Effect of Zinc Deficiency on the Appearance of Two Immunodominant Protein Antigens (32 kDa and 65 kDa) in Culture Filtrates of Mycobacteria

By J. DE BRUYN,1* R. BOSMANS,1 J. NYABENDA1 AND J. P. VAN VOOREN2

1Institut Pasteur du Brabant, Rue Engeland 642, 1180 Bruxelles, Belgium
2Hôpital Erasme, 1070 Bruxelles, Belgium

(Received 27 June 1988; revised 26 August 1988; accepted 6 October 1988)

After growth of six strains of mycobacteria on Sauton medium in the absence of added Zn\(^{2+}\), cell yields were lowered, to between 22\% and 67\% of the yields obtained when Zn\(^{2+}\) (5 \(\mu\text{M}\)) was added. Two immunodominant proteins, named P\(_{64}\) and P\(_{32}\) (antigens of 62-65 kDa and 29–33 kDa, respectively) were abundant in culture filtrates after growth of mycobacteria. P\(_{64}\) was present at elevated concentrations (showing a 9- to 16-fold increase as a percentage of the total protein released) after Zn\(^{2+}\)-deficient growth of five of the six strains studied; in Mycobacterium tuberculosis it represented 25\% of all released proteins. However, little P\(_{64}\) was detected in culture filtrates of M. fortuitum and of M. phlei grown under Zn\(^{2+}\) deficiency, and in the latter there was no increase of P\(_{64}\) during Zn\(^{2+}\) deficiency.

INTRODUCTION

By growing Mycobacterium bovis BCG on Zn\(^{2+}\) deficient medium, two immunodominant proteins, P\(_{64}\) (65 kDa or antigen 82 in the reference system of Closs et al., 1980) and P\(_{32}\) (antigen 85A in the same reference system) could be readily obtained; they represented respectively about 20\% and 7\% of the excreted proteins. Thus such culture filtrates were conveniently used as starting material for the purification of these antigens (De Bruyn et al., 1987a, b), which present interesting immunological properties (Thole et al., 1987; Kaufmann et al., 1987; Young et al., 1987; Wiker et al., 1986; Huygen et al., 1988; Turneer et al., 1988). Protein P\(_{64}\) is thought to correspond to the Escherichia coli GroEl protein that allows E. coli to grow at elevated temperatures. It is a common antigen (Thole et al., 1988), involved in response to shock (Shinnick et al., 1988), and in mycobacteria it may be associated with the T-cell response to some of its epitopes in rheumatoid arthritis (Van Eden et al., 1988).

While the physiological role of the P\(_{32}\) protein in mycobacteria remains unknown, it may be specific for mycobacteria, as tuberculous patients give significantly higher serological responses to it than do healthy controls (Huygen et al., 1988; Turneer et al., 1988). More interestingly, the possible identification of this antigen as the fibronectin-binding protein from Mycobacterium tuberculosis could help in understanding the immunopathology of the disease (Abou-Zeid et al., 1988). The purpose of this work was to determine whether the observations previously made only on BCG (De Bruyn et al., 1981) could be extended to other mycobacteria, perhaps generally.

METHODS

Bacterial strains. These are presented in Table 1.

Culture of bacteria. The mycobacterial strains were grown on the surface of Sauton medium. As the medium was prepared with distilled water (specific resistivity 10\(^6\) \(\Omega\times\text{cm}\)) zinc sulphate was added to a final concentration of 5 \(\mu\text{M}\) (normal Sauton medium). When Zn\(^{2+}\)-deficient medium was needed, zinc sulphate was omitted. Media with or without added Zn\(^{2+}\) were inoculated with equal volumes of the same culture and incubated at 37.5 °C.
Table 1. Strains of Mycobacterium used

<table>
<thead>
<tr>
<th>Strain</th>
<th>Species</th>
<th>Relevant properties</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>An5</td>
<td>M. bovis</td>
<td>Reference strain</td>
<td>ATCC</td>
</tr>
<tr>
<td>H37Ra</td>
<td>M. tuberculosis</td>
<td>Reference strain</td>
<td>ATCC</td>
</tr>
<tr>
<td>42</td>
<td>M. avium</td>
<td>Clinical isolate</td>
<td>L. Demoulin Brahy*</td>
</tr>
<tr>
<td>190</td>
<td>M. kansasii</td>
<td>Clinical isolate</td>
<td>L. Demoulin Brahy*</td>
</tr>
<tr>
<td>141</td>
<td>M. fortuitum</td>
<td>Clinical isolate</td>
<td>L. Demoulin Brahy*</td>
</tr>
<tr>
<td>AM76</td>
<td>M. phlei</td>
<td>Environmental isolate</td>
<td>L. Demoulin Brahy*</td>
</tr>
</tbody>
</table>

* Institut Pasteur du Brabant, Brussels, Belgium.

Preparation of culture media for analysis. After culture for 7 d (Mycobacterium phlei), 14 d (M. bovis, M. avium, M. kansasii and M. fortuitum) or 25 d (M. tuberculosis), media from normal and Zn2+-deficient cultures were collected by suction and sterilized by filtration (Millex GV filter, 0.22 μm porosity, Millipore) prior to analysis. Time of harvesting was defined for each strain according to preliminary experiments taking account of their relative growth rate. Where necessary, the culture media were concentrated in an Amicon stirred cell equipped with a PM10 membrane.

Preparation of cell extracts. The pellicles were harvested after 25 d culture for Mycobacterium tuberculosis and after 7 d for Mycobacterium phlei. Extracts of the washed bacilli were prepared in 50 mM-KH2PO4/NaOH buffer pH 7.3 by passage through a French pressure cell, as previously described (De Bruyn et al., 1987a, b).

Dry weight determination. The organisms from heat-killed cultures (121 °C for 30 min) were harvested by centrifugation. After three washes in distilled water, the cells were dried to constant weight at 70 °C.

Analysis of culture media and cell extracts. Chemicals were p.a. products from Merck; enzymes and cofactors were from Boehringer. Proteins were estimated by the Coomassie blue method (Spector, 1978). Aldehydes were determined using yeast alcohol dehydrogenase as described previously (De Bruyn et al., 1981).

Protein analysis by polyacrylamide gel electrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was done as described by Laemmli (1970) in 13% (w/v) acrylamide gels. The gels were stained with Coomassie Brilliant Blue R-250 and, for quantitative analysis of P3, scanned at 595 nm with a Beckman DU8 spectrophotometer.

The bands immunologically related to an antigen were identified by immunoblotting (see below). Quantitative analysis of P3 was not performed, as this antigen was partially degraded.

Immunoblotting techniques. (a) Western blots. After completion of SDS-PAGE the proteins were transferred to nitrocellulose sheets by the method of Towbin et al. (1979). Rabbit sera raised against BCG P3 and P6 were prepared as described previously (De Bruyn et al., 1987a, b). Peroxidase-labelled anti-rabbit immunoglobulin was from Bio-Rad and used at a dilution of 1:3000.

(b) Dot-blotting assay. Equal volumes (100 μl) of serial twofold dilutions of the two purified BCG antigens and of culture filtrates, adjusted initially to 10 μg and 100 μg protein ml⁻¹, respectively, were applied to nitrocellulose (Bio-Rad) using a Bio Dot apparatus. The nitrocellulose was transferred to a plastic bag and incubated in 5% (w/v) BSA in Tris-buffered saline (TBS) pH 7.5 for 1 h. It was then incubated for 2 h with rabbit antisera raised against BCG P3 or BCG P6, and diluted respectively 1/500 and 1/1000 in TBS containing 1% (w/v) BSA and 0.05% Tween 20. After incubation, the nitrocellulose was washed twice in the same buffer, then incubated with peroxidase-conjugated anti-rabbit immunoglobulins at the same final dilution as in the Western blot. A reflectance densitometer (Bio-Rad) was used to quantify the immunoperoxidase stain on the immunoblots. A calibration curve was set up for each BCG purified protein. In the linear portion of the calibration curve, the variation between assays was less than 5% for all dilutions tested. All samples were run in parallel on the same nitrocellulose sheet.

RESULTS AND DISCUSSION

Yield and composition of the medium after growth of the different mycobacterial strains under normal and Zn2+-deficient conditions

All the mycobacteria tested showed some common responses to Zn2+-deficient conditions: appearance of the pellicle generally smooth instead of wrinkled, less pigmentation, low cellular yield (22% to 67% of normal), and both opalescence and alkalinization of the culture medium – the pH increased significantly (P < 0.01) by 0.4 to 2.1 units. Aldehydes in the medium increased 5- to 11-fold (expressed per mg dry weight of bacteria) in four out of six strains; they decreased in M. fortuitum, while for M. phlei their appearance in the medium was not affected by Zn2+.
Under the growth conditions used, the pellicles were still floating at the time of harvesting, and the bacteria were acid-fast.

Zn\(^{2+}\) deficiency resulted in a 1.5- to 28-fold increase in the amount of protein found in the medium, and it is this response which we have investigated further, particularly that of the proteins apparently related to the BCG P\(_{32}\) and P\(_{64}\) antigens. In Zn\(^{2+}\)-deficient conditions, release of P\(_{64}\) by \textit{M. bovis} (strain An5), \textit{M. tuberculosis} (strain H37Ra), \textit{M. avium} and \textit{M. kansasii} was markedly stimulated.

Presence of P\(_{32}\) and P\(_{64}\) in normal and Zn\(^{2+}\)-deficient media

The electrophoretic patterns of proteins originating from normal culture media were always very different from those originating from Zn\(^{2+}\)-deficient media, except in the case of \textit{M. phlei}. Proteins of the same or very similar mobility to P\(_{32}\) were found in both normal and Zn\(^{2+}\)-deficient media with all the species studied (Fig. 1 a: I, II, III). The amounts of antigens immunologically related to the BCG P\(_{32}\) (Fig. 1 b: I, II, III) in normal media, estimated by gel scanning and expressed as percentages of the total protein content of the respective normal culture medium, were 11\% for \textit{M. bovis} An5, 27\% for \textit{M. tuberculosis} H37Ra, 66\% for \textit{M. kansasii} and 52\% for \textit{M. avium}. In both normal and Zn\(^{2+}\)-deficient culture media of the mycobacteria studied, proteins with identical or very similar electrophoretic mobilities to P\(_{32}\) reacted with rabbit polyclonal anti-P\(_{32}\) serum (Fig. 1 b: I, II, III).

Using dot-blotting techniques the highest concentrations of P\(_{32}\) and related antigens in normal media were found for \textit{M. kansasii}, \textit{M. avium} and \textit{M. tuberculosis}, where these antigens represented 19\%, 18\% and 16\%, respectively, of the proteins released (Table 2). The differences between the amounts of this antigen estimated in normal culture media by gel scanning (results shown above) and by dot-blotting assays (Table 2) suggest that the proteins related to the BCG P\(_{32}\) are not identical in the different strains, and that these proteins from \textit{M. kansasii} and \textit{M. avium} (where gel scanning appears to be more sensitive than dot-blotting) share fewer epitopes with the BCG P\(_{32}\) antigen than do those from \textit{M. bovis} An5 and \textit{M. tuberculosis}. The percentage of proteins immunologically related to P\(_{32}\) was slightly lower in Zn\(^{2+}\)-deficient media than in normal media (Table 2), as previously observed for BCG (De Bruyn \textit{et al.}, 1987 b).

In soluble cell extracts of \textit{M. tuberculosis} H37Ra and \textit{M. phlei}, the relative amounts of P\(_{32}\) found were 2-5\% and 1\%, respectively, compared with 16\% and 4\% in the corresponding culture filtrates.

The presence of a protein of the same or very similar mobility to P\(_{64}\) was seen in all the Zn\(^{2+}\)-deficient culture filtrates except that originating from \textit{M. phlei} (Fig. 1 a: III, lane E; Fig. 1 c: III, lane E).

Cross-reactive antigens of same and/or smaller molecular mass than P\(_{64}\) (the sensitivity of this antigen to proteolytic action was reported earlier in \textit{M. leprae}: Gillis \textit{et al.}, 1985) were present in each Zn\(^{2+}\)-deficient culture filtrate, except that of \textit{M. phlei} (Fig. 1 a: I, II, III; Fig. 1 c: I, II, III). (In \textit{M. phlei}, P\(_{64}\) could only be demonstrated in 10 d normal culture filtrate – data not shown.) By dot-blotting assay, the highest concentrations of P\(_{64}\) in Zn\(^{2+}\)-deficient culture medium were found for \textit{M. tuberculosis} H37Ra, \textit{M. avium} and \textit{M. kansasii}, while very little P\(_{64}\) was found for \textit{M. fortuitum} and \textit{M. phlei} (Table 2). Generally, little P\(_{64}\) was found in culture filtrates of mycobacteria grown in normal media. The amount of P\(_{64}\) in culture filtrates appeared to reflect the amount in cells, as in extracts of \textit{M. tuberculosis} and \textit{M. phlei} P\(_{64}\) comprised 11\% and 1.5\%, respectively (determined by dot-blotting), of the total protein.

The protein P\(_{64}\) released into the Zn\(^{2+}\)-deficient culture media is antigenically related to a similarly-sized, ubiquitous bacterial common antigen (Young \textit{et al.}, 1987; Thole \textit{et al.}, 1987). These proteins with highly conserved sequences are thought to belong to the heat-shock protein family. By two different approaches Shinnick \textit{et al.} (1988) recently demonstrated an increased synthesis of the mycobacterial 65 kDa protein during growth at a higher temperature. In the course of the present study, proteins from filtrates of 7 d cultures of BCG (French strain 1173P2) shifted from 37.5 °C to 41.5 °C and incubated at this temperature for 32 h were analysed by SDS-PAGE. The electrophoretic pattern obtained was very similar to that obtained with filtrates of Zn\(^{2+}\)-deficient cultures. After the temperature shock, P\(_{64}\) was excreted in large amounts. As a
Fig. 1. Protein and antigen content of culture filtrates of mycobacteria grown in normal and Zn^{2+}-deficient media. (a) SDS-PAGE analysis of proteins, stained with Coomassie Blue R-250; (b) reaction with rabbit anti-P_{64} serum after transfer from SDS-PAGE to nitrocellulose; (c) reaction with rabbit anti-P_{32} serum after transfer from SDS-PAGE to nitrocellulose. All lanes A contained molecular mass standards: phosphorylase b (92.5 kDa), bovine serum albumin (66.2 kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa), soybean trypsin inhibitor (21.5 kDa), lysozyme (14.4 kDa). All lanes D contained purified P_{64} and P_{32}. I: *M. bovis* An5 with Zn^{2+} (lanes B) and without Zn^{2+} (lanes C); *M. tuberculosis* H37Ra without Zn^{2+} (lanes E) and with Zn^{2+} (lanes F). II: *M. kansasii* with Zn^{2+} (lanes B) and without Zn^{2+} (lanes C); *M. avium* 42 without Zn^{2+} (lanes E) and with Zn^{2+} (lanes F). III: *M. fortuitum* with Zn^{2+} (lanes B) and without Zn^{2+} (lanes C); *M. phlei* without Zn^{2+} (lanes E) and with Zn^{2+} (lanes F). All mycobacterial samples contained 5 μg of protein except those used for transfer and reaction with anti-P_{32} serum, which contained 0.4 μg of protein.
Table 2. Amounts of the antigens P₃₂ and P₆₄ in culture filtrates of mycobacteria grown in normal and Zn²⁺-deficient media

The amounts of the antigens [µg (mg total proteins)⁻¹] were estimated by a dot-blotting assay, using anti-BCG P₃₂ or P₆₄, done in duplicate on culture media obtained from two independent experiments. The values reported represent means ± SD.

<table>
<thead>
<tr>
<th>Antigen ...</th>
<th>P₃₂ With Zn²⁺</th>
<th>P₃₂ Without Zn²⁺</th>
<th>P₆₄ With Zn²⁺</th>
<th>P₆₄ Without Zn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. bovis AN5</td>
<td>140 ± 25</td>
<td>128 ± 12</td>
<td>12 ± 3</td>
<td>110 ± 15</td>
</tr>
<tr>
<td>M. tuberculosis H37Ra</td>
<td>155 ± 20</td>
<td>105 ± 15</td>
<td>16 ± 5</td>
<td>252 ± 34</td>
</tr>
<tr>
<td>M. avium 42</td>
<td>175 ± 17</td>
<td>115 ± 20</td>
<td>15 ± 3</td>
<td>185 ± 20</td>
</tr>
<tr>
<td>M. kansasii 190</td>
<td>190 ± 20</td>
<td>118 ± 15</td>
<td>12 ± 3</td>
<td>180 ± 25</td>
</tr>
<tr>
<td>M. fortuitum 141</td>
<td>48 ± 7</td>
<td>27 ± 5</td>
<td>10 ± 1</td>
<td>25 ± 2</td>
</tr>
<tr>
<td>M. phlei AM76</td>
<td>41 ± 6</td>
<td>30 ± 8</td>
<td>15 ± 3</td>
<td>18 ± 6</td>
</tr>
</tbody>
</table>

percentage of total proteins it was increased 8- to 10-fold as compared with control cultures, while the proportion of P₃₂ remained unchanged (data not shown). Comparison of the proteins released into BCG culture media in response to Zn²⁺ deficiency or to a shift of growth temperature suggests that the release of P₆₄ is not a specific consequence of Zn²⁺ deficiency but is a more general response to environmental stress conditions.

We thank A. Alexander, F. Keuterickx and E. Van Bossuyt for bacterial culture preparations, H. Naples for photographic work and C. Vanderwinkel for typing the manuscript. We thank L. Schoofs for excellent bibliographic help.

This work was supported in part by grant number 3.4554.86 from the ‘Fonds de la Recherche Scientifique Médicale’. J. P. Van Vooren was supported by the ‘Fondation Erasme’.

REFERENCES

