids containing transposon insertions within the 5.8 kb insert were then tested for their ability to complement R. capsulatus strain RC34. Site-directed ‘cassette’ mutagenesis was carried out as described by Scolnik & Haselkorn (1984), using gene transfer agent (GTA). A Km^- cassette from pUC4-K1XX (Pharmacia) was cloned into pAP127, and the resulting plasmid was transferred by conjugation into the GTA-overproducing R. capsulatus strain, Y262. A cell-free filtrate from this strain was then used to transfer Km^- to the wild-type strain B10.

Results

Growth characteristics

The R. sphaeroides mutant strains NF-8, NF-15 and NF-78 grew at similar rates to the wild-type on NH_4^- and glutamine, but failed to grow with N_2, NO_3^-, glutamate, alanine, proline or arginine as sole nitrogen source.
The values shown are the means of duplicate determinations.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Growth on N2 and amino acids†</th>
<th>[14C]Methylammonium uptake activity*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No plasmid</td>
<td>+pNF149</td>
</tr>
</tbody>
</table>
| *Methylammonium uptake was measured as described in Methods using cells grown with excess NH4+, which were then washed free of NH4+ and starved for 2 h in NH2+-free medium. Uptake activity was measured in the control strains without recombinant plasmids, and in strains containing each of the plasmids shown. The values shown are the means of duplicate determinations.

† Glutamate, alanine, proline or arginine.

As for GS, no significant difference was observed between the GOGAT activities of *R. capsulatus* strains B10 and RC34, and in both strains, the activity was higher in nitrogen-limited cells than in cells grown with excess NH4+. In contrast, in *R. sphaeroides* 2R, the GOGAT activity was threefold lower in NH4+-starved than in NH4+-sufficient cells, whereas in the *Adg*-mutants, no effect of NH4+ status on GOGAT activity was observed (Frolova et al., 1986).

Methylammonium uptake activity

R. capsulatus and *R. sphaeroides* both contain a methylammonium transport system, which is present in glutamate-grown or N2-grown cells, but not in cells grown on NH4+ (Alef & Kleiner, 1982; Rapp et al., 1986; Cordts & Gibson, 1987). Methylammonium uptake is inhibited by low concentrations of NH4+ ions, implying that uptake of methylammonium is due to an NH4+ transport system. NH4+-grown cells of *R. capsulatus* and *R. sphaeroides* also contain ammonium uptake systems, which are unable to transport methylammonium (Genther & Wall, 1985; Cordts & Gibson, 1987).

Since *Adg*-mutants of *R. capsulatus* and *R. sphaeroides* are unable to grow on N2 or glutamate, methylammonium uptake activity was assayed in cells which were grown with an excess of NH4+, then washed and resuspended in NH4+-free medium. In the respective wild-type strains, maximum derepression of uptake activity was observed after 2 h incubation in this medium; in the *Adg*-mutants, however, very little uptake activity was detected after this time (Table 2). Wild-type levels of uptake activity were restored to the mutants by the presence of plasmids containing the cloned *adgA* genes from either *R. capsulatus* or *R. sphaeroides* (Table 2; see below).
containing the 2-9 kb EcoRI fragment of \(R.\) \capsulatus DNA cloned in the plasmid pAP127, and localization of the \(adgA\) gene. This plasmid was able to restore the wild-type phenotype to Adg- mutants of \(R.\) \capsulatus, and the positions of mini-MudII 1734 insertions (\(\wedge\)) and Tn5-751 insertions (\(\vee\)) which destroyed this ability are shown. All these insertions were located within a 1-7 kb SmaI fragment, and a plasmid containing this fragment was able to complement all \(adgA\) mutations. This fragment hybridized specifically with plasmid pNF149 containing the \(R.\) \sphaeroides \(adgA\) gene (see Fig. 3) and the plasmid pAP127 was able to complement the \(adgA\) mutations of \(R.\) \sphaeroides Adg- mutants. Also shown are the two possible orientations of a Km' cassette which was cloned into the unique \(BamHI\) site of pAP127 (see Methods). The arrows show the direction of transcription of the Km' gene in each orientation. B, \(BamHI;\) E, \(EcoRI;\) H, \(HpaI;\) S, \(SmaI.\)

![Fig. 1. Physical map of the 5-8 kb EcoRI fragment of \(R.\) \capsulatus DNA cloned in the plasmid pAP127, and localization of the \(adgA\) gene. This plasmid was able to restore the wild-type phenotype to Adg- mutants of \(R.\) \capsulatus, and the positions of mini-MudII 1734 insertions (\(\wedge\)) and Tn5-751 insertions (\(\vee\)) which destroyed this ability are shown. All these insertions were located within a 1-7 kb SmaI fragment, and a plasmid containing this fragment was able to complement all \(adgA\) mutations. This fragment hybridized specifically with plasmid pNF149 containing the \(R.\) \sphaeroides \(adgA\) gene (see Fig. 3) and the plasmid pAP127 was able to complement the \(adgA\) mutations of \(R.\) \sphaeroides Adg- mutants. Also shown are the two possible orientations of a Km' cassette which was cloned into the unique \(BamHI\) site of pAP127 (see Methods). The arrows show the direction of transcription of the Km' gene in each orientation. B, \(BamHI;\) E, \(EcoRI;\) H, \(HpaI;\) S, \(SmaI.\)](image)

Fig. 2. Physical maps of the chromosomal fragments of \(R.\) \sphaeroides cloned in the plasmids pNF114 (a) and pNF149 (b). Both plasmids were able to restore the wild-type phenotype to Adg- mutants of \(R.\) \sphaeroides, and complementation was also observed with a plasmid containing the 2-9 kb \(BamHI-SalI\) fragment from pNF149. The plasmid pNF149 was also able to complement the \(adgA34\) mutation of strain RC34 of \(R.\) \capsulatus. B, \(BamHI;\) Bg, \(BglII;\) E, \(EcoRV;\) S, \(SalI.\)

Fig. 2. Physical maps of the chromosomal fragments of \(R.\) \sphaeroides cloned in the plasmids pNF114 (a) and pNF149 (b). Both plasmids were able to restore the wild-type phenotype to Adg- mutants of \(R.\) \sphaeroides, and complementation was also observed with a plasmid containing the 2-9 kb \(BamHI-SalI\) fragment from pNF149. The plasmid pNF149 was also able to complement the \(adgA34\) mutation of strain RC34 of \(R.\) \capsulatus. B, \(BamHI;\) Bg, \(BglII;\) E, \(EcoRV;\) S, \(SalI.\)

Cloning of \(adgA\) genes

A cosmid clone, pJCW2, which restores the wild-type phenotype to Adg- mutants of \(R.\) \capsulatus has been isolated from an \(R.\) \capsulatus gene bank (Colbeau et al., 1986; Magnin et al., 1987). This cosmid contains approximately 20 kb of \(R.\) \capsulatus DNA. A 5-8 kb EcoRI fragment from this cosmid was subcloned in pRK290, to give plasmid pAP127, which complements \(adgA\) mutations both in \(R.\) \capsulatus and in \(R.\) \sphaeroides (Table 2). A restriction map of the 5-8 kb EcoRI fragment is shown in Fig. 1. The \(adgA\) mutations were also complemented by a plasmid constructed by cloning a 1-7 kb SmaI fragment from pAP127 into pDPT51, showing that the \(adgA\) gene is located within this fragment. This was confirmed by mapping insertions of Tn5-751 and mini-MudII1734 in pAP127 which abolished complementation of the Adg- mutants. All such insertions were found to be located within the 1-7 kb SmaI fragment (Fig. 1).

To isolate the \(R.\) \sphaeroides \(adgA\) gene, a gene bank was constructed in the plasmid vector pVZ361, and a clone was isolated which restored the wild-type phenotype to the Adg- mutants NF-8, NF-15 and NF-78. A restriction map of the 13-9 kb \(BamHI\) fragment in this clone is shown in Fig. 2. The plasmid (pNF114) was digested with \(BamHI\) and fragments were subcloned in pVZ361. A 3-2 kb \(BamHI\) fragment was found to contain the gene, and digestion with \(SalI\) yielded a smaller complementing fragment of 2-9 kb (Fig. 2). Like pAP127, the plasmid containing the 3-2 kb \(BamHI\) fragment (pNF149) was able to complement \(adgA\) mutations both in \(R.\) \capsulatus and in \(R.\) \sphaeroides (Table 2).

Hybridization analysis

The plasmid pNF149 containing the \(R.\) \sphaeroides \(adgA\) gene was labelled by nick-translation and used as a probe in hybridization experiments. The probe hybridized with the 5-8 kb EcoRI fragment of pAP127 containing the \(R.\) \capsulatus \(adgA\) gene, and restriction enzyme digestion showed hybridization to be specific for the 1-7 kb SmaI fragment (Fig. 3). This shows that the \(adgA\) genes from \(R.\) \capsulatus and \(R.\) \sphaeroides are structurally as well as functionally homologous. The \(R.\) \capsulatus probe also hybridized with pRCN106, a plasmid isolated by Avtges et al. (1985). This plasmid was able to complement the mutation in a Nif- mutant of \(R.\) \capsulatus, strain PA3, and was reported to contain a 6-0 kb EcoRI insert of \(R.\) \capsulatus DNA (Avtges et al., 1985). Further hybridization experiments (Fig. 3) showed that the 5-8 kb EcoRI insert of pAP127 and the '6-0 kb' insert of pRCN106 are identical. Consistent with this, pRCN106 was able fully to restore the wild-type phenotype to Adg- mutants of \(R.\) \capsulatus and \(R.\) \sphaeroides (Table 2).

Plasmids containing the 5-8 kb EcoRI fragment from \(R.\) \capsulatus and the 3-2 kb \(BamHI\) fragment from \(R.\) \sphaeroides were tested for hybridization with DNA fragments from plasmids pBF71 and pFB514, which contain the \(ntrA\) and the \(ntrBC\) genes of \(K.\) \pneumoniae respectively, and with DNA fragments from plasmids pRCN102 and pRCN106, which contain the \(nifR1,\) \(nifR2\) and \(nifR4\) genes of \(R.\) \capsulatus. No significant hybridization was observed (data not shown).
Fig. 3. Agarose gel (0.7%) electrophoresis (a) and Southern blot hybridization (b) of: plasmid pNF114 digested with BamHI (1); phage λ DNA digested with HindIII (2); plasmid pAP127 digested with EcoRI (3), SmaI (4) and EcoRI + SmaI (5); and plasmid pRCN106 digested with EcoRI (6), SmaI (7) and EcoRI + SmaI (8). Biotinylated plasmid pNF149 was used as a probe. The arrows and numbers on the left-hand side indicate the positions and sizes of the BamHI fragments derived from pNF114. The arrows and numbers on the right-hand side show the positions and sizes of fragments of R. capsulatus DNA (derived from pAP127 and pRCN106) which showed significant hybridization with the probe. The origin of the strongly hybridizing band at 8-9 kb in EcoRI digests of pAP127 and pRCN106 (panel b, lanes, 3, 5, 6 and 8), which showed up as faint band in the ethidium-bromide-stained agarose gel (panel a), is obscure. However, since whole plasmid DNA was used as a probe, it might have been due to a contaminating plasmid. We have no explanation for the difference in restriction endonuclease digestion patterns between pAP127 and pRCN106, other than the presence of an insertion or rearrangement in the vector portion of pRCN106. It should be noted that those fragments internal to the 5-8 kb EcoRI insert are identical in the two plasmids.

Site-directed 'cassette' mutagenesis of the R. capsulatus adgA gene

Transposon mutagenesis of the plasmid pRCN106 has shown that the nif gene which complements the mutation in strain PA3 is located near one end of the cloned fragment (Avtges et al., 1985). Recombination with the chromosome of transposon insertions near this end of the fragment resulted in a Nif− phenotype. In contrast, transposon insertions towards the centre of the fragment, i.e. in the region of the adgA gene, could not be recombined into the chromosome when selection was made on minimal agar medium containing NH₄⁺ as the nitrogen source (Avtges et al., 1985). This implies that genes in this region might be essential for growth on NH₄⁺.

In the present study, a Km⁺ cassette was inserted in both orientations in the BamHI site of pAP127. In one orientation (orientation I, Fig. 1), complementation of Adg− mutants was abolished, whereas in the opposite orientation (II), no effect on complementation was observed. The Km⁺ cassette in orientation II was transferred into strain B10 with GTA, and Km⁺ recombinants showed a wild-type phenotype with respect to growth. However, with the Km⁺ cassette in orientation I, recombinants were observed in only one experiment out of three when selected for on a minimal medium, and in all three experiments when selected for on complex (YPS) medium. In both cases, Km⁺ colonies were observed after 6 d incubation, compared to 2–3 d for the growth of Km− recombinants with the cassette in orientation II. These results suggest that inactivation of the chromosomal adgA gene severely decreases the growth rate of cells on both minimal medium and rich medium and affects (in a non-reproducible way) the ability of cells to form isolated colonies on minimal medium.

Discussion

In the present work we have shown that mutants of R. capsulatus and R. sphaeroides with similar pleiotropic
Ammonia-dependent growth mutants of Rhodobacter

defects in nitrogen metabolism are complemented by DNA fragments that show significant sequence homology (in DNA–DNA hybridization experiments) and therefore presumably contain related genes. These mutants (termed Adg−) are characterized by an inability to use N2, or individual amino acids, as sole nitrogen source for growth: mutants derived from R. sphaeroides and R. capsulatus strain AD2 are also unable to utilize NO3−. The major difference between mutants of the two species concerns the use of glutamine, which is a good substrate for growth of the R. sphaeroides mutants, and a poor substrate for R. capsulatus mutants.

A number of regulatory responses shown by the wild-type strains in response to nitrogen starvation were not shown in the Adg− mutants, namely: (i) development of high levels of nitrogenase activity; (ii) increase in GS activity (R. sphaeroides only); (iii) appearance of methylammonium (ammonium) transport activity. This suggests that the adgA gene may encode a regulatory protein which is necessary for increasing the expression of certain genes under conditions of nitrogen starvation. On the other hand, it is also possible that the pleiotropic effects of adgA mutations are the indirect result of an unspecified metabolic defect. Indeed, in R. capsulatus Adg− mutants, although the in vivo activity of nitrogenase is very low (about 1% of the wild-type level), the in vitro nitrogenase activity (measured with dithionite as electron donor) and the content of nitrogenase protein are about 20% of the wild-type level (Willison & Vignais, 1982; Willison et al., 1985). This shows that the low in vivo activity is in part due to an in vivo inhibition of nitrogenase activity.

A high-affinity ammonium transport system is thought to be necessary for cyclic retention of NH4+ during growth on poor nitrogen sources, such as N2 (Kleiner, 1985). However, the loss of the methylammonium (ammonium) uptake system is not sufficient to explain the phenotype of Adg− mutants, since the nifR1 mutant, J61, also lacks this uptake system (Rapp et al., 1986). In R. capsulatus, it has been shown that methylammonium uptake is tightly coupled to its metabolism via GS (Rapp et al., 1986), so the loss of uptake activity in the Adg− mutants might have been due to an inability to metabolize methylamine. The biosynthetic activity of GS has been measured in Adg− mutants of R. sphaeroides grown on glutamine, and was found to be 25–40% of the wild-type activity (Shestakov et al., 1988). During growth in batch culture with a limiting concentration of NH4+, R. capsulatus strain B10 and the mutant strain RC34 showed identical rates of NH4+ uptake, down to external NH4+ concentrations of 1–2 μM (J. C. Willison, unpublished data), implying the NH4+ assimilation via GS is unaffected in the mutants. It seems likely, therefore, that the low methylammonium uptake activity measured in Adg− mutants is due to a loss of transport activity per se, and not to a deficiency in metabolism.

In addition to the inducible methylammonium uptake system, R. capsulatus and R. sphaeroides both contain a constitutive ammonium uptake system, which is unable to transport methylammonium and shows a Ks for NH4+ of 1.7 μM (Genthner & Wall, 1985; Cordts & Gibson, 1987). This transport system is presumably present in the Adg− mutants, since these are able to take up and utilize low concentrations of NH4+. Nevertheless, the methylammonium (ammonium) uptake system may be important for growth on NH4+ at sub-micromolar concentrations, since strain RC34 is rapidly outgrown by revertants during growth in NH4+-limited continuous culture (Willison & Lac, 1988).

In the enteric bacteria, several biosynthetic reactions are catalysed by glutamine aminotransferases, which in some cases are able to utilize NH4+ in place of glutamine when the former is present in high concentrations (>1 mM). Mutants which have lost the glutamine aminotransferase function of one of these enzymes may therefore be able to grow on minimal medium if high concentrations of NH4+ are present (Reitzer & Magasanik, 1987). It seems unlikely that the Adg− mutants are of this type, however, since: (i) the E. coli gene which complements adgA mutations in R. capsulatus is located between 34 and 39 min on the E. coli chromosome, whereas none of the genes coding for the known glutamine aminotransferases is located in this region; and (ii) the Adg− mutants of R. capsulatus are able to grow at similar rates to the wild-type even at concentrations below 1 mM-NH4+ and a significant difference in growth rate is observed only at the very low steady-state concentrations (<1 μM) present in NH4+-limited chemostat culture.

The observation that the EcoRI fragment containing the R. capsulatus adgA gene is identical to the fragment cloned in the plasmid pRCN106 by Avtges et al. (1985) led us to investigate the effect of insertional inactivation of the adgA gene in the R. capsulatus gene, since it has been suggested that pRCN106 may contain a gene or genes essential for growth on NH4+-containing minimal medium (Avtges et al., 1985). An insertion which inactivated the adgA gene was recombined into the R. capsulatus chromosome and was found to severely decrease the growth rate of cells both on minimal medium and on complex, YPS medium. This suggests that the adgA gene plays an important role in cell growth, and that the Adg− phenotype may arise only from point mutations, which either decrease the expression of the gene, or alter the function of the gene product.

We are grateful to Drs F. Ausubel, F. J. de Bruijn, M. Casadaban, D. Haas, J. H. Klemme, C. Kennedy, R. G. Kranz and R. Haselkorn for
generously providing strains and plasmids, J. Chabert for technical assistance and J. Boyer for typing the manuscript. This work was supported (P.A., J. C. W., P. M. V.) by grants from the Centre National de la Recherche Scientifique.

References

