Mercuric Reductase Enzymes from *Streptomyces* Species and Group B *Streptococcus*

**BY HIDEOMI NAKAHARA,¹,² JANET L. SCHOTTEL,²,³ TOSHIHIKO YAMADA,⁴ YOZO MIYAKAWA,⁴ MISAKI ASAKAWA,¹ JEROME HARVILLE² AND SIMON SILVER²*¹

¹Department of Environmental Health, Medical University of Yamanashi, Tamaho, Yamanashi 409-38, Japan
²Department of Biology, Washington University, St Louis, MO 63130, USA
³Department of Biochemistry, University of Minnesota, St Paul, MN 55108, USA
⁴Department of Microbiology, Medical University of Yamanashi, Tamaho, Yamanashi 409-38, Japan

(Received 2 October 1984; revised 16 January 1985)

Mercury volatilization (Hg²⁺ reductase) activity has been found with Hg²⁺-resistant isolates of three *Streptomyces* species and with three Hg²⁺-resistant strains of group B *Streptococcus* from clinical sources in Japan. Hg²⁺ reductase activities in crude cell extracts showed the temperature sensitivity, the requirement for an added thiol compound and the characteristic dependence on NAD(P)H cofactors of similar enzymes isolated from other bacteria.

INTRODUCTION

Hg²⁺-resistant bacteria have been reported in a wide variety of Gram-negative and Gram-positive species including enterics, pseudomonads, *Staphylococcus aureus*, *Bacillus*, *Yersinia*, *Mycobacterium* and *Thiobacillus* (for reviews see Summers & Silver, 1978; Robinson & Tuovinen, 1984). Except for Hg²⁺-resistant strains of *Enterobacter aerogenes* (Pan-Hou et al., 1981) and *Clostridium cochlearium* (Pan-Hou & Imura, 1981), all other known cases of mercuric resistance have been associated with the presence of an intracellular mercury volatilizing enzyme, Hg²⁺ reductase (summarized in Summers & Silver, 1978; and Robinson & Tuovinen, 1984).

We report here the initial characterization of mercury volatilizing activities from two new groups of bacteria, *Streptomyces* species and group B *Streptococcus* from clinical sources. The properties of the Hg²⁺ reductase enzymes from these two new sources are similar to those previously reported from other Gram-positive bacteria (Weiss et al., 1977; Izaki 1981; Olson et al., 1982).

METHODS

Organisms. These are listed in Table 1.

Streptomyces species strains 5 and 8 were provided by Dr Shiaw-Ta Chung, Upjohn Company, Kalamazoo, Michigan, USA, in the form of frozen mycelial pastes of cells grown in S medium (Hopwood et al., 1977) at 32°C in the presence of 50 μM-Hg²⁺. Strain 8 is *Streptomyces lividans* strain 66 from the Central Institute for Fermentation Microbiology in the German Democratic Republic. Strain 5 is a *Streptomyces espinosus* isolate. *Streptomyces lividans* strain 1326 (Bibb & Hopwood, 1981) was obtained from Professor David Hopwood's laboratory at the John Innes Institute, Norwich, UK. A spontaneous chloramphenicol-sensitive derivative of strain 1326, designated M252, was isolated by Schottel et al. (1981). *Streptomyces coelicolor* strains M130, M110, and M124 (Bibb & Hopwood, 1981) were also obtained from the John Innes Institute collection (Table 1). The *Streptomyces* strains not supplied as cell pastes were grown in liquid in yeast extract/malt extract medium (Bibb et al., 1977) with added 34% (w/v) sucrose and 10 mM-MgCl₂ to an OD₆₅₀ of about 0.5. After addition of 1 μM-Hg²⁺ (for induction)
Table 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Organism</th>
<th>Strain</th>
<th>Chromosomal markers</th>
<th>Plasmids</th>
<th>Mercury resistance†</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>coelicolor</td>
<td>M110</td>
<td>hisA1 uraA1 strA1</td>
<td>SCP2*</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M124</td>
<td>proA1 argA1 cysD18</td>
<td>None</td>
<td>SS</td>
<td></td>
</tr>
<tr>
<td>Streptomyces</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lividans</td>
<td>1326</td>
<td>SLP2, SLP3</td>
<td>R</td>
<td>Hopwood et al. (1983)</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>M252</td>
<td>Not known</td>
<td>S</td>
<td>Schottel et al. (1981)</td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>C600(pDU1003)†</td>
<td>Not known</td>
<td>R</td>
<td>NiBhriain et al. (1983)</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>PAO 9501(pYS1)§</td>
<td>Not known</td>
<td>R</td>
<td>Clark et al. (1977)</td>
<td></td>
</tr>
<tr>
<td>aureus</td>
<td>RN4</td>
<td>p1258</td>
<td>R</td>
<td>Novick & Roth (1968);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-14</td>
<td>Not known</td>
<td>R‡</td>
<td>Weiss et al. (1977)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-46</td>
<td>Not known</td>
<td>R‡</td>
<td>Yamada et al. (1984)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-60</td>
<td>Not known</td>
<td>R‡†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†, R, Resistant; s, sensitive; ss, 'supersensitive'.
‡† Includes the RlOO mercury resistance determinant.
‡ Includes the Tn501 mercury resistance determinant.
§ Includes the Tn501 mercury resistance determinant.
¶ Additional resistance to cadmium, arsenic and tetracycline.
|| Additional resistances as for B-14, but also chloramphenicol resistant.
| B-14 and an additional 6 h incubation, the mycelia were harvested by centrifugation and frozen. Hg2+ resistance of Streptomyces was tested by a disc assay (Weiss et al., 1977) on plates containing yeast extract/malt extract medium with 10 mM-MgCl2 plus 15 g agar l−1 but without sucrose.

Hg2+-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus (Table 1) were used as controls in the Hg2+ reductase assays. These strains were grown and induced as previously described (NiBhriain et al., 1983; Clark et al., 1977; and Weiss et al., 1977, respectively).

The Streptococcus agalactiae (Lancefield group B) strains (154 in number) were isolated from clinical specimens at the Juntendo University Hospital, Japan. The streptococci were grown in standing cultures in Todd–Hewitt Medium (Difco). Resistance to mercury was tested by a disc assay in Todd–Hewitt medium solidified with 15 g Bacto-agar l−1.

Preparation of crude cell extracts. Streptomyces mycelia and cell pastes of P. aeruginosa and E. coli were stored frozen. Frozen cells were thawed and disrupted by two passages through a French pressure cell at 16000 lbf in−2 (110 MPa). Streptococcal cells (at about 2 mg dry weight ml−1) were disrupted in early experiments by addition of 10 mg lysozyme ml−1, two cycles of freezing (dry ice/acetone bath) and thawing, and two passages through the French pressure cell. In later experiments, mutanolysin (Sigma) was used to lyse the streptococci. Lysostaphin (Sigma) was used to lyse Staphylococcus aureus cells (Weiss et al., 1977).

Crude cell lysates of each organism were cleared by centrifugation (12000 r.p.m. for 2 to 5 min) in an Eppendorf centrifuge. The cell-free supernatant fluids, which contained almost all of the enzyme activity, were used as crude cell extracts.

Hg2+ reductase activity. This was measured as the disappearance of radioactive 203Hg from an assay mixture containing 50 mM-sodium phosphate buffer (pH 7.4), 0.2 mM-EDTA, 1 mM-β-mercaptoethanol and reduced pyridine nucleotide as described by Schottel (1978) and specified in the text. The 200 μl assay mixtures contained 25 μl enzyme sample (generally about 15 μg total protein) plus usually 5 to 10 μM 203Hg2+ (1.2 × 105 to 4 × 105 c.p.m. ml−1). Samples of 25 μl were removed periodically during incubation at 37 °C with rapid (200 r.p.m.) shaking. The reactions were stopped by pipetting the samples directly into a water-miscible scintillation counting fluid, and the remaining radioactivity was counted by liquid scintillation spectroscopy.

RESULTS

Streptomyces strains

Streptomyces espinosus strain 5 and Streptomyces lividans strain 8 showed mercury resistance (S.-T. Chung, personal communication). Disrupted frozen mycelia of these strains grown in the presence of 50 μM-Hg2+ demonstrated Hg2+ reductase activity whereas cells grown in the absence of Hg2+ did not have such activity.
Streptomyces and Streptococcus Hg\(^{2+}\) reductase

Streptomyces lividans strain 1326 was found to be resistant to Hg\(^{2+}\) by a disc assay with 5 to 200 nmol HgC\(_2\)I per disc. M252, a spontaneous chloramphenicol-sensitive mutant of strain 1326, was sensitive to Hg\(^{2+}\) (Fig. 1a). Strain 1326 showed Hg\(^{2+}\) reductase activity when grown on Hg\(^{2+}\)-containing medium; when it was grown without HgC\(_2\)I, about 15% of the activity seen with the mercury-grown cells was detected (Fig. 1b). These results indicated a low level of constitutive enzyme synthesis in strain 1326. Strain M252 did not show Hg\(^{2+}\) reductase activity whether grown with or without HgC\(_2\)I (Fig. 1b).

Streptomyces coelicolor strain M130 was as resistant to HgC\(_2\)I as strain 1326 (Fig. 1a). **Streptomyces coelicolor** strain M110 was as sensitive to HgC\(_2\)I as strain M252, and **Streptomyces coelicolor** strain M124 had a super-sensitive phenotype, giving inhibition zones of more than 30 mm with the lowest amount of HgC\(_2\)I tested (5 nmol). Strain M130 showed Hg\(^{2+}\) reductase activity which was similar whether the cells were grown in the presence or absence of mercury, suggesting constitutive synthesis of Hg\(^{2+}\) reductase. Neither strain M110 nor strain M124 showed mercury volatilization activity under induced or uninduced conditions. The results with both the **Streptomyces lividans** and the **Streptomyces coelicolor** strains supported the previously established correlation between resistance to HgC\(_2\)I and the synthesis of a Hg\(^{2+}\) reductase activity.

The Hg\(^{2+}\) reductase activities of crude cell extracts of the mercury-resistant strains of **Streptomyces** showed a requirement for thiol compounds (mercaptoethanol) and stimulation by EDTA (data not shown). Like the enzyme determined by plasmid R100 in *E. coli*, the enzyme from **Streptomyces lividans** strain 8 showed less than 10% of maximum activity in the absence of added mercaptoethanol and functioned optimally with 0.5 or 1 mM-mercaptoethanol. These results were similar to the requirements of crude enzyme preparations from *E. coli* (Schottel, 1978) and *Thiobacillus ferrooxidans* (Olson et al., 1982). The enzyme from **Streptomyces lividans** strain 8, however, functioned relatively better with NADH (Fig. 2) than did comparable preparations with enzyme determined by plasmid R100 in *E. coli* or by *Pseudomonas* transposon Tn501 (Misra et al., 1984, 1985). A time course of volatilization of mercury with these enzyme preparations and 25 μM-NAD(P)H was reported by Silver & Misra (1984). The crude enzymes from **Streptomyces lividans** strain 1326 and **Streptomyces coelicolor** strain M130 showed approximately similar volatilization rates with 50 μM or higher NADH and NADPH. In the range 10 μM to 25 μM-NAD(P)H, NADPH stimulated Hg\(^{2+}\) reductase activity more effectively than did NADH (data not shown).

Whereas the Hg\(^{2+}\) reductase enzymes from Gram-negative bacteria are generally very heat resistant and can withstand temperatures up to 80 °C, the comparable enzymes from Gram-positive bacteria tend to be about 20 °C less heat resistant (S. Silver & T. G. Kinscherf,
Fig. 2. Dependence on reduced pyridine nucleotide of Hg\(^{2+}\) reductase activity in crude cell extracts of (a) E. coli (with plasmid pDU1003, which contains the R100 system), (b) P. aeruginosa (with transposon Tn501), and (c) Streptomyces lividans strain 8. The assay mixture was prepared as described by Schottel (1978) with 10 \(\mu\)M\(^{203}\)Hg\(^{2+}\) and NADH (\(\bullet\)) or NADPH (\(\bigcirc\)) as indicated. The relative activities were determined from rates of volatilization of \(^{203}\)Hg at 37 °C. The 100% values for R100, Tn501 and Streptomyces lividans strain 8 were 41.4, 39.9 and 2.8 nmol min\(^{-1}\) (mg protein\(^{-1}\)) respectively.

Fig. 3. Heat sensitivity of Hg\(^{2+}\) reductase activities. Crude cell extracts (0.2 ml) were heated for 10 min at the indicated temperature, then chilled to 4 °C, and residual enzyme activity was assayed at 37 °C with 10 \(\mu\)M\(^{203}\)Hg\(^{2+}\) and 200 \(\mu\)M-NADPH. The 100% values were set to those with enzyme incubated at 54 °C. O, E. coli carrying plasmid pDU1003 with the R100 system; \(\bullet\), P. aeruginosa carrying Tn501; \(\triangle\), Streptomyces lividans strain 8; \(\Delta\), Staphylococcus aureus carrying pl258.

unpublished data; Fig. 3). In this regard, the enzymes from Streptomyces lividans strains 8 and 1326 and Streptomyces coelicolor M130 were very similar to that encoded by Staphylococcus aureus plasmid pl258 in strain RN4 (Weiss et al., 1977). Mixing experiments with heat-sensitive and heat-resistant enzyme preparations have shown that the heat sensitivity or resistance is an inherent property of the enzyme and is not affected by other components of the crude enzyme mixture. Antiserum against enzyme encoded by Gram-negative plasmid R831 (Schottel, 1978) completely inactivated the enzyme encoded by plasmid R100, but it was without effect on the Streptomyces lividans strain 8 enzyme.

Group B Streptococcus

When screening clinical Streptococcus isolates, Yamada et al. (1984, and additional data) found 48 (out of a total of 154) isolates of *Streptococcus agalactiae* (group B Streptococcus) that showed resistance to Hg\(^{2+}\) salts; some were additionally resistant to antibiotics and/or cadmium and/or arsenic. The Hg\(^{2+}\)-sensitive strains showed a minimal inhibitory concentration of 37 or 74 \(\mu\)M-HgCl\(_2\) in Todd–Hewitt broth agar, whereas the resistant isolates showed minimum inhibitory concentrations of 184 or 221 \(\mu\)M-HgCl\(_2\). This clear bimodal distribution of *Streptococcus agalactiae* into sensitive and resistant strains was similar to the bimodal distributions found earlier with other species (Nakahara et al., 1977a, b). Strains B-14, B-46, and B-60 (Table 1) were selected from among the Hg\(^{2+}\)-resistant *Streptococcus agalactiae* isolates for further study.
As with other Hg^{2+}-resistant bacteria, the Hg^{2+} reductase system of the "Streptococcus" strains was inducible: strains B-14 and B-60 grown in the presence of Hg^{2+} showed Hg^{2+} reductase activity at the whole-cell level (Fig. 4) and in crude cell extracts (data not shown), whereas cells grown in the absence of Hg^{2+} did not show such activity (Fig. 4). With the crude cell extracts from strains B-46 and B-60, NADPH supported a higher level of enzyme activity than did NADH (Fig. 5). The use of NADH, however, resulted in more activity than seen in analogous experiments with the Hg^{2+} reductase from E. coli (Schottel, 1978; Fig. 2a of this paper). The enzymes from "Streptococcus agalactiae" strains B-46 and B-60 were only slightly more heat resistant than the Staphylococcus aureus enzyme and about 20 °C less heat resistant than the enzyme encoded by plasmid R100 in E. coli (Fig. 6).
DISCUSSION

The Hg\(^{2+}\) resistance system is among the most widespread of plasmid resistance systems both in Gram-negative and in Gram-positive bacteria (see Introduction). It is also one of the most thoroughly understood systems, both in terms of biochemistry (Fox & Walsh, 1982, 1983) and in terms of molecular genetics (NiBhirain et al., 1983; Brown et al., 1982; Misra et al., 1984, 1985). With such background information, it is useful to extend the range of organisms for which this system has been reported. It is also a very useful system of plasmid resistance for species such as Streptomyces and Streptococcus in which people are trying to establish plasmid vectors with useful selective markers.

We have characterized the Hg\(^{2+}\) resistance systems in strains of Streptococcus agalactiae, Streptomyces lividans and Streptomyces coelicolor. Although the organisms used in this work are very different, the enzyme activities identified have characteristics similar to those previously associated with the Hg\(^{2+}\) reductase enzyme from other Gram-positive bacteria (Weiss et al., 1977, 1978; Izaki, 1981; Silver & Kinscherf, 1982). Plasmids have been identified in Streptomyces lividans strain 8 (S.-T. Chung, personal communication), and strain 1326 (Hopwood et al., 1983), and in Streptomyces coelicolor strain M110 (Bibb & Hopwood, 1981). There is no evidence, however, that these Streptomyces plasmids contain the Hg\(^{2+}\) resistance genes. Plasmids have not been identified as yet in the Streptococcus agalactiae strains. By comparison with earlier studies, the Hg\(^{2+}\) resistance systems of the strains we studied are likely to be governed by genes on plasmids or in transposon sequences, but as yet we know nothing about their location.

This research was supported by National Institutes of Health grant AI15672. Richard Durtsche and Jeffry Michaels helped with experiments in St Paul.

REFERENCES

resistance to inorganic salts in *Staphylococcus aureus*.

