Identification of the Outer Membrane Proteins of *Campylobacter pyloridis* and Antigenic Cross-reactivity between *C. pyloridis* and *C. jejuni*

By D. G. NEWELL

Experimental Pathology Laboratory, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury SP4 0JG, UK

(Received 1 May 1986; revised 31 July 1986)

The outer membrane and surface exposed proteins of four strains of the gastric Campylobacter-like organism *Campylobacter pyloridis* were identified by SDS-PAGE of Sarkosyl-insoluble membranous material and 125I-surface-labelled whole bacteria. Although constant outer membrane proteins (molecular mass 61, 54 and 31 kDa) were observed in these strains, several variable 125I-labelled surface proteins were detected. *C. pyloridis* does not appear to express a single surface-exposed major outer membrane protein like that of *C. jejuni* and *C. coli*. Putative flagella proteins were identified from isolated flagella and acid-extractable surface material and by immunoblotting with anti-flagella antibodies. Several major protein antigens were observed by immunoblotting with anti-*C. pyloridis* antisera. At least two of these antigens cross-reacted with anti-*C. jejuni* antiserum. This cross-reaction appears to be caused primarily by flagellar antigens. However, one major protein antigen (61 kDa) was not cross-reactive with *C. jejuni* and may, therefore, be useful in serological tests for the specific diagnosis of *C. pyloridis* infections.

INTRODUCTION

Campylobacter pyloridis is a recently recognized microaerophilic, S-shaped bacterium (Warren & Marshall, 1983), previously termed gastric Campylobacter-like organism type 1 (GCLO-1) which colonizes the gastric mucosa of patients with active, chronic gastritis and peptic ulceration (McNulty & Watson, 1984; Langenberg et al., 1984; Booth et al., 1986; Jones et al., 1984). Despite this close association with abnormal gastric pathology the pathogenic, as distinct from opportunistic, nature of this organism has yet to be proven. Nevertheless, the presence of *C. pyloridis* may be an important consideration in the treatment of gastric disease.

Patients colonized with *C. pyloridis* elicit a specific antibody response (Jones et al., 1984; Kaldor et al., 1985) potentially useful as a diagnostic aid and for monitoring the disease state during treatment. Consequently ELISA systems are being developed to detect serum anti-*C. pyloridis* antibodies (Booth et al., 1986). However, preliminary studies suggest that *C. pyloridis* displays antigenic cross-reactivity with the thermophilic campylobacters *C. jejuni* and *C. coli* (Hutchinson et al., 1985; Newell, 1986b), which could result in lack of specificity with whole cell antigens.

The aim of these investigations was to identify the outer membrane and surface proteins, including flagella, of *C. pyloridis* and to establish which of these proteins were antigenically cross-reactive with the surface antigens of *C. jejuni*.

METHODS

Bacterial strains. *C. pyloridis* strains NCTC 11637 and NCTC 11638 were isolated by Dr B. Marshall (Royal Perth Hospital, Perth, Australia) and kindly supplied by Dr M. B. Skirrow (Worcester Royal Infirmary, Worcester, UK). *C. jejuni* strain 81116 was described by Newell et al. (1984). All other strains were obtained from gastric biopsies and were isolated on blood agar (blood agar base no. 2; Oxoid) containing 5% (v/v) defibrinated horse blood and 2% (w/v) agar with or without Skirrow's antibiotics (Skirrow, 1977) in microaerophilic conditions and stored in 10% (w/v) glycerol in 1% (w/v) proteose peptone in liquid nitrogen.
Antisera and antibodies. Rabbit antisera were prepared against C. pyloridis strain 11637, C. jejuni strain 81116 and C. jejuni flagella (Newell et al., 1984). The production and characterization of the monoclonal antibody CF5 was described by Newell (1986a, b).

Outer membrane preparation. Outer membranes of C. pyloridis strains NCTC 11637, NCTC 11638, 85033 and 85034 were prepared by solubilization of crude membrane preparations with sodium N-lauroyl sarcosinate (Newell et al., 1984).

Acid extraction. Acid extracts of whole organisms were prepared from strains NCTC 11637, NCTC 11638 and 85033 by incubation in 0·2 M-glycine/HCl buffer, pH 2·2 (Newell et al., 1984).

Flagella preparation. C. pyloridis strain 85033 was cultured in a broth containing 1% (w/v) peptone, 0·1% (w/v) dextrose, 0·2% (w/v) yeast extract (all from Oxoid), 0·5% (w/v) sodium chloride, 0·01% (w/v) sodium metabisulphite, 10% (v/v) horse blood lyysate and Skirrow’s antibiotics at 37 °C in microaerophilic conditions and rotated on an orbital shaker at 80 r.p.m. Flagella were sheared from the bacteria and purified by differential centrifugation (Newell et al., 1984). The preparation was monitored by negative staining and transmission electron microscopy, and by SDS-PAGE.

125I-surface-labelling of whole bacteria. C. pyloridis strains were harvested from blood agar plates and washed twice by centrifugation (5000 g, 10 min, 4 °C) in phosphate-buffered saline (PBS: 140 mM-sodium chloride, 2·7 mM-potassium chloride, 8 mM-disodium hydrogen phosphate and 1·5 mM-potassium dihydrogen phosphate, pH 7·2). Bacteria were 125I-surface-labelled using 1,3,4,6-tetrachloro-3a-6a-diphenyl-glycouril (Iodogen) as described by Newell et al. (1984). The specific activity of 125I-labelled bacteria was approximately 1 μCi (μg protein)−1 [37 kBq (μg protein)]−1.

SDS-PAGE. A 10–25% (w/v) linear gradient SDS-PAGE system was used (Lambden et al., 1979). Protein samples were bands between with Kenacid blue (BDH). The protein molecular mass markers (Sigma) were β-lactalbumin, trypsin inhibitor, trypsinogen, carbonic anhydrase, glyceraldehyde-3-phosphate dehydrogenase, egg albumin and bovine albumin.

Electroimmunoblotting. SDS-PAGE gels of the total proteins, outer membrane preparations, acid extracts and flagella preparations were electrobotted onto Hybond paper (Amersham) at 55 V for 18 h at 4 °C in 24 mM-Tris, 190 mM-glycine and 20% (v/v) methanol, pH 8·9. Non-specific binding was blocked by incubation with 3% (w/v) gelatin in 10 mM-Tris/HCl, 150 mM-sodium chloride containing 0·05% (v/v) Tween 20 (TTBS), pH 7·4, for 2 h at 20 °C. The blots were incubated in rabbit antiserum (1 in 100) diluted in 50 mM-Tris/HCl buffer, pH 7·4, containing 150 mM-sodium chloride, 5 mM-EDTA, 0·25% (w/v) gelatin and 0·05% (v/v) Nonidet P-40 (incubation buffer) or in undiluted hybridoma supernatant fluid containing 20 mM-HEPES (pH 7·4) for 2 h at 20 °C. After washing in TTBS the blots were incubated in goat anti-rabbit IgG (diluted 1 in 300) in incubation buffer (BioRad) for 1 h at 20 °C or in 125I-labelled sheep anti-mouse IgG (diluted to 1 × 106 c.p.m. ml−1) in incubation buffer (Amersham; specific activity 5–20 μCi μg−1 [185–740 kBq μg−1]) overnight at 4 °C. The unbound material was removed by extensive washing in TTBS. Bound peroxidase activity was detected using 4-chloro-l-naphthol and hydrogen peroxide. Bound 125I-labelled material was detected by autoradiography.

ELISA. Antigen [10 μg protein (ml whole cell sonicate)−1 or 5 μg protein (ml acid extract)−1] in 100 μl 0·1 M-potassium carbonate buffer, pH 9·6, wasadsorbed onto microELISA plates (Dynatech) overnight at 20 °C. The wells were washed in ELISA wash (145 mM-sodium chloride containing 0·05%, v/v, Tween 20) and incubated with appropriate dilutions of rabbit antisera for 2 h at 37 °C. After washing, the wells were incubated with 100 μl goat anti-rabbit IgG coupled to peroxidase (Miles Research Labs) (1 in 1000 dilution in ELISA wash containing 1%, w/v, bovine serum albumin and 5 mM-Tris/HCl, pH 7·6) for 2 h at 37 °C. Bound antibody was detected with 100 μl tetramethylbenzidine substrate for 15 min, stopped with 50 μl 1 M-sulphuric acid and read at 450 nm in a microELISA reader (Dynatech). The ELISA titres were calculated as described by Virji et al. (1983).

RESULTS

Outer membrane and surface proteins

The total protein profiles of the four strains of C. pyloridis were very similar but no significant major protein bands were observed. SDS-PAGE gels of the total protein profile, crude membrane preparation, Sarkosyl-soluble material and Sarkosyl-insoluble membranous material from strain 85033 are shown in Fig. 1a. Three outer membrane proteins (61, 54 and 31 kDa) were seen in this strain. The protein profiles of outer membrane preparations from the other strains showed proteins bands of the same molecular mass though some quantitative differences were observed. The outer membrane preparation, when viewed by transmission electron microscopy, contained membranous material and many ‘doughnut-shaped’ 11 nm particles. Flagella fragments were rarely seen (Fig. 2a).
Outer membrane proteins of *C. pyloridis*

The 61 and 54 kDa proteins, and a 73 kDa major protein, were also present in the flagella preparation (Fig. 1a, track 6). An additional 40–50 kDa protein always ran as a distorted band in this preparation. Untreated organisms expressed multiple flagella many of which were sheathed and had terminal 'paddles', which appeared to be extensions of the flagella sheath. Most flagella fragments recovered after shearing were characterized by amorphous terminal blebs at both ends (Fig. 2c). This amorphous material represented a large proportion of the final flagella preparation. Conversely the 'doughnut-shaped' particles seen in the outer membranes were infrequently observed in this preparation.

Acid-extracted whole bacteria were without flagella but otherwise appeared intact. Acid extracts from all strains had similar protein profiles and had four major (61, 56, 31 and 25 kDa) proteins (Fig. 1a, track 5).

125I-surface-labelled bacteria (Fig. 1b) demonstrated several variable proteins, including a 71.5–75 kDa protein and a 48–50 kDa protein. A 65.5 and 64.5 kDa doublet band was seen in strains 85033 and 11638; the high molecular mass band only was seen in strain 85034 whilst the lower molecular mass band only was seen in strain 11637. Several 125I-labelled major proteins (60, 31, 26 and 19 kDa) were also observed, which had the same molecular mass in each strain.

Surface antigens of *C. pyloridis*

Rabbit anti-*C. pyloridis* antiserum labelled five major antigens (61, 56, 54, 29 and 26 kDa) in all four strains of *C. pyloridis* (Fig. 3a). Several variable antigens were also observed, including a 26 kDa antigen which was missing in strain 11674. The 61 kDa antigen was a major antigenic
Fig. 2. Transmission electron micrograph of negatively stained (a) outer membrane material showing 11 nm 'doughnut-shaped' particles (bar 0·1 μm), and (b) flagella fragment after mechanical dissociation showing the dispersion of amorphous material from one end (bar 0·1 μm).
component of the outer membrane preparation, while the 56 kDa antigen was a major constituent of the acid extract and flagella preparations. The immunolabelling pattern of this 56 kDa protein indicated that several antigens of similar molecular masses might be present. The 54 kDa antigen was found in the outer membrane and flagella preparations (Fig. 3b).

Cross-reacting surface antigens of *C. pyloridis* and *C. jejuni*

Both *C. jejuni* and *C. pyloridis* sonicated whole cell antigen preparations cross-reacted with the heterologous antisera in ELISA (Table 1). However, the cross-reactivity was greatly reduced when acid extracts of *C. pyloridis* were used. By immunoblotting it could be seen that the major antigens of *C. pyloridis* cross-reacting with rabbit anti-*C. jejuni* were 56 and 54 kDa proteins (Fig. 3c). Rabbit anti-*C. jejuni* flagella antiserum (Fig. 3d) and the monoclonal antibody CF5 labelled the same antigens.

Rabbit anti-*C. pyloridis* antisera labelled a 62 kDa and a diffuse 18 kDa band in blots of whole cell protein profiles of *C. jejuni* 81116 (Fig. 3e). The 62 kDa antigen was also labelled in acid extracts of 81116 and was the major antigen labelled by the homologous antisera. The 18 kDa diffuse band was not detected by anti-*C. jejuni* antisera.
Table 1. Antigenic cross-reactivity between C. pyloridis and C. jejuni

Antisera from rabbits, immunized with either C. pyloridis or C. jejuni, were reacted in ELISA with either whole cell sonicates or acid-extractable material from C. pyloridis or C. jejuni. The titre was calculated as the dilution of sera which gave an increase in A_{450} of 0.1 after 15 min incubation with the substrate.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Anti-C. pyloridis</th>
<th>Anti-C. jejuni</th>
<th>Normal rabbit serum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10^4 \times$ ELISA titre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pyloridis strain 11637</td>
<td>1782</td>
<td>111</td>
<td>0</td>
</tr>
<tr>
<td>Whole-cell sonicate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid extract</td>
<td>111</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C. jejuni strain 81116</td>
<td>74</td>
<td>1024</td>
<td>0</td>
</tr>
<tr>
<td>Whole-cell sonicate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid extract</td>
<td>60</td>
<td>270</td>
<td>0</td>
</tr>
</tbody>
</table>

DISCUSSION

The outer membrane and surface exposed proteins of C. pyloridis have been identified by 125I-surface-labelling and SDS-PAGE of outer membrane material. These techniques have been previously used to identify the outer membrane and surface proteins of other members of the genus Campylobacter (Logan & Trust, 1982; Blaser et al., 1983; Newell et al., 1984). The total protein profiles of the C. pyloridis strains were similar to those described by Megraud et al. (1985). No major outer membrane protein was observed in C. pyloridis. Similarly no major surface protein was 125I-labelled. Many of the surface exposed proteins that were 125I-labelled appear to be peripheral proteins rather than constituents of the outer membrane. Nevertheless the 61 and 31 kDa outer membrane proteins appear to be surface exposed. The thermophilic campylobacters C. jejuni and C. coli are characterized by a single, 42–47 kDa, surface-exposed outer membrane protein whilst C. fetus contains two distinctive outer membrane proteins (Logan & Trust, 1982; Blaser et al., 1983; Newell et al., 1984). It appears that C. pyloridis does not possess a major outer membrane protein comparable with those of other campylobacters. The inclusion of GCLO-1 in the genus Campylobacter (Anon., 1985) has been questioned (Jones et al., 1985; Goodwin et al., 1985, 1986) on the basis of significant differences in morphology, fatty acids and antibiotic susceptibility. However, other properties of the organism (Wait & Hudson, 1985; Marshall et al., 1984; Megraud et al., 1985) are consistent with the definition of Campylobacter (Smibert, 1978).

In previous studies, the 62 kDa flagella protein of C. jejuni has been identified after mechanical isolation of flagella. Moreover, this protein was a major component of both outer membrane preparations and acid-extractable surface material. The use of similar techniques did not allow unequivocal identification of the flagella proteins of C. pyloridis, the flagella preparation of which gave a complex protein profile, including one protein which appeared to be disturbed during electrophoresis. Such a perturbation may result from changes in ionic strength within the gel, though such effects were not seen with other preparations or from association with non-proteinaceous materials like membrane lipids. The amorphous material, representing much of the flagella preparation, appeared to originate from the terminal blebs of sheathed flagella. Conversely the flagella of the thermophilic campylobacters which remain intact during mechanical dissociation from the cells and fragments of flagella are major components of the outer membrane material from these Campylobacter spp. (Newell et al., 1984). Morphological studies by Goodwin et al. (1985) suggest that the flagella sheath of C. pyloridis is an extension of the outer membrane. The protein profiles of the outer membrane and flagella preparations are not inconsistent with this proposal but the ‘doughnut-like’ particles, associated with the cell surface (Jones et al., 1985), were infrequent in the flagella preparations. Obviously the flagella of C. pyloridis are both morphologically (Jones et al., 1985; Goodwin et al., 1985) and chemically distinct from those of the other campylobacters. Nevertheless, there is considerable antigenic cross-reactivity between the flagella of Campylobacter spp. Anti-C. jejuni flagella antiserum immunolabelled at least two proteins found in the flagella preparation and acid extract of C. pyloridis. Moreover, the monoclonal antibody CFS, which is directed against
the 62 kDa flagella protein of *C. jejuni* (Newell, 1986a) and which cross-reacts with most *Campylobacter* species (Newell, 1986b) also labels these proteins.

The 61 kDa protein was one of the major *C. pyloridis* antigens detected by rabbit anti-*C. pyloridis* antiserum which did not cross-react with anti-*C. jejuni* antiserum. Preliminary evidence suggests that a 60–62 kDa protein is a major antigen detectable by electroimmunoblotting and radioimmunoprecipitation using sera from patients colonized by *C. pyloridis* (Newell, 1985). This 61 kDa protein is therefore a candidate antigen for enhancing the specificity and sensitivity of ELISA techniques. The 61 kDa protein is enriched in the acid-extractable material from *C. pyloridis* and has a significantly lower cross-reactivity with rabbit anti-*C. jejuni* antiserum than with whole cell sonicates. Further ELISA investigations using the acid-extractable material for the detection of specific anti-*C. pyloridis* antibody responses in patients with gastritis are in progress.

I would like to thank Mr H. Steer (Department of Surgery, Southampton) for providing the gastric biopsies and Mr P. Hawtin (PHLS, Southampton) for isolating the bacteria.

REFERENCES

