Characterization of *Staphylococcus* Species by Ribosomal RNA Gene Restriction Patterns

By MARIE-LAURE DE BUYSER, † ANNE MORVAN, † FRANCINE GRIMONT ‡ AND NÉVINE EL SOLH †*

1Centre National de Référence pour les Staphylocoques, Laboratoire des Staphylocoques et des Streptococoques, Institut Pasteur, 75724 Paris Cedex 15, France

2Unité des Entérobactéries, Institut National de la Santé et de la Recherche Médicale, Unité 199, Institut Pasteur, 75724 Paris Cedex 15, France

(Received 17 October 1988; revised 15 December 1988; accepted 28 December 1988)

The rRNA gene restriction patterns of 110 strains belonging to 12 staphylococcal species have been determined. The strains, isolated from various sources, were epidemiologically unrelated. Total DNA was cleaved with restriction enzymes HindIII and EcoRI, electrophoretically separated and probed with radiolabelled 16S rDNA from *Bacillus subtilis* inserted in a plasmid vector, pBR322. Forty-four distinct HindIII patterns and 44 distinct EcoRI patterns were observed. Strains belonging to different species had different patterns. Although distinct patterns were also observed within some species, a core of common bands could be discerned within each species or subspecies. Analysis of the patterns revealed two taxa in *Staphylococcus xylosus* which were not evident using phenotypic characteristics. Of 18 strains which were difficult to identify using phenotypic schemes, 15 showed patterns typical of known species. The three remaining atypical strains showed unusual patterns and may belong either to a known species, not included in the study, or to a new species. Since various patterns were observed within some species (e.g. *S. aureus* and *S. epidermidis*), rRNA gene restriction patterns may have epidemiological, as well as taxonomic interest.

INTRODUCTION

In the last 14 years, the taxonomy of the genus *Staphylococcus* has undergone extensive changes and 26 species have been delineated by DNA–DNA hybridization (Kloos & Schleifer, 1986; Freney et al., 1988). Although several schemes (Kloos & Schleifer, 1986; Schleifer et al., 1984; Devriese et al., 1985; Hajek et al., 1986; Freney et al., 1988) have been recommended for the identification of staphylococcal species, many strains cannot be identified by conventional methods. Improved methods are needed to identify species, subspecies and biotypes of the genus *Staphylococcus*.

Staphylococci can cause severe infections. The three coagulase- and thermonuclease-producing species *Staphylococcus aureus*, *S. intermedius* and *S. hyicus* often cause disease in previously healthy hosts. The so-called coagulase negative staphylococci (CNS), with the exception of *S. saprophyticus*, are opportunistic pathogens which cause infections in humans mainly after implantation of foreign bodies or in immunocompromised patients; *S. saprophyticus* is often involved in urinary tract infections (Kloos & Schleifer, 1986; Eykyn, 1988). The increased incidence of nosocomial infections caused by *S. aureus* and CNS have

† Present address: Centre National d'Études Vétérinaires et Alimentaires, Laboratoire Central d'Hygiène Alimentaire, 43 rue de Dantzig, 75015 Paris, France.

Abbreviation: CNS, coagulase negative staphylococci.

0001-5196 © 1989 SGM
stimulated interest in the use of epidemiological markers to fingerprint and compare clinical strains (Collins et al., 1984; Mickelsen et al., 1985; Parisi et al., 1986).

Recently, patterns of restriction fragments hybridizing with labelled rRNA from *Escherichia coli* have been used to fingerprint bacterial strains (Grimont & Grimont, 1986; Irino et al., 1988). Probes which can be used to visualize rRNA gene restriction patterns are cloned rRNA genes (Yogevo et al., 1988; Bercovier et al., 1986; Gottlieb & Rudner, 1985; Saunders et al., 1988), 5'-end labelled rRNA (Grimont & Grimont, 1986; Stull et al., 1988), or cDNA (Pitcher et al., 1987). Since rRNA sequences have been remarkably conserved during evolution, a single probe can be used to visualize patterns in taxonomically distant bacteria. These rRNA gene restriction patterns can be species-, subspecies- or type-specific depending on the degree of intra-species genomic heterogeneity (Grimont & Grimont, 1986; Irino et al., 1988).

The purpose of this study was to evaluate the potential usefulness of the rRNA gene restriction pattern as a taxonomic tool and a molecular epidemiological marker for staphylococcal species of human origin or those species difficult to distinguish from human-associated species.

METHODS

Bacterial strains. The 110 epidemiologically unrelated staphylococcal strains studied were isolated from human (52 clinical isolates), animal (54 isolates), hospital environment (2 isolates) and unknown sources (2 isolates). The origins of the strains are listed in Table 1. Twelve species are represented and the type strain of each species is included.

E. coli strains used were HVC45 (Dagert & Ehrlich, 1979) harbouring plasmid pBR322 (Sutcliffe, 1978), and SF8 harbouring plasmid pBA2 (Iglesias et al., 1983). Plasmid pBA2 contains a 2.3 kb *Bacillus subtilis* DNA fragment encoding 16S rRNA inserted in the *HindIII* site of pBR322.

Species identification of staphylococci. (a) Identification by the French National Reference Centre for Staphylococci (FNCRS). The strains were Gram-positive and catalase-positive cocci. Staphylococci were differentiated from micrococci by use of the following tests (De Buyser et al., 1987): production of acid from glucose under anaerobic conditions; production of acid from glycerol under aerobic conditions; sensitivity to lysostaphin, nitrofurantoin, vibriostatic agent 0/129 and bacitracin.

Isolates were assigned to known staphylococcal species according to identification schemes (Kloos & Schleifer, 1986; Schleifer et al., 1984; Devriesse et al., 1985; Hajek et al., 1988; Freney et al., 1988), by use of the following tests: colony diameter and pigment; sensitivity to novobiocin (5 μg per disk); nitrate reduction; proteolytic activity on casein; production of urease, haemolysins, DNAase, heat-stable DNAase, clumping factor, free coagulase (rabbit plasma), alkaline phosphatase, acetoin, arginine dihydrolase, ornithine decarboxylase; production of acid under aerobic conditions from maltose, sucrose, D-trehalose, D-mannitol, D-cellobiose, lactose, D-fructose, D-melezitose, D-xylene, L-arabinose, D-raffinose, D-melibiose, D-mannose, D-turanose, D-ribose; production of acid from D-mannitol under anaerobic conditions. Staphylococcal species were also differentiated by use of the API Staph gallery (API System). *S. cohnii* subspecies 1 and 2 were differentiated by use of the Staph Ident gallery (API System). A seroinhibition test, with antibodies raised against *S. aureus* heat-stable DNAase (Staphynuclease kit, Biomérieux), was used to distinguish *S. aureus* nuclease from other staphylococcal nucleases.

(b) Identification by *API Research Laboratory* (APIRL). Sixty-eight strains were also identified by APIRL, using the ATB 32 Staph gallery (API System).

Plasmid isolation and labelling. Plasmids pBR322 and pBA2 were used as probes in the hybridization experiments. Plasmids were isolated and purified in a caesium chloride/ethidium bromide gradient according to Manisit et al. (1982). They were labelled with [α-32P]dCTP (Amersham) using the Multiprime DNA labelling system (Amersham) according to the manufacturer’s instructions. The specific activity of the probes was approx. 10^8 c.p.m. (μg DNA)^{-1}.

Isolation and purification of staphylococcal DNA. Staphylococcal strains were grown in 25 ml Brain Heart Infusion (Difco) for 18 h at 37 °C, then harvested and washed in 10 mM-Tris, pH 8.00, 1 mM-EDTA (TE buffer) and resuspended in TE buffer. They were treated with lysostaphin (Sigma) at a final concentration of 2 units ml^{-1} for 30 min at 37 °C. Lysis was checked on samples treated with 1% (w/v) SDS. If lysis was incomplete, cells were further incubated at 37 °C with lysostaphin at a final concentration of 12 units ml^{-1}. Lysates were then treated with SDS and proteinase K (Merck) at final concentrations of 1% (w/v) and 10 units ml^{-1} respectively, for 30 min at 37 °C. Potassium acetate was added at a final concentration of 1 M and the mixtures were incubated for 30 min at 4 °C. Proteins were denatured and removed by sequential extraction with equal volumes of phenol, phenol/chloroform/isoamyl alcohol (25:24:1, by vol.) and chloroform/isoamyl alcohol (24:1, v/v). 2-Propanol (0-6 vol.) was added to the aqueous layer. Precipitated DNA was recovered by centrifugation, washed in 70% (v/v) ethanol, dried and resuspended in TE buffer, treated with RNAase (Calbiochem, Behring Diagnostics) at a final concentration of 3 units ml^{-1} for 2 h at 37 °C, and kept at −20 °C until use.
Staphylococcal rRNA gene restriction patterns

Table 1. Origin and rRNA gene restriction patterns of 110 staphylococcal strains

<table>
<thead>
<tr>
<th>Taxon and strain designation</th>
<th>Origin* or reference</th>
<th>Source</th>
<th>HindIII rRNA gene restriction pattern</th>
<th>EcoRI rRNA gene restriction pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 12600†</td>
<td>ATCC</td>
<td>Man</td>
<td>H₁</td>
<td>E₁</td>
</tr>
<tr>
<td>RN 450</td>
<td>Novick (1967)</td>
<td>Unknown</td>
<td>H₄</td>
<td>E₁</td>
</tr>
<tr>
<td>BM 3250‡</td>
<td>El Solh et al. (1984)</td>
<td>Man</td>
<td>H₂</td>
<td>E₁</td>
</tr>
<tr>
<td>BM 3254‡</td>
<td>El Solh et al. (1984)</td>
<td>Man</td>
<td>H₃</td>
<td>E₁</td>
</tr>
<tr>
<td>BM 3121‡</td>
<td>El Solh et al. (1981)</td>
<td>Man</td>
<td>H₄</td>
<td>E₁</td>
</tr>
<tr>
<td>ATCC 6538P</td>
<td>ATCC</td>
<td>Unknown</td>
<td>H₂</td>
<td>E₂</td>
</tr>
<tr>
<td>BM 3247‡</td>
<td>El Solh et al. (1984)</td>
<td>Man</td>
<td>H₃</td>
<td>E₂</td>
</tr>
<tr>
<td>CH 1</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>CH 96</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>CH 102</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>CH 31</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>CH 73</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>CH 49</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>CH 74</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₃</td>
<td>E₄</td>
</tr>
<tr>
<td>64 048</td>
<td>Pillet & Orta (1973)</td>
<td>Poultry</td>
<td>H₃</td>
<td>E₅</td>
</tr>
<tr>
<td>64 043</td>
<td>Pillet & Orta (1973)</td>
<td>Poultry</td>
<td>H₃</td>
<td>E₆</td>
</tr>
<tr>
<td>BM 3319</td>
<td>El Solh et al. (1984)</td>
<td>Man</td>
<td>H₄</td>
<td>E₇</td>
</tr>
<tr>
<td>86 315</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₄</td>
<td>E₈</td>
</tr>
<tr>
<td>BM 3251</td>
<td>El Solh et al. (1984)</td>
<td>Man</td>
<td>H₅</td>
<td>E₈</td>
</tr>
<tr>
<td>86 002</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₅</td>
<td>E₉</td>
</tr>
<tr>
<td>BM 3248</td>
<td>El Solh et al. (1984)</td>
<td>Man</td>
<td>H₆</td>
<td>E₁₀</td>
</tr>
<tr>
<td>85 282</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₆</td>
<td>E₁₀</td>
</tr>
<tr>
<td>85 522</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₆</td>
<td>E₁₁</td>
</tr>
<tr>
<td>BM 3152‡</td>
<td>El Solh et al. (1981)</td>
<td>Man</td>
<td>H₆</td>
<td>E₁₂</td>
</tr>
<tr>
<td>S. intermedius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subsp. pigeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 29663†</td>
<td>ATCC</td>
<td>Pigeon</td>
<td>H₁₀</td>
<td>E₁₃</td>
</tr>
<tr>
<td>subsp. carnivora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81 508</td>
<td>FNRCs</td>
<td>Dog</td>
<td>H₁₁</td>
<td>E₁₄</td>
</tr>
<tr>
<td>61 221</td>
<td>I. Live</td>
<td>Dog</td>
<td>H₁₂</td>
<td>E₁₅</td>
</tr>
<tr>
<td>74 337</td>
<td>FNRCs</td>
<td>Dog</td>
<td>H₁₂</td>
<td>E₁₅</td>
</tr>
<tr>
<td>75 619</td>
<td>FNRCs</td>
<td>Dog</td>
<td>H₁₂</td>
<td>E₁₅</td>
</tr>
<tr>
<td>83 743</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₁₂</td>
<td>E₁₅</td>
</tr>
<tr>
<td>S. hyicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 11249†</td>
<td>L. A. Devriese</td>
<td>Pig</td>
<td>H₁₃</td>
<td>E₁₆</td>
</tr>
<tr>
<td>VA 503</td>
<td>L. A. Devriese</td>
<td>Pig</td>
<td>H₁₄</td>
<td>E₁₆</td>
</tr>
<tr>
<td>BOD 28</td>
<td>L. A. Devriese</td>
<td>Cow</td>
<td>H₁₄</td>
<td>E₁₆</td>
</tr>
<tr>
<td>E 80</td>
<td>FNRCs</td>
<td>Cow</td>
<td>H₁₅</td>
<td>E₁₇</td>
</tr>
<tr>
<td>PA 81</td>
<td>L. A. Devriese</td>
<td>Horse</td>
<td>H₁₆</td>
<td>E₁₈</td>
</tr>
<tr>
<td>VII 96</td>
<td>L. A. Devriese</td>
<td>Poultry</td>
<td>H₁₇</td>
<td>E₁₉</td>
</tr>
<tr>
<td>S. chromogenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCTC 10530†</td>
<td>L. A. Devriese</td>
<td>Pig</td>
<td>H₁₈</td>
<td>E₂₀</td>
</tr>
<tr>
<td>VA 608</td>
<td>L. A. Devriese</td>
<td>Pig</td>
<td>H₁₉</td>
<td>E₂₀</td>
</tr>
<tr>
<td>BO 64</td>
<td>L. A. Devriese</td>
<td>Cow</td>
<td>H₁₉</td>
<td>E₂₀</td>
</tr>
<tr>
<td>BO 153</td>
<td>L. A. Devriese</td>
<td>Cow</td>
<td>H₁₉</td>
<td>E₂₀</td>
</tr>
<tr>
<td>CH 22</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₁₉</td>
<td>E₂₀</td>
</tr>
<tr>
<td>CH 62</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₁₉</td>
<td>E₂₀</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 14990†</td>
<td>W. E. Kloos</td>
<td>Man</td>
<td>H₂₀</td>
<td>E₂₁</td>
</tr>
<tr>
<td>85 711</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₂₀</td>
<td>E₂₁</td>
</tr>
<tr>
<td>86 166</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₂₀</td>
<td>E₂₁</td>
</tr>
<tr>
<td>86 060</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₂₁</td>
<td>E₂₁</td>
</tr>
<tr>
<td>52 260</td>
<td>Pillet & Orta (1970)</td>
<td>Man</td>
<td>H₂₁</td>
<td>E₂₁</td>
</tr>
<tr>
<td>75 864</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₂₁</td>
<td>E₂₁</td>
</tr>
<tr>
<td>84 331</td>
<td>FNRCs</td>
<td>Man</td>
<td>H₂₁</td>
<td>E₂₁</td>
</tr>
<tr>
<td>CH 8</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₂₂</td>
<td>E₂₁</td>
</tr>
<tr>
<td>CH 93</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₂₂</td>
<td>E₂₁</td>
</tr>
<tr>
<td>CH 106</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₂₂</td>
<td>E₂₁</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Taxon and strain designation</th>
<th>Origin* or reference</th>
<th>Source</th>
<th>HindIII rRNA gene restriction pattern</th>
<th>EcoRI rRNA gene restriction pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. epidermidis—contd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 109 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H22</td>
<td>E21</td>
<td></td>
</tr>
<tr>
<td>CH 133 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H22</td>
<td>E21</td>
<td></td>
</tr>
<tr>
<td>CH 145 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H32</td>
<td>E21</td>
<td></td>
</tr>
<tr>
<td>CH 58 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H33</td>
<td>E21</td>
<td></td>
</tr>
<tr>
<td>S. warneri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 27836† W. E. Kloos</td>
<td>Man</td>
<td>H26</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>MCS 4 W. E. Kloos</td>
<td>Man</td>
<td>H26</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>75 594 FNRCs</td>
<td>Man</td>
<td>H26</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>76 066 FNRCs</td>
<td>Man</td>
<td>H26</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>CH 251 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H24</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>CH 108 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H24</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>CH 98 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H24</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>CH 225 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H24</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>CH 17 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H24</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>CH 30 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H25</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>CH 60 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H25</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>Unidentified§</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 199 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H26</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>83 796 FNRCs</td>
<td>Man</td>
<td>H26</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>**S. hominis 1</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 27844† W. E. Kloos</td>
<td>Man</td>
<td>H37</td>
<td>E24</td>
<td></td>
</tr>
<tr>
<td>SM 67 W. E. Kloos</td>
<td>Man</td>
<td>H37</td>
<td>E24</td>
<td></td>
</tr>
<tr>
<td>75 611 FNRCs</td>
<td>Man</td>
<td>H27</td>
<td>E24</td>
<td></td>
</tr>
<tr>
<td>78 354 FNRCs</td>
<td>Man</td>
<td>H27</td>
<td>E24</td>
<td></td>
</tr>
<tr>
<td>86 116 FNRCs</td>
<td>Man</td>
<td>H27</td>
<td>E24</td>
<td></td>
</tr>
<tr>
<td>**S. hominis 2</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 181 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H28</td>
<td>E25</td>
<td></td>
</tr>
<tr>
<td>S. lugdunensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 43809† J. Freney</td>
<td>Man</td>
<td>H39</td>
<td>E26</td>
<td></td>
</tr>
<tr>
<td>CRS 307 J. Freney</td>
<td>Man</td>
<td>H39</td>
<td>E26</td>
<td></td>
</tr>
<tr>
<td>CH 97 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H30</td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td>CRSN 850412 J. Freney</td>
<td>Man</td>
<td>H31</td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td>83 091 FNRCs</td>
<td>Man</td>
<td>H31</td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td>86 428 FNRCs</td>
<td>Man</td>
<td>H31</td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td>CH 80 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H31</td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td>84 373 FNRCs</td>
<td>Man</td>
<td>H31</td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 29970† W. E. Kloos</td>
<td>Man</td>
<td>H32</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>KES 23 W. E. Kloos</td>
<td>Man</td>
<td>H32</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>75 581 FNRCs</td>
<td>Man</td>
<td>H32</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>77 028 FNRCs</td>
<td>Man</td>
<td>H32</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>85 474 FNRCs</td>
<td>Man</td>
<td>H33</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>85 333 FNRCs</td>
<td>Man</td>
<td>H34</td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 15305† W. E. Kloos</td>
<td>Man</td>
<td>H35</td>
<td>E31</td>
<td></td>
</tr>
<tr>
<td>KL 20 W. E. Kloos</td>
<td>Man</td>
<td>H35</td>
<td>E31</td>
<td></td>
</tr>
<tr>
<td>75 168 FNRCs</td>
<td>Man</td>
<td>H35</td>
<td>E31</td>
<td></td>
</tr>
<tr>
<td>75 751 FNRCs</td>
<td>Man</td>
<td>H35</td>
<td>E31</td>
<td></td>
</tr>
<tr>
<td>S. xylosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 29971† W. E. Kloos</td>
<td>Man</td>
<td>H36</td>
<td>E32</td>
<td></td>
</tr>
<tr>
<td>CH 167 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H36</td>
<td>E32</td>
<td></td>
</tr>
<tr>
<td>CH 61 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H37</td>
<td>E33</td>
<td></td>
</tr>
<tr>
<td>CH 232 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H37</td>
<td>E33</td>
<td></td>
</tr>
<tr>
<td>77 020 FNRCs</td>
<td>Horse</td>
<td>H23</td>
<td>E33</td>
<td></td>
</tr>
<tr>
<td>78 037 FNRCs</td>
<td>Horse</td>
<td>H38</td>
<td>E33</td>
<td></td>
</tr>
<tr>
<td>CH 65 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H38</td>
<td>E33</td>
<td></td>
</tr>
<tr>
<td>CH 100 De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H39</td>
<td>E36</td>
<td></td>
</tr>
</tbody>
</table>
Staphylococcal rRNA gene restriction patterns

Table 1. (continued)

<table>
<thead>
<tr>
<th>Taxon and strain designation</th>
<th>Origin* or reference</th>
<th>Source</th>
<th>HindIII rRNA gene restriction pattern</th>
<th>EcoRI rRNA gene restriction pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>*S. cohnii subsp. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 29974†</td>
<td>W. E. Kloos</td>
<td>Man</td>
<td>H₄₀</td>
<td>E₃₇</td>
</tr>
<tr>
<td>87 100</td>
<td>FNRCRS</td>
<td>Dust</td>
<td>H₄₀</td>
<td>E₃₈</td>
</tr>
<tr>
<td>CH 227</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₄₁</td>
<td>E₃₉</td>
</tr>
<tr>
<td>87 106</td>
<td>FNRCRS</td>
<td>Man</td>
<td>H₄₂</td>
<td>E₄₀</td>
</tr>
<tr>
<td>*S. cohnii subsp. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MK 247</td>
<td>W. E. Kloos</td>
<td>Man</td>
<td>H₄₃</td>
<td>E₄₁</td>
</tr>
<tr>
<td>79 006</td>
<td>FNRCRS</td>
<td>Dust</td>
<td>H₄₃</td>
<td>E₄₂</td>
</tr>
<tr>
<td>78 073</td>
<td>FNRCRS</td>
<td>Man</td>
<td>H₄₃</td>
<td>E₄₃</td>
</tr>
<tr>
<td>CH 20</td>
<td>De Buyser et al. (1987)</td>
<td>Goat</td>
<td>H₄₄</td>
<td>E₄₄</td>
</tr>
</tbody>
</table>

* ATCC, American Type Culture Collection, Rockville, Md, USA; NCTC, National Collection of Type Cultures, London UK; FNRCRS, National Reference Centre for Staphylococci, Paris, France; I. Live, Philadelphia, Pa., USA; L. A. Devriese, Gent, Belgium; W. E. Kloos, Raleigh, NC, USA; J. Freney, Lyon, France.
† Type strain.
‡ Methicillin-resistant S. aureus strains isolated in French hospitals. All the other S. aureus strains studied were methicillin-susceptible.
§ The two unidentified strains could correspond either to S. warneri or to S. hominis according to their biochemical characteristics. Their rRNA gene restriction patterns were intermediate between those observed with S. warneri and with S. hominis.
‖ S. hominis 1 and S. hominis 2 were differentiated according to the ATB 32 Staph gallery (API System) by use of three biochemical characteristics: production of alkaline phosphatase (1% of S. hominis 1 strains and 94% of S. hominis 2 strains are positive), production of arginine dihydrolase (5% of S. hominis 1 strains and 73% of S. hominis 2 strains are positive), and production of acid from mannose (1% of S. hominis 1 strains and 75% of S. hominis 2 strains are positive).

Restriction endonuclease digestion and agarose gel electrophoresis of DNA. DNA (2 to 5 μg) was cleaved with restriction endonuclease HindIII (Amersham) or EcoRI (Genofit), according to the manufacturer’s instructions. Restriction DNA fragments were separated electrophoretically in 0.8% (w/v) agarose (Sigma) gel in Tris/borate buffer as described by Maniatis et al. (1982).

BglII and HindIII–EcoRI fragments of bacteriophage λ DNA (Biolabs) were used as size markers. The sizes of these fragments were the same as those published by Maniatis et al. (1982).

Southern blotting and hybridization. After electrophoresis, agarose gels were sequentially soaked in 0.25 M-HCl for 5 min, 1.5 M-NaCl, 0.5 M-NaOH for 30 min and 0.5 M-Tris/HCl (pH 7.2), 1.5 M-NaCl, 1 mM-EDTA for 30 min. Southern blotting (Southern, 1975) was carried out on Hybond-N nylon membrane (Amersham). The blotted DNA was fixed by UV irradiation at 305 nm for 5 min. The prehybridization, hybridization and washing steps were performed as previously described (Grimont & Grimont, 1986). The blots were exposed to Fuji RX films at −70 °C with intensifying screens for 24 h to several days.

RESULTS

Biochemical identification of staphylococcal species

Identification showed discrepancies in 12 (17.6%) out of 68 strains identified at both FNRCRS and APIRL. Strain 64048 identified with S. aureus (FNRCRS) or S. chromogenes (APIRL). This strain showed delayed production of free coagulase and was clumping-factor-positive, acetoin-negative and heat-stable-DNAase-positive. Activity of this latter enzyme was inhibited by antiserum raised against S. aureus heat-stable DNAase. Strains CH133 and CH145, which showed delayed aerobic acid production from sucrose, identified with S. epidermidis (FNRCRS) or was unidentified (APIRL). Three strains (CH98, CH225 and 83796) identified with S. hominis (FNRCRS) or S. warneri (APIRL), whereas strain 85474 identified with S. hominis (FNRCRS) or S. haemolyticus (APIRL). Five strains (CH108, CH17, CH60, CH199 and CH181)
identified with either *S. warneri* or *S. hominis* without possible distinction between the species (FNCRS); however, they identified with either *S. warneri* (CH108, CH17, CH60, CH199) or *S. hominis* 2 (CH181) at APIRL.

Although identified without discrepancy at both FNCRS and APIRL, three *S. aureus* strains and three *S. lugdunensis* strains were found to be atypical. The three *S. aureus* strains were atypical with respect to one or two characteristics that are usually shared by more than 90% of the *S. aureus* strains (Kloos & Schleifer, 1986). Strain 64043 produced no heat-stable DNAase. Strain CH96 failed to produce acid from mannitol under anaerobic conditions. Strain 86315 was acetoin-negative and free coagulase-negative. Heat-stable DNAase was produced by the latter two atypical strains. Enzyme activity was inhibited by antiserum raised against *S. aureus* heat-stable DNAase, which confirmed that these two strains belonged to *S. aureus* species. The three *S. lugdunensis* strains (CH97, 86428 and CH80) were clumping-factor-negative even when tested on the recommended medium, Columbia blood agar (Freney et al., 1988).
rRNA gene restriction patterns

When the HindIII- or EcoRI-cleaved staphylococcal DNA was probed with pBR322, no restriction fragments hybridized with the probe. Hence, pBA2 was used as a probe for the visualization of rRNA genes without the need for separating the insert from the pBR322 vector.

The patterns of radiolabelled bands hybridizing with pBA2 were designated the rRNA gene restriction patterns. HindIII rRNA gene restriction patterns of 13 strains belonging to four species and one unidentified strain are shown in Fig. 1. A total of 44 distinct HindIII rRNA gene restriction patterns, designated H1 to H44, and 44 distinct EcoRI rRNA gene restriction patterns, designated E1 to E44, could be distinguished (Table 1). As shown in Figs 2 and 3, HindIII patterns consisted of 5 to 10 bands whereas EcoRI patterns consisted of 6 to 13 bands. Each species showed 1 to 9 HindIII patterns and 1 to 12 EcoRI patterns. Strains belonging to different species did not share the same pattern.

Among S. aureus strains, the goat isolates belonging to biotype ovis, CH1, CH96, CH102, CH54, CH31, CH73, CH49 and CH74 (De Buyser et al., 1987), specifically showed a single EcoRI pattern, E4, and four HindIII patterns, H3, H4, H5 and H6, which were not shown by the other S. aureus strains. The five methicillin-resistant S. aureus strains studied showed three distinct pairs of HindIII- and EcoRI-patterns, H1-E1, H2-E3 and H9-E12. One of these pairs of patterns, H1-E1, was also shown by methicillin-susceptible S. aureus strains (Table 1).

Each species could be characterized by a core of common rRNA gene restriction fragments which constituted a species-specific pattern. However, when S. cohnii DNA was cleaved by HindIII, no species-specific pattern was observed but subspecies-specific patterns could be detected. Strains of S. cohnii subspecies 1 (Kloos & Schleifer, 1986) shared two HindIII fragments and this pair of fragments was not found in other patterns. Strains of S. cohnii subspecies 2 showed six common HindIII fragments. When considering the eight S. xylosus strains studied, only one and three common bands were shown among HindIII-patterns, respectively. However, on the basis of their HindIII- and EcoRI-patterns, two taxa could be distinguished among these strains. The first taxon included five strains showing patterns H36, H37 (five common bands) and E32, E33 (eight common bands). The second one included three strains showing patterns H38, H39 (six common bands) and E34, E35, E36 (nine common bands). When considering S. intermedius strains, only two common bands were observed among EcoRI patterns, whereas eight common bands were observed within S. intermedius subsp. carnivora EcoRI patterns.

The characterization of taxon-specific cores of fragments among rRNA gene restriction patterns was found useful in assessing the identification of the six atypical strains and to identify nine out of the 12 strains for which discrepant results were obtained. According to rRNA gene restriction patterns, strains 64048, 64043, CH96 and 86315 identified with S. aureus; CH133 and CH145 with S. epidermidis; CH108, CH98, CH225, CH17 and CH60 with S. warneri; CH97, 86428 and CH80 with S. lugdunensis, and 85474 with S. haemolyticus. Strains CH199 and 83796, which were found biochemically to be either S. warneri or S. hominis, showed intermediate patterns (H26, E23) between those of these two species and could not be identified. Strain CH181, the only strain which identified with S. hominis 2 (a group detected using ATB 32 Staph gallery but not yet validated by molecular studies), showed different patterns (H28, E25) from that shown by the five strains identified with S. hominis 1 and the 11 identified with S. warneri.

DISCUSSION

The discrepancies in identification obtained at FNRCS and APIRL concerned 17.6% of the 68 staphylococcal strains studied in both laboratories. This indicates the insufficiency of present identification schemes based on phenotypic characteristics.

rRNA gene restriction patterns have been proposed as a taxonomic aid mainly for Gram-negative bacteria (Grimont & Grimont, 1986; Saunders et al., 1988), and therefore it was interesting to evaluate the contribution of these patterns to the identification of Gram-positive bacteria such as staphylococci. Using this method, species- or subspecies-specific cores of restriction fragments have been observed. Thus, species usually considered as difficult to
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Pattern</th>
<th>Fragment size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20 10 5 1 0.5</td>
</tr>
<tr>
<td>S. aureus</td>
<td>H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H9</td>
<td></td>
</tr>
<tr>
<td>S. intermedius pigeon</td>
<td>H10</td>
<td></td>
</tr>
<tr>
<td>S. intermedius carnivora</td>
<td>H11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H12</td>
<td></td>
</tr>
<tr>
<td>S. hyicus</td>
<td>H13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H17</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes</td>
<td>H18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H19</td>
<td></td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>H20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H23</td>
<td></td>
</tr>
<tr>
<td>S. warneri</td>
<td>H24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H25</td>
<td></td>
</tr>
<tr>
<td>Unidentified</td>
<td>H26</td>
<td></td>
</tr>
<tr>
<td>S. hominis 1</td>
<td>H27</td>
<td></td>
</tr>
<tr>
<td>S. hominis 2</td>
<td>H28</td>
<td></td>
</tr>
<tr>
<td>S. lugdunensis</td>
<td>H29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H31</td>
<td></td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td>H32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H34</td>
<td></td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>H35</td>
<td></td>
</tr>
<tr>
<td>S. xylosus</td>
<td>H36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H39</td>
<td></td>
</tr>
<tr>
<td>S. cohnii subsp. 1</td>
<td>H40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H42</td>
<td></td>
</tr>
<tr>
<td>S. cohnii subsp. 2</td>
<td>H43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H44</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Schematic representation of the 44 *HindIII* rRNA gene restriction patterns (H1 to H44) detected among the 110 staphylococcal strains studied. Dotted lines indicate very weakly labelled bands.
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Pattern</th>
<th>Fragment size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>S. aureus</td>
<td>E1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E12</td>
<td></td>
</tr>
<tr>
<td>S. intermedius pigeon</td>
<td>E13</td>
<td></td>
</tr>
<tr>
<td>S. intermedius carnivora</td>
<td>E14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E15</td>
<td></td>
</tr>
<tr>
<td>S. hyicus</td>
<td>E16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E19</td>
<td></td>
</tr>
<tr>
<td>S. chromogenes</td>
<td>E20</td>
<td></td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>E21</td>
<td></td>
</tr>
<tr>
<td>S. warneri</td>
<td>E22</td>
<td></td>
</tr>
<tr>
<td>Unidentified</td>
<td>E23</td>
<td></td>
</tr>
<tr>
<td>S. hominis 1</td>
<td>E24</td>
<td></td>
</tr>
<tr>
<td>S. hominis 2</td>
<td>E25</td>
<td></td>
</tr>
<tr>
<td>S. lugdunensis</td>
<td>E26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E28</td>
<td></td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td>E29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E30</td>
<td></td>
</tr>
<tr>
<td>S. saprophyticus</td>
<td>E31</td>
<td></td>
</tr>
<tr>
<td>S. xylosus</td>
<td>E32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E36</td>
<td></td>
</tr>
<tr>
<td>S. cohnii subsp. 1</td>
<td>E37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E40</td>
<td></td>
</tr>
<tr>
<td>S. cohnii subsp. 2</td>
<td>E41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E44</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Schematic representation of the 44 EcoRI rRNA gene restriction patterns (E1 to E44) detected among the 110 staphylococcal strains studied. Dotted lines indicate very weakly labelled bands.
distinguish from each other using phenotypic characteristics, *S. aureus*, *S. intermedius*, *S. hyicus* and *S. chromogenes* on the one hand, *S. haemolyticus*, *S. warneri* and *S. hominis* on the other, could be easily differentiated. Moreover, two distinct taxa could be discerned among the *S. xylosus* strains studied on the basis of their rRNA gene restriction patterns, whereas the phenotypic characteristics did not enable differentiation of these taxa. *S. xylosus* strains should therefore be submitted to quantitative DNA–DNA hybridization in order to assess the validity of these two taxa. In addition, the use of rRNA gene restriction patterns enabled the identification of 15 out of 18 phenotypically atypical strains. The three remaining phenotypically atypical strains (CH199, 83796 and CH181) had unusual patterns and could belong either to a species not included in this study or to a new species or subspecies. They should also be submitted to quantitative DNA–DNA hybridization for further elucidation of their taxonomic position.

The present work concerned staphylococcal species frequently involved in human and animal infection and other species from which they need to be differentiated. rRNA gene restriction patterns of remaining staphylococcal species are now under study in our laboratory.

Genomic species (i.e. species defined by DNA relatedness) may show various degrees of heterogeneity. Homogeneous species often show one or a few rRNA gene restriction patterns (Grimont & Grimont, 1986) whereas heterogeneous species show many patterns (Irino et al., 1988). Thus, in addition to taxonomic relevance, rRNA gene restriction patterns may have epidemiological relevance (Grimont & Grimont, 1986; Stull et al., 1988; Irino et al., 1988). In this study, a variety of patterns was observed within some species, depending on the restriction enzyme used to cleave DNA. Cleavage with *EcoR*I yielded 12 distinct patterns among the 25 *S. aureus* strains studied whereas only nine *Hind*III patterns were observed. In contrast, among the 14 *S. epidermidis* strains, the number of patterns was greater when *Hind*III was used (four distinct patterns) instead of *EcoR*I (single pattern). The variety of patterns observed among *S. aureus* strains, especially the methicillin-resistant ones, and the *S. epidermidis* strains, could be used to type these strains. However, such an epidemiological approach needs to be validated by study of many strains involved in different outbreaks.

In conclusion, the present work demonstrates the usefulness of rRNA gene restriction patterns in staphylococcal taxonomy. They may be used as a screening method to detect new taxa. The resulting banding patterns may also constitute additional epidemiological markers.

We thank P. A. D. Grimont for stimulating comments and O. Rouelland for secretarial assistance.

REFERENCES

