Characterization of a Cell-surface Protein Antigen of Hydrophilic
Streptococcus mutans Strain GS-5

By HIROTAKA OHTA, HIROHISA KATO, NOBUO OKAHASHI, ICHIRO TAKAHASHI, SHIGEYUKI HAMADA† AND TOSHIHIKO KOGA*
Department of Dental Research, National Institute of Health, 2-10-35 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received 30 June 1988; revised 15 November 1988; accepted 5 December 1988)

Fourteen strains of Streptococcus mutans serotype c were examined for their cell-surface protein antigens in terms of hydrophobicity, M_r, and immunochemical specificities. Thirteen strains were hydrophobic, while strain GS-5 was markedly hydrophilic as compared to the other strains tested. Cell-surface protein antigens were then analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western immunoblotting. A protein antigen of M_r 190000 (PAC) was found in cell extracts and culture supernatants of all the hydrophobic strains. Neither culture supernatant nor cell extract of strain GS-5 contained PAC. Strain GS-5, however, produced extracellularly a large amount of a protein of M_r 155000 (PAGS-5) which reacted with rabbit anti-PAC serum. Immunodiffusion analysis showed that PAGS-5 lacked a part of the antigenic moieties in the PAC molecule. SDS-PAGE and radioimmunoassay showed a small amount of PAGS-5 on the cell surface of strain GS-5. These findings suggest that PAGS-5 may correspond to PAC which lacks a region participating in binding of PAC to the streptococcal cell.

INTRODUCTION

Streptococcus mutans has been strongly implicated as a causative organism of dental caries (Hamada & Slade, 1980; Loesche, 1986). The organism possesses various kinds of cell-surface polymers such as proteinaceous antigens, serotype-specific polysaccharide antigens, lipoteichoic acid and peptidoglycan (Hamada & Slade, 1980). Among these cell-surface polymers, much attention has been focused on a high-M_r protein antigen that has been variously designated as antigen B (Russell, 1979), I/II (Russell et al., 1980), IF (Hughes et al., 1980) and PI (Forester et al., 1983). Streptococcus sobrinus also possesses a cell-surface protein antigen that is immunologically and biochemically similar to that of S. mutans (Moro & Russell, 1983; Holt et al., 1982; Okahashi et al., 1986).

The high-M_r protein antigen of S. mutans serotype c (PAC) is an effective vaccine antigen for prevention of dental caries in monkeys (Lehner et al., 1981; Russell et al., 1982). Local passive immunization with monoclonal antibodies raised against PAC prevents the colonization by S. mutans of animal and human tooth surfaces (Lehner et al., 1985; Ma et al., 1987). Polyclonal antibodies to PAC are strongly opsonic for S. mutans (Scully et al., 1980). McBride et al. (1984) suggested that location of PAC on the streptococcal surface is important in forming hydrophobic bonds with hydrophobic regions of salivary pellicle. The organization of PAC on the cell surface, however, is poorly understood.

† Present address: Department of Oral Microbiology, Osaka University Faculty of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565, Japan.

Abbreviations: PAC, an M_r 190000 protein antigen of S. mutans serotype c; PAGS-5, an M_r 155000 protein antigen of S. mutans strain GS-5.
In the present study we examined the location of PAc on cell surfaces of various strains of S. mutans serotype c and their cell hydrophobicity.

METHODS

Bacterial strains. Serotype c S. mutans strains GS-5, Ingbritt, MT6R, MT12, MT118R, MT8148, MT6801, NG7183, OMZ70, P2, C67-1, C67-25, NCTC 10449R and NCTC 10449S were used in this study. These strains were selected from the stock culture collection in the Department of Dental Research, National Institute of Health, Tokyo, Japan.

SDS-PAGE. S. mutans strains were grown at 37 °C for 18 h in diffusate medium of Brain Heart Infusion (BHI; Difco) broth. The cell-free culture supernatant was collected by centrifugation at 10000 g for 20 min at 4 °C. Extracellular proteins were precipitated from the culture supernatant by adding solid ammonium sulphate to 60% saturation. The precipitate was collected by centrifugation, dissolved in distilled water, dialysed against distilled water, and lyophilized. The dried culture supernatant, and whole cells (100 μl of BHI broth. The cell-free culture supernatant was collected by centrifugation at 10000 g for 20 min at 4 °C.

Preparation of PAC. PAC was prepared from the culture supernatant of S. mutans MT8148 grown in diffusate medium of BHI broth by ammonium sulphate precipitation, chromatography on diethylaminoethyl-Sepharose (Pharmacia), and subsequent gel filtration on Sephacryl CL-6B (Pharmacia) (Russell et al., 1980).

RESULTS

Surface hydrophobicity. Cell-surface hydrophobicity of the 14 serotype c S. mutans strains was determined by their adsorption to hexadecane and their aggregation in ammonium sulphate. The surface hydrophobicity of strain GS-5 was markedly lower than that of other strains (Table 1).
Table 1. Hydrophobicity of strains of S. mutans serotype c

The relative surface hydrophobicity of S. mutans cells was determined by their adsorption to hexadecane and their aggregation in salt. The bacterial suspension (3 ml) was mixed with 300 µl hexadecane. Adsorption was calculated as the percentage loss in optical density relative to that of the initial cell suspension; values are the mean ± SD of triplicate assays. Bacterial aggregation in salt is expressed as the lowest ammonium sulphate concentration (M) causing bacterial aggregation.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Bacterial adsorption to hexadecane (M)</th>
<th>Bacterial aggregation</th>
<th>Strain</th>
<th>Bacterial adsorption to hexadecane (M)</th>
<th>Bacterial aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-5</td>
<td>4.9 ± 0.3</td>
<td>>2.0</td>
<td>P2</td>
<td>25.0 ± 6.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Ingbritt</td>
<td>29.0 ± 2.5</td>
<td>1.1</td>
<td>C67-1</td>
<td>42.5 ± 3.3</td>
<td>1.0</td>
</tr>
<tr>
<td>MT6R</td>
<td>25.9 ± 1.7</td>
<td>1.2</td>
<td>C67-25</td>
<td>25.7 ± 2.6</td>
<td>1.2</td>
</tr>
<tr>
<td>MT12</td>
<td>27.9 ± 5.6</td>
<td>1.2</td>
<td>MT6801</td>
<td>23.1 ± 1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>MT118R</td>
<td>27.6 ± 1.9</td>
<td>1.2</td>
<td>NG7183</td>
<td>32.2 ± 2.4</td>
<td>1.1</td>
</tr>
<tr>
<td>MT8148</td>
<td>24.9 ± 2.6</td>
<td>1.2</td>
<td>NCTC 10449R</td>
<td>24.2 ± 1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>OMZ70</td>
<td>42.5 ± 1.7</td>
<td>1.0</td>
<td>NCTC 10449S</td>
<td>43.8 ± 4.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

SDS-PAGE analysis of culture supernatants and whole cells. Culture supernatants of the 14 strains of S. mutans serotype c were analysed by SDS-PAGE and Western blotting. Gels stained with Coomassie brilliant blue showed that culture supernatants of all the strains, except strain GS-5, possessed a protein of M, 190000 (PAC) (Fig. 1a). PAC was not found in the culture supernatant of strain GS-5, but this strain produced extracellularly a large amount of a protein of M, 155000 (PAGS-5). The band of PAGS-5, as well as that of PAC, reacted with rabbit anti-PAC serum (Fig. 1b). SDS-PAGE analysis of urea/SDS extracts from whole cells of S. mutans serotype c is shown in Fig. 2. Cell extract of strain GS-5 did not contain PAC, which was present in all the other strains, but contained a small amount of the M, 155000 protein (PAGS-5) that reacted with anti-PAC serum. When culture supernatants and cell extracts of S. mutans serotype c were analysed by Western blotting, a number of other protein bands with lower M, as well as PAC and PAGS-5, reacted with anti-PAC serum. The appearance of these lower-M, proteins may have resulted from different degrees of proteolysis of PAC and PAGS-5 by endogenous proteases of S. mutans.

Immunological comparison of PAC and PAGS-5. Immunological specificity of PAC and PAGS-5 was investigated by immunodiffusion. Immunodiffusion tests revealed that a single precipitin band formed between PAC and anti-PAC serum (Fig. 3a). This band was fused with that produced between anti-PAC serum and the culture supernatants of strains MT8148 and Ingbritt, but gave a spur with that produced between anti-PAC serum and the culture supernatant of strain GS-5. On the other hand, the culture supernatants of strains MT8148 and GS-5 formed a precipitin line of identity with anti-PAGS-5 serum (Fig. 3b). These results indicated that PAGS-5 lacked a part of the antigenic moieties in the PAC molecule.

Reactivity of S. mutans cells with anti-PAC serum and anti-PAGS-5 serum. The amount of cell-surface antigens with which anti-PAC serum or anti-PAGS-5 serum reacted was determined by radioimmunooassay. Compared with other strains, the amount of cell-surface antigens of strain GS-5 with which anti-PAC serum and anti-PAGS-5 serum reacted was very small (Table 2). Reactivity of whole cells of S. mutans strains used in this study with anti-PAC and anti-PAGS-5 sera and their surface hydrophobicity were not apparently correlated (Tables 1 and 2).
Fig. 1. SDS-PAGE and Western blotting of culture supernatants of serotype c S. mutans strains. Culture supernatants were concentrated by ammonium sulphate precipitation, and analysed by SDS-PAGE. (a) Gel stained with Coomassie brilliant blue. (b) Anti-PAc serum bound to immobilized antigens on a nitrocellulose sheet transferred by an electrophoretic blotting procedure. The antibody was detected by solid-phase immunoassay with horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin G. The Mr markers used were catalase (Mr 60000), bovine serum albumin (67000), phosphorylase b (94000) and ferritin (220000). Lane 1, strain GS-5; lane 2, strain Ingbritt; lane 3, strain MT6R; lane 4, strain MT12; lane 5, strain MT118R; lane 6, strain MT8148; lane 7, strain OMZ70; lane 8, strain P2; lane 9, strain C67-1; lane 10, strain C67-25; lane 11, strain MT6801; lane 12, strain NG7183; lane 13, strain NCTC 10449R; lane 14, strain NCTC 10449S.

DISCUSSION

In this study, we showed the presence of PAC of Mr 190000 in culture supernatants and cell extracts of all the strains, except strain GS-5, of S. mutans serotype c tested. No PAC was detected in either the culture supernatant or the cell extract of hydrophilic strain GS-5, but this strain produced in the culture supernatant a large amount of PAGS-5 of Mr 155000 reactive
Streptococcus mutans protein antigen

Fig. 2. SDS-PAGE and Western blotting of cell extracts of serotype c *S. mutans* strains. Whole cells were suspended in 8 M-urea, 1% (w/v) SDS and 1% (v/v) 2-mercaptoethanol, and heated at 100 °C for 3 min. The cell extracts were clarified by centrifugation, and analysed by SDS-PAGE. (a) Gel stained with Coomassie brilliant blue. (b) The antigens transferred on a nitrocellulose sheet were allowed to react with anti-PAc serum. For the lanes, see the legend for Fig. 1.

with rabbit anti-PAc serum. A small amount of PAGS-5 was present on the cell surface. Immunodiffusion analysis showed that PAGS-5 lacked a part of the antigenic moieties in the PAc molecule. Ayakawa et al. (1987) have recently reported that none of 15 murine monoclonal antibodies directed against antigen P1 (identical with PAc) reacted with whole cells of strain GS-5. The monoclonal antibodies isolated by Ayakawa et al. (1987) may be specific for a region of the PAc molecule that PAGS-5 lacks.

PAc is known to exist both in a form apparently closely associated with peptidoglycan of serotype c *S. mutans* strains and in their culture supernatants (Russell, 1979; Zanders & Lehner,
Fig. 3. Immunodiffusion of culture supernatants of serotype c S. mutans strains against anti-PAc serum (a) and anti-PAGS-5 serum (b). Well 1, concentrated culture supernatant of strain MT8148; well 2, concentrated culture supernatant of strain GS-5; well 3, concentrated culture supernatant of strain Ingbritt; well 4, PAC purified from the culture supernatant of strain MT8148; well A, anti-PAC serum; well B, anti-PAGS-5 serum.

Table 2. Reactivity of anti-PAc serum and anti-PAGS-5 serum with whole cells of strains of S. mutans serotype c

<table>
<thead>
<tr>
<th>Strain</th>
<th>Anti-PAC (c.p.m.)</th>
<th>Anti-PAGS-5 (c.p.m.)</th>
<th>Strain</th>
<th>Anti-PAC (c.p.m.)</th>
<th>Anti-PAGS-5 (c.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-5</td>
<td>1092 ± 177</td>
<td>673 ± 126</td>
<td>P2</td>
<td>7475 ± 535</td>
<td>5809 ± 356</td>
</tr>
<tr>
<td>Ingbritt</td>
<td>6035 ± 718</td>
<td>6181 ± 731</td>
<td>C67-1</td>
<td>7262 ± 394</td>
<td>6782 ± 1098</td>
</tr>
<tr>
<td>MT6R</td>
<td>6096 ± 150</td>
<td>4061 ± 183</td>
<td>C67-25</td>
<td>9295 ± 369</td>
<td>6371 ± 698</td>
</tr>
<tr>
<td>MT12</td>
<td>4090 ± 221</td>
<td>3529 ± 520</td>
<td>MT6801</td>
<td>6214 ± 752</td>
<td>4712 ± 506</td>
</tr>
<tr>
<td>MT118R</td>
<td>7234 ± 331</td>
<td>6181 ± 626</td>
<td>NG7183</td>
<td>6602 ± 935</td>
<td>5860 ± 665</td>
</tr>
<tr>
<td>MT8148</td>
<td>6845 ± 872</td>
<td>5360 ± 511</td>
<td>NCTC 10449R</td>
<td>6524 ± 1325</td>
<td>6438 ± 421</td>
</tr>
<tr>
<td>OMZ70</td>
<td>6444 ± 739</td>
<td>5876 ± 457</td>
<td>NCTC 10449S</td>
<td>6767 ± 721</td>
<td>6557 ± 355</td>
</tr>
</tbody>
</table>

S. mutans cells (5 x 10⁷) were allowed to react with anti-PAC serum (1 µl) or anti-PAGS-5 serum (1 µl) for 1 h at room temperature. After being washed three times in PBS by centrifugation, the cells were allowed to react with ¹²⁵I-labelled goat-anti-rabbit immunoglobulin G for 1 h at room temperature. The radioactivity associated with the cells was then determined. Values are the mean ± SD of triplicate assays.

There is currently great interest in the role of cell-surface hydrophobicity in mediating bacterial adherence to teeth and oral mucosal surfaces (Gibbons, 1984). Westergren & Olsson (1983) isolated variant strains LK36 and GW36, with decreased hydrophobicity, by repeated subculture of freshly isolated strains LK and GW, respectively, of S. mutans serotype c, and
showed that the variant cells adhered less well to saliva-coated hydroxyapatite than did the parent cells. The variant strains were agglutinated to a lower extent by parotid saliva or salivary agglutinin than the parent cells (Rundegren & Olsson, 1987). Moreover, McBride et al. (1984) have shown that cell extracts of hydrophobic strains LK and GW contain a number of high-M, (mainly M190000) proteins which are not present on cells of strains LK36 and GW36 with decreased hydrophobicity. Russell & Smith (1986) have reported that the protein of M190000 altered in the LK strains is indeed antigen B. We confirmed that PAC also was immunologically identical to antigen B kindly supplied by Dr R. R. B. Russell (unpublished data). We have shown in this study that hydrophilic strain GS-5 did not produce PAC of M190000. These results support the suggestion of McBride et al. (1984) that the M190000 protein is important in surface hydrophobicity of S. mutans. In this connection, we should note that the amount of cell-associated PAC and surface hydrophobicity of serotype c S. mutans strains used in this study were not apparently correlated. Russell & Smith (1986) similarly found that the hydrophobicity of S. mutans could not be correlated solely with PAC, but involved various other surface molecules such as other surface proteins and lipoteichoic acid. Therefore, it is difficult to rule out the possibility that other antigens not detected in this study may be altered in strain GS-5.

In conclusion, an M190000 protein antigen was present on cell surfaces of hydrophobic strains of S. mutans serotype c. Hydrophilic S. mutans strain GS-5 did not produce the high-M, protein antigen, but produced extracellularly an M155000 protein antigen that lacked a region participating in binding to the streptococcal cell.

This work was supported in part by Grant-in Aid for Developmental Scientific Research (no. 63870086) from the Ministry of Education, Science and Culture of Japan.

REFERENCES

Streptococcus mutans. Infection and Immunity 41, 410–413.

