Cloning and Expression in *Escherichia coli* of a recA-like Gene from the Acidophilic Autotroph *Thiobacillus ferrooxidans*

By R. S. RAMESAR, D. R. WOODS AND D. E. RAWLINGS*

Department of Microbiology, University of Cape Town, Rondebosch 7700, South Africa

(Received 12 October 1987; revised 15 December 1987)

A recombinant plasmid, pRSR100, containing the functional analogue of the *Escherichia coli* recA gene was isolated from a genomic library of *Thiobacillus ferrooxidans* ATCC 33020. The plasmid complemented defects in DNA repair and homologous recombination in *E. coli* recA mutant strains. Antiserum raised against *E. coli* RecA protein reacted with the native but defective *E. coli* HB101 RecA protein; it did not react with protein extracts from the recA deletion mutant *E. coli* JK696, but it reacted with two protein bands in extracts of *E. coli* JK696(pRSR100). A single band with an apparent Mr, equal to the higher-Mr band in *E. coli* JK696(pRSR100) was detected in *T. ferrooxidans* cell extracts with the *E. coli* RecA antiserum.

INTRODUCTION

Thiobacillus ferrooxidans is an acidophilic, diazotrophic, autotrophic bacterium that can obtain energy through the oxidation of ferrous iron to ferric iron or reduced inorganic sulphur compounds to sulphuric acid. This unusual physiology enables the organism to grow in inorganic mining environments, where it is used industrially to leach metals from a variety of ores. There is much interest in the molecular biology of *T. ferrooxidans* and efforts to develop a genetic system for the bacterium are in progress.

Recent reports indicate the presence of RecA-like proteins in a wide variety of heterotrophic bacteria (Kokjohn & Miller, 1985; Goldberg & Mekalanos, 1986; Goodman *et al.*, 1987) and at least three cyanobacteria (Owttrim & Coleman, 1987; Geoghegan & Houghton, 1987; Murphy *et al.*, 1987). Cloned recA genes from several species have been shown to complement recA mutations in *Escherichia coli*. In *E. coli* the recA gene product is required for homologous genetic recombination and the induction of the SOS repair system (Walker, 1984). Purified RecA protein possesses both recombinase and protease activity. Recombinase activities include an ATP-dependent assimilation of single-stranded DNA into homologous duplex DNA (Shibata *et al.*, 1981) as well as the pairing and exchange of duplex DNA (West *et al.*, 1981). Protease activities include the cleavage of phage λ repressor and the repressor of the SOS system, the LexA protein. Little (1984) suggested that phage λ repressor and the LexA protein may be cleaved by autodigestion which is stimulated by the RecA protein.

We investigated whether *T. ferrooxidans* has a RecA-like protein similar to that found in heterotrophic and cyanobacteria. The cloned *T. ferrooxidans* recA-like gene was further characterized for its ability to functionally complement both recombinase and protease activities in *E. coli* recA mutants.

METHODS

Bacterial strains and bacteriophages. These are listed in Table 1.

Media. *T. ferrooxidans* was grown and maintained on the iron-based medium of Silverman & Lundgren (1959). *E. coli* strains were grown in Luria medium; when required, ampicillin (100 µg ml⁻¹) was added. The DNA-damaging agents MMS and NQO were used to select for the RecA⁺ phenotype. Freshly prepared Luria agar

Abbreviations: MMS, methyl methanesulphonate; NQO, 4-nitroquinoline-1-oxide; e.o.p., efficiency of plating.
containing MMS at a final concentration of 0.01% (w/v) was used for initial screening of the recombinant *T. ferrooxidans* chromosomal library. M9 minimal medium (Maniatis et al., 1982) to which thiamin (5 μg ml⁻¹) proline (20 μg ml⁻¹), leucine (20 μg ml⁻¹) and streptomycin (30 μg ml⁻¹) were added as required was used in bacterial conjugation experiments.

Preparation of DNA and cloning techniques. Cloning techniques were those of Maniatis et al. (1982). Plasmid pEcoR251, a gift from M. M. Zabeau, Plant Genetic Systems, Ghent, Belgium, is a positive selection vector containing the *E. coli* EcoRI gene under the control of the λ rightward promoter, the ampicillin-resistance gene and the pBR322 origin of replication. It was derived from the pCL plasmids described by Zabeau & Stanley (1982). The EcoRI gene product expressed at high levels by the λ rightward promoter on pEcoR251 is lethal unless insertionally inactivated or regulated by pcI857, which contains a temperature-sensitive λ repressor gene (Remaut et al., 1983). The EcoRI gene has a single BglII cloning site. *T. ferrooxidans* chromosomal DNA was isolated as described previously (Barros et al., 1984). Chromosomal DNA was partially digested with Sau3A and the fragments were sized on a sucrose gradient. Fractions containing DNA fragments of 4–10 kb were isolated and ligated into the BglII site of pEcoR251.

UV sensitivity. Cells were grown to an OD₆₀₀ of 0.2 in Luria broth, harvested by centrifugation and resuspended in an equal volume of Ringer's solution. Samples (5 ml) were placed in a Petri dish and irradiated with UV light using a Cole-Palmer series 9815 germicidal lamp. The UV fluence was determined with a Blak-Ray ultraviolet meter (Ultraviolet Products, Inc.). Survivors were determined by plating on Luria agar. All manipulations were carried out under subdued lighting and incubation was done in the dark to prevent photoreactivation.

Bacterial conjugation. Overnight cultures were diluted 1:10 in Luria broth and incubated for 1 h at 37 °C. The cells were mixed in a donor-to-recipient ratio of 1:10 and allowed to conjugate for 60 min at 37 °C, with gentle shaking. Selection for transconjugants was by acquisition of amino acid prototrophy on minimal media, and streptomycin resistance. The number of *E. coli* CSH62 HfrH donor cells was determined by plating on minimal medium.

E.o.p. of phage P1 and λ Fec− mutants. The e.o.p. of phages P1 and λ Fec− was tested on *E. coli* strains RR1 (recA⁺), HB101 (recA) and HB101(pRSR100). Cells were grown in Luria broth to an OD₆₀₀ of 0.2, harvested by centrifugation and resuspended in SM buffer (Maniatis et al., 1982). The cells (0.1 ml) were mixed with phage and adsorption was allowed to proceed for 20 min at room temperature. Agar (3 ml, 0.8%, w/v, 45 °C) was added, mixed and poured onto Luria agar plates. The number of plaques was determined after 18 h incubation at 37 °C.

Western blotting of proteins. Western blotting from SDS-PAGE gels onto nitrocellulose membranes was done by the method of Towbin et al. (1979). The membrane was blocked overnight at room temperature with 10 mM-Tris/HCl (pH 7.4), 0.15 M-NaCl, 2% (w/v) nonfat dried milk (Johnson et al., 1984) and 0.05% (v/v) Tween-20. The antibody binding and the development of bands using a goat anti-rabbit serum conjugated to horseradish peroxidase was done according to the method of Rybicki & von Wechmar (1982), except that Tween-20 was used instead of NP-40.

RESULTS

Isolation of the *T. ferrooxidans* recA gene. Plasmid DNA from a library of approximately 8000 colonies was prepared and transformed into *E. coli* HB101. Transformants were screened on ampicillin Luria agar plates containing 0.01% (w/v) MMS. Three different ampicillin- and MMS-resistant colonies were isolated. Plasmid DNA prepared from these colonies was used to retransform *E. coli* HB101. The recombinant plasmids were designated pRSR100, pRSR101 and pRSR102.
Cloning *T. ferrooxidans* recA gene

Restriction mapping and DNA homology. The recombinant plasmids pRSR100, pRSR101 and pRSR102 were physically mapped using several restriction endonucleases (Fig. 1). The sizes of the cloned fragments were 4.5, 4.0 and 3.4 kb in pRSR100, pRSR101 and pRSR102 respectively. Based on the restriction maps, the recombinant plasmids shared a common fragment of cloned DNA and therefore represented independent cloning events of the recA-like gene. *EcoRV* and *EcoRI* endonuclease deletions of pRSR100 and a *BglII/BamHI* endonuclease deletion of pRSR102 were constructed (Fig. 1). Only the *EcoRI* endonuclease deletion of pRSR100 still conferred resistance to MMS.

Southern blotting and DNA hybridization were used to confirm that the 4.5 kb DNA insert of pRSR100 originated from the *T. ferrooxidans* chromosome. Chromosomal DNA and pRSR100 were both digested with *PstI* endonuclease. The restriction enzyme fragments were separated on an agarose gel, Southern blotted and hybridized to 32P-labelled pRSR100. A positive hybridization signal was obtained with fragments of the *T. ferrooxidans* chromosomal digest corresponding exactly to fragments of pRSR100 produced from the *PstI* restriction sites internal to the 4.5 kb insert.

UV, MMS and NQO sensitivity. The effect of pRSR100 on the UV, MMS and NQO sensitivity of *E. coli* HB101 (recA) was determined by comparison with untransformed strain HB101 and the parental strain RR1 (recA⁺). The UV sensitivity of strain HB101(pRSR100) was intermediate between those of strains HB101 (recA) and the RR1 (rec⁺) (Fig. 2). *E. coli* HB101 carrying any of the three recombinant plasmids pRSR100, pRSR101 or pRSR102 was resistant to the same levels of MMS and NQO as *E. coli* RR1 (recA⁺). For example *E. coli* HB101(pRSR100) grew at concentrations of 0.1% (w/v) MMS and 10 μg NQO ml⁻¹, compared with maximum levels of 0.005% (w/v) MMS and 1 μg NQO ml⁻¹ for the untransformed strain.

Recombination proficiency. The ability of *E. coli* HB101(pRSR100) to carry out homologous recombination was compared with that of *E. coli* HB101 (recA) and the parental strain RR1 (recA⁺). The level of homologous recombination in *E. coli* HB101 was increased >10⁴-fold by pRSR100, although this value was only 15% of that of the recA⁺ strain RR1 (Table 2).
Fig. 2. Effect of the recombinant plasmid pRSR100 on the survival of UV-irradiated E. coli HB101. Cells were grown in Luria broth to an OD$_{600}$ of 0.2, collected by centrifugation and resuspended in an equal volume of M9 medium. The suspension was irradiated with increasing doses of 254 nm radiation at a dose rate of 1 J m$^{-2}$ s$^{-1}$. Survivors were determined on Luria agar after 18 h. ●. E. coli HB101 (recA); ■. E. coli HB101(pRSR100); ▲. E. coli RR1 (recA$^+$). The results are means of three experiments.

Table 2. Recombinational proficiency of pRSR100 as determined by genetic recombination following Hfr mating, and the e.o.p. of phages P1 and λ Fec$^-$

<table>
<thead>
<tr>
<th>E. coli strain</th>
<th>Recombinational proficiency*</th>
<th>Phage P1</th>
<th>λ Fec$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR1 (recA$^+$)</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>HB101(pRSR100)</td>
<td>0.34</td>
<td>0.79</td>
<td>0.21</td>
</tr>
<tr>
<td>HB101 (recA)</td>
<td>2×10^{-4}</td>
<td>$<1 \times 10^{-5}$</td>
<td>$<1 \times 10^{-5}$</td>
</tr>
</tbody>
</table>

* No. of trans conjugants per 100 donor cells.

Replication of phages P1 and λ Fec$^-$: Strains of E. coli containing recA mutations are unable to support the growth of phage P1 (Cohen, 1983) or λ Fec$^-$ mutants, which carry the red and gam mutations (Smith, 1983). The e.o.p. of phages P1 and λ Fec$^-$ on E. coli HB101, HB101(pRSR100) and RR1 is shown in Table 2. The cloned gene restored the e.o.p. of phage P1 to levels close to those of the parental recA$^+$ strain. The λ Fec$^-$ mutant produced large plaques with an e.o.p. of 1.0 on E. coli RR1, but no plaques were observed on E. coli HB101. The ability of the λ Fec$^-$ mutant to grow on E. coli HB101 was restored by pRSR100, but the e.o.p. on E. coli HB101(pRSR100) was only 0.21 and the individual plaques were reduced to pin-pricks in size.

Western blotting. Rabbit antiserum prepared against E. coli RecA protein (Goodman et al., 1987) was used in Western blots to challenge proteins from crude extracts of E. coli strains HB101, HB101(pRSR100), JK696 and JK696(pRSR100). The E. coli recA gene product is a single polypeptide with an M_r of approximately 40000. Previously we showed that the antiserum reacted with a polypeptide with an apparent M_r of approximately 40000 in uninduced extracts of E. coli C600 cells; the production of this polypeptide was markedly increased after UV induction of E. coli C600 (Goodman et al., 1987). The antiserum reacted with a polypeptide of apparent M_r approximately 40000 in cell extracts of uninduced E. coli HB101, which contains a mutation within the recA gene. This polypeptide was not induced by UV radiation (Goodman et
Cloning T. ferrooxidans recA gene

No antiserum reaction was detected with cell extracts from the E. coli recA deletion mutant JK696. However, protein extracts from E. coli JK696(pRSR100) cells did react with the antiserum, and two protein bands, of apparent M, approximately 40000 and 38000, were detected. In E. coli HB101(pRSR100) cell extracts the antiserum reacted very strongly with a protein band of apparent M, approximately 40000 and with an additional protein band of apparent M, approximately 38000. Although it is difficult to obtain high concentrations of T. ferrooxidans cells, a faint band with an apparent M, of approximately 40000 was detected in T. ferrooxidans cell extracts with the antiserum.

DISCUSSION

This account of the cloning and characterization of the recA gene from T. ferrooxidans is apparently the first report of the presence or isolation of a recA gene from an autotrophic, chemolithotrophic bacterium. The cloned gene allows functional complementation of recombinase activity in an E. coli recA mutant. Evidence for this is the increase in the number of recombinants obtained by homologous recombination after Hfr-mediated conjugation, the growth of phage P1, which requires recombination between terminal repeats for replication and the suppression of the Fec " phenotype of phage λ. In each case the level of recombinase activity that resulted from the cloned T. ferrooxidans recA gene was considerably less than that of the recA+ E. coli strain RR1.

Induction of DNA repair as a result of UV irradiation, MMS or NQO damage was also partially restored to the E. coli recA mutant by the cloned T. ferrooxidans gene. Since cleavage of the lexA repressor by the recA gene product is required to induce the SOS response, this indicates protease activity of the cloned gene product.

The observation that the product of the cloned T. ferrooxidans recA gene complemented the induction of the SOS response more completely than recombinase activity may indicate that the domains associated with protease activity are more functional in E. coli than the domains associated with recombinase activity.

It is likely that the cloned T. ferrooxidans recA gene product is expressed in E. coli from its own promoter. Deletions on either side of the cloned T. ferrooxidans chromosomal fragment or removal of the A rightward promoter of the EcoRI structural gene of the pEcoR251 vector (the EcoRI deletion of pRSR100, Fig. 1) did not affect resistance to MMS. Further evidence for the expression of the T. ferrooxidans recA gene in E. coli from its own promoter was obtained by the reisolation and expression of the recA gene in both orientations from a cosmid library (unpublished results).

The cloned T. ferrooxidans recA-like gene produced two polypeptide bands, of apparent M, approximately 40000 and 38000, in an E. coli recA deletion mutant. Since a single polypeptide band of apparent M, approximately 40000 was detected in T. ferrooxidans it is suggested that the 38000 M, polypeptide detected in E. coli(pRSR100) is a degradation product of the 40000 M, polypeptide. Since the defective E. coli RecA protein in E. coli HB101 also has an M, of 40000 it was not possible to determine whether the cloned T. ferrooxidans protein enhanced the production of the native defective E. coli RecA protein after UV irradiation of E. coli(pRSR100) cells.

The presence of a recA-like gene in T. ferrooxidans indicates that the bacterium appears to have a homologous genetic recombination system. The implication of this finding for the genetic manipulation of T. ferrooxidans is that once a means of reintroducing DNA into the bacterium is discovered, it should be possible to recombine manipulated genes back into the chromosome.

REFERENCES

