The Fumarase Genes of Escherichia coli: Location of the fumB Gene and Discovery of a New Gene (fumC)

By JOHN R. GUEST,* JOHN S. MILES, RUTH E. ROBERTS and SALLY A. WOODS
Department of Microbiology, Sheffield University, Sheffield S10 2TN, UK

(Received 16 May 1985)

The fumB gene of Escherichia coli, which complements the fumarase deficiency of a fumA mutant when present in multiple copies, has been located at 93.5 min in the E. coli linkage map and its product has been identified as a polypeptide of 61 kDal. Four overlapping ColEl-fumB+ plasmids representing a continuous segment of 23-3 kb of bacterial DNA have been isolated from the Clarke-Carbon E. coli gene bank and the location of the fumB gene relative to the restriction map and the adjacent mel operon has been defined. Hybridization studies have shown that the fumB gene is homologous to the fumA gene, which complements the fumAl mutation in single and multi-copy situations, and encodes an analogous 61 kDal product formerly regarded as the E. coli fumarase. The hybridization studies also showed that the Bacillus subtilis fumarase gene (citG) is homologous to an independent gene, fumC (formerly g48), which lies adjacent to the fumA gene at 35.5 min in the E. coli linkage map. The N-terminal sequences of the citG and firmC products exhibit a 51% identity over 88 residues. It is possible that the firmC and citG genes are fumarase structural genes of E. coli and B. subtilis, and that the fumA gene may encode a differentially-regulated fumarase or be a positive regulator gene which is essential for the expression of fumC (but not citG). If so, the fumB gene may encode a related enzyme or activator that can replace the fumA function when amplified.

INTRODUCTION

Fumarate hydratase or fumarase (EC 4.2.1.2) catalyses the interconversion of fumarate and L-malate. In facultative organisms such as Escherichia coli it functions in the citric acid cycle during aerobic respiratory metabolism, and during anaerobic glucose fermentation it participates in the reductive conversion of oxaloacetate to succinate. Consistent with this dual role, the synthesis of fumarase is only 40–60% repressed by anaerobiosis, and by glucose during aerobic growth (Gray et al., 1966). Studies with a mutant lacking fumarase have shown that the enzyme is essential for aerobic growth on fumarate and acetate, whereas growth on malate, glucose or complex media is only impaired by the deficiency (Guest & Roberts, 1983). The fumarase mutation (fumAl) does not prevent anaerobic growth on glucose minimal medium. However, this is not surprising since an anaerobic requirement for succinate (succinyl-CoA) is only imposed when isocitrate lyase and fumarate reductase are both blocked (Creaghan & Guest, 1978). It would also appear that alternate pathways exist for the conversion of oxaloacetate to fumarate under anaerobic conditions. These involve either aspartate or malate as intermediates, and it may be significant that the enzymes of the former route, aspartate aminotransferase and aspartase, are induced anaerobically (Smith & Neidhardt, 1983; Courtright & Henning, 1970), whereas malate dehydrogenase and fumarase are repressed (Courtright & Henning, 1970; Gray et al., 1966). It is also interesting that the fumAl mutation does not prevent anaerobic growth on glycerol plus H2 with malate as the source of the terminal oxidant (fumarate), which suggests that an alternative route from malate to fumarate may be operating.
Two fumarase genes, \textit{fumA} and \textit{fumB}, have been isolated in recombinant \(\lambda\) phages by virtue of their ability to complement the fumarase deficiency of the \textit{fumA1} mutant of \textit{E. coli}. The \textit{fumA} gene encodes a 61 kDal polypeptide which is expressed from a 6-2 kb \textit{HindIII} fragment that also contains the 6-phosphomannose isomerase gene (\textit{manA}) and a gene (\textit{g48}) specifying an unidentified 48 kDal product (Fig. 1). These genes are located at 35-5 min in the \textit{E. coli} linkage map and the nucleotide sequences of the \textit{fumA} and \textit{manA} genes and part of the unidentified gene (\textit{g48}) have been defined (Miles & Guest, 1984a, b). The \textit{fumB} gene is expressed from an 8-2 kb \textit{HindIII} fragment (Fig. 1), which encodes polypeptides of 61, 56, 43, 33 and possibly 52 kDal, and it differs from \textit{fumA} in being unable to complement the \textit{fumA1} mutant except in high-copy situations such as transduction plaques or transformants with multi-copy plasmids. The \textit{fumA1} mutant is also complemented by the \textit{Bacillus subtilis} fumarase gene (\textit{citG}) which has also been cloned and sequenced (Moir \textit{et al.}, 1984; Miles & Guest, 1985). The \textit{citG} gene encodes a 50 kDal polypeptide which has no homology with the \textit{fumA} gene product.

The existence of two \textit{fum} genes raises questions concerning their products and about the nature of the \textit{fumA1} mutation. If it is assumed that \textit{fumA} is the structural gene for the major fumarase then \textit{fumB} could encode a minor or differentially-regulated fumarase. It could, for example, specify a fumarase that is only synthesized under anaerobic conditions or in high-copy situations where an aerobic repressor may be titrated by the \textit{fumB} operators. It could also represent a vestigial or silent fumarase gene that is only expressed when coupled to a phage or plasmid promoter. The putative minor fumarase could resemble the unrelated \textit{B. subtilis} fumarase (\textit{citG} product). On the other hand, if there is only one fumarase in \textit{E. coli}, the \textit{fumB} gene could encode some other hydratase having a very weak fumarase activity (but sufficient to complement the \textit{fumA} lesion when amplified), or it could be a suppressor. The latter could have a direct effect on the \textit{fumA1} mutation, or function indirectly by opening up an alternative metabolic route to bypass the need for fumarase.

This paper describes the properties of some ColEl-\textit{fumB}+ plasmids isolated from the Clarke–Carbon plasmid gene bank (Clarke & Carbon, 1976) and the location of the \textit{fumB} gene in the 93rd min of the \textit{E. coli} linkage map. Evidence is presented that the \textit{fumA} and \textit{fumB} genes encode homologous products \((M, = 61000)\) which could either be fumarases, or regulatory proteins that activate the expression of a fumarase structural gene. Evidence is also presented for the existence of a new fumarase gene (\textit{fumC}, formerly designated \textit{g48}) that is adjacent to \textit{fumA} and encodes a protein that is analogous to the \textit{citG}-encoded fumarase of \textit{B. subtilis}.
Table 1. Strains of Escherichia coli K12

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype or phenotype</th>
<th>Source* or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NK-1</td>
<td>F-; spoT1</td>
<td>E. Juni</td>
</tr>
<tr>
<td>EJ1535</td>
<td>fumA</td>
<td>E. Juni; mutant of NK-1</td>
</tr>
<tr>
<td>JRG1331</td>
<td>fumA gyrA</td>
<td>NaI derivative of EJ1535</td>
</tr>
<tr>
<td>JRG1555</td>
<td>fumA gyrA recA srl::Tn10</td>
<td>Tet<sup>a</sup> Rec<sup>-</sup> transductant of JRG1331</td>
</tr>
<tr>
<td>ED8641</td>
<td>Met<sup>-</sup> Trp<sup>-</sup> Aux<sup>-</sup> supES(hsdR) recA56</td>
<td>N. E. Murray</td>
</tr>
<tr>
<td>GM242</td>
<td>dam-3 recA1</td>
<td>M. Marinus</td>
</tr>
<tr>
<td>AB2480</td>
<td>wrrA6 recA13</td>
<td>P. J. Emmerson</td>
</tr>
<tr>
<td>C600</td>
<td>2<sup>8</sup></td>
<td>N. E. Murray</td>
</tr>
<tr>
<td>PL2024</td>
<td>rpsL<sup>8</sup></td>
<td>Lambden & Guest (1976)</td>
</tr>
<tr>
<td>F500/GMS724</td>
<td>F500; rpsL700 2<sup>8</sup></td>
<td>CGSC 5505</td>
</tr>
<tr>
<td>H</td>
<td>Hfr (97 min); thi-1</td>
<td>W. Hayes</td>
</tr>
<tr>
<td>KL14</td>
<td>Hfr (67 min); thi-1</td>
<td>CGSC 4294</td>
</tr>
<tr>
<td>KL16</td>
<td>Hfr (62 min); thi-1</td>
<td>CGSC 4245</td>
</tr>
<tr>
<td>CH931</td>
<td>Hfr (97 min); lysA polA1</td>
<td>C. W. Hill; Greener & Hill (1980)</td>
</tr>
<tr>
<td>BW360</td>
<td>polA1 zig-219::Tn10</td>
<td>W. Wickner; Silver & Wickner (1983)</td>
</tr>
<tr>
<td>JRG1595</td>
<td>Hfr (67 min); thi-1 polA1 zig-219::Tn10</td>
<td>Tet<sup>a</sup> PolA<sup>-</sup> transductant of KL14</td>
</tr>
<tr>
<td>X478G3</td>
<td>F<sup>+</sup>; leu-6 proC purE Trp<sup>-</sup> thi-1</td>
<td>Herbert & Guest (1968)</td>
</tr>
<tr>
<td>AB2294</td>
<td>F<sup>+</sup>; proA2 trp-3 his-4 ileD145 metE46 thi-1 malA rpsL8 or 9 2<sup>8</sup></td>
<td>CGSC 2294</td>
</tr>
<tr>
<td>JCI552</td>
<td>F<sup>+</sup>; leuB6 trp-31 hisG1 argG6 metB1 malA rpsL104 2<sup>8</sup></td>
<td>CGSC 4273</td>
</tr>
<tr>
<td>AB2495</td>
<td>F<sup>+</sup>; thr-1 leuB6 proA2 trp-35 hisG4 thyA20 argE3 thi-1 rpsL31</td>
<td>CGSC 2495</td>
</tr>
<tr>
<td>RM1003</td>
<td>purA</td>
<td>Spencer & Guest (1973)</td>
</tr>
<tr>
<td>PA2004</td>
<td>pyR leu-6 his-1</td>
<td>Spencer & Guest (1973)</td>
</tr>
<tr>
<td>Q11</td>
<td>Fdp<sup>-</sup></td>
<td>Spencer & Guest (1973)</td>
</tr>
<tr>
<td>JRG780</td>
<td>frdA11 trpA</td>
<td>Cole & Guest (1980)</td>
</tr>
<tr>
<td>JRG820</td>
<td>mel-1 gtc8 (P1)</td>
<td>Formerly Ymel/G; Spencer et al. (1976)</td>
</tr>
<tr>
<td>M2508</td>
<td>melA7 metB1</td>
<td>CGSC 4926</td>
</tr>
<tr>
<td>M1900</td>
<td>melB4 metB1</td>
<td>CGSC 5934</td>
</tr>
<tr>
<td>JA200</td>
<td>F<sup>+</sup>; thr-1 leuB6 trpES thi-1 recA56</td>
<td>B. J. Bachmann</td>
</tr>
</tbody>
</table>

* E. Juni, Department of Microbiology, University of Michigan, Mich., USA; N. E. Murray, Department of Molecular Biology, University of Edinburgh, UK; M. Marinus, Department of Pharmacology, Rutgers Medical School, NJ, USA; P. J. Emmerson, Department of Biochemistry, University of Newcastle, UK; CGSC (E. coli Genetic Stock Center; B. J. Bachmann, Curator) Yale University, New Haven, Conn., USA; W. Hayes, Department of Botany, Australian National University, Canberra, Australia; C. W. Hill, Department of Biological Chemistry and Cancer Research Center, Pennsylvania State University, Hershey, Pa., USA; W. Wickner, Molecular Biology Institute and Department of Biological Chemistry, University of California, Los Angeles, Calif., USA.

METHODS

Bacterial strains. The strains of E. coli used are listed in Table 1. The routine transformation host was ED8641, but GM242 was used when B_{cl}-susceptible DNA was required. Strain C600 was used for assaying λ phages except following zygotic induction when Str^a (PL2024) or Str^a F-prime (F500) strains were used. Phages Plkc and Plvir were assayed with Shigella dysenteriae. The map positions of the markers used in the linkage studies and the points of origin for the Hfr strains are indicated in Fig. 5. The polA derivative of KL14, JRG1595, was prepared by contransducing the polA1 mutation with a closely-linked Tn10 insertion using a Plvir lysate of BW360. Tet^a transductants were screened for: sensitivity to methyl methanesulphonate (PolA⁻), using L agar containing methyl methanesulphonate (0.08%, v/v); retention of Hfr activity, by cross-streak conjugation with JC1552; and Pl⁻ sensitivity.

Phages and plasmids. Several λ transducing phages containing the fum^a and fum^b regions of E. coli were used: λG135 (AfumA) and λG139-140 (AfumB), ΔsrI1-2 shn13::fum^a att⁺ int⁺ imm²¹ nin5 shn16⁺; and λG137 (AfumA) and λG141 (AfumB), ΔsrI1-2 shn13::fum^a (att-red) imm²¹ nin5 shn16⁺ (Guest & Roberts, 1983). A phage containing the cit^G region of B. subtilis was also used: λG142 (AcitG), ΔsrI1-3::citG cI577 srI19^a (Moir et al., 1984). Other phages, λ22c imm²¹ and λvir, were used in lysogen selection and for testing immunity and sensitivity.

Plasmid pG5S6 is a derivative of pBR322 that contains the fum^b region (8·2 kb HindIII fragment) and retains the Amp⁺ and Tet⁺ markers (Guest & Roberts, 1983). A culture containing samples of all the clones in the ColE1–E. coli plasmid gene bank of Clarke & Carbon (1976) was kindly provided by Dr S. T. Cole (Pasteur Institute, Paris).
PARIS, FRANCE), and strains containing specific plasmids (pLC4-5, pLC17-38 and pLC25-33) were obtained from Dr B. J. Bachmann (Yale University, New Haven, Conn., USA). The host strain for the CoIE1-hybrid plasmids was JA200.

Media. The rich medium for subculturing was L broth, or LG broth for citric acid cycle mutants, and BBL medium was used for z phage assays (Guest, 1981). Media were solidified with Difco Bacto agar at 10 or 15 g l^-1 for plates or 5 g l^-1 for top layers. Minimal medium E (Vogel & Bonner, 1956) was used with carbon sources, glucose (11 mM), melibiose (5 mM), maltose (5 mM), glycerol (40 mM), potassium fumarate (40 mM), and other supplements, L-amino acids (30 pg ml^-1), adenine (35 pg ml^-1), uracil (35 pg ml^-1), thymine (50 pg ml^-1), vitamin B_12 (5 pg ml^-1), as required for different nutritional tests and genetic selections. The antibiotic supplements were (μg ml^-1): ampicillin (50-100); tetracycline (15); streptomycin (200) and nalidixic acid (10). The glycerol plus fumarate minimal medium (GF) was used for F^+ selection using an atmosphere of H_2 + CO_2 (5%, v/v) according to Lambden & Guest (1976).

Genetic methods. (a) Transformation with plasmid DNA was done by the method of Lederberg & Cohen (1974) except that the first wash with CaCl_2 was omitted.

(b) Transduction with phage PI was done by the method of Spencer et al. (1976) using an m.o.i. of 2. For strain construction the m.o.i. was reduced to 0-01 and EGTA (2:5 mM) was added, before plating, to chelate Ca^2+ ions and so limit superinfection with free phage particles.

(c) Conjugation. F^-mediated CoIE1 transfer from a culture containing representatives of all the clones in the Clarke-Carbon gene bank to JRG1331 (F^-; fumA1 gyrA) was done by mixing equal volumes (0-5 ml) of exponential cultures in a total of 2.5 ml L broth for 4 h at 37° C. Fum^+ Nal^R exconjugants were selected on fumarate minimal medium plus nalidixic acid (10 μg ml^-1), and then purified by single colony isolation on the same medium before examination for the presence of CoIE1 hybrid plasmids. Interrupted mating experiments for analysing zygotic induction and for time of entry mapping were done according to Jacob & Wollman (1956). Mating mixtures were sampled at 10 min intervals for up to 100 min, separated by vortex mixing for 1 min in L broth plus streptomycin, and dilutions were plated on appropriate media (with or without an indicator organism) to assay phage-generating merozygotes and different recombinant classes. Conjugational linkage analysis was done by the method of Herbert & Guest (1968). Donor and recipient cultures were mated for 100 to 120 min, vortexed for 1 min, and dilutions were plated immediately on a variety of selective media to assess the gradients of marker transmission, except in the case of Amp^R, where the mixtures were diluted 5-fold and incubated for 1 h at 37° C before plating. Recombinants were purified on the selective medium before testing for inheritance of non-selective markers by replica-plating. Cross-streak tests for donor activity were done on solid media according to Lambden & Guest (1976).

Isolation and manipulation of DNA. The methods for isolating phage and plasmid DNA have been described previously, as have the methods for restriction enzyme digestion, agarose gel electrophoresis and DNA ligation (Guest et al., 1983; Moir et al., 1984). Small scale plasmid preparations were used for routine screening and transformation (Birnboim & Doly, 1979). Fragments of DNA were isolated either by electrophoresis in low melting point agarose (BRL) and phenol extraction according to the manufacturer's instructions, or with DEAE-cellulose paper (Dretzen et al., 1981) for standard agarose.

'Maxicell' procedures. Polypeptides expressed by plasmid-encoded genes were labelled with L-[35S]methionine by the 'maxicell' technique of Sancar et al. (1979) by using AB2480 derivatives as detailed by Shaw & Guest (1982).

DNA labelling and hybridization methods. Single-stranded M13 DNA containing segments of bacterial DNA was isolated by the method of Sanger et al. (1980) and labelled with [α-32P]dATP to 10^8 c.p.m. per μg of DNA by synthesizing a complementary M13 strand with a hybridization probe primer according to Hu & Messing (1982). Restriction fragments from λfum and λcI DNA (0.2 μg) were separated in agarose gels and transferred overnight to nitrocellulose filters (Southern, 1975), or total genomic DNA samples (4 μg) were applied as spots directly to the filters. The filters were baked at 80° C for 2 h in vacuo, and then treated according to the prehybridization and hybridization procedures of Maniatis et al. (1982). Hybridization was done with 10^7 to 10^8 c.p.m. of $32P$-labelled probe per filter in 10 ml of a 6 x SSC hybridization solution (1 x SSC is 0.15 M-NaCl, 0.15 M-trisodium citrate, pH 7.0) at 65° C for 18 h. The filters were subsequently washed with 4 x SSC (low stringency) and 0.1 x SSC (high stringency) solutions at the same temperature, and then autoradiographed with a fluorescent screen.

Materials. Restriction enzymes, T4 DNA ligase, DNA polymerase (Klenow fragment) and hybridization probe primer were purchased from BRL, New England Biolabs, Boehringer and Gibco-PL. The radiochemicals, L-[35S]methionine (0.8 Ci mol^-1; 30 GBq mol^-1) and 2'-deoxyadenosine 5'-[α-32P]triphosphate (3 Ci mol^-1; 110 GBq mol^-1) were from Amersham.

RESULTS

Isolation of CoIE1-fum^+ plasmids

A culture containing representatives of all the clones in the Clarke-Carbon *E. coli* gene bank was screened by F^-mediated conjugation for complementation of the fumarase lesion of strain...
Identification of the \textit{fumB} gene product

In previous studies with two \(\lambda\text{fumB}\) phages (\(\lambda\text{G139}\) and \(\lambda\text{G140}\)) and with pGS56, evidence was obtained that the 8-2 kb \(\text{HindIII}\) fragment directed the synthesis of polypeptides of 61, 56, 43, 33 and possibly 52 kDa (Guest \& Roberts, 1983). The polarities of expression of the 61 and 43 kDa products were defined as leftward relative to the restriction map shown in Fig. 2. A restriction map of the \(\text{fumB}\) region of pGS56 is illustrated in Fig. 3. No sites were detected for \(\text{ClaI}\), \(\text{KpnI}\), \(\text{SalI}\), \(\text{SmaI}\), \(\text{SstI}\) or \(\text{XhoI}\). In order to define the precise location of the \(\text{fumB}\) gene and to identify its product, a series of \(\text{pBR322}\) derivatives containing sub-segments of the \(\text{fumB}\) region were constructed (Fig. 3). Plasmids pGS93, pGS100 and pGS142 are deletion derivatives of pGS56, obtained by re-ligating the products of \(\text{BamHI}\), \(\text{EcoRI}\) and \(\text{SphI}\) digestion, respectively. Plasmid pGS143 is likewise a \(\text{BclI}−\text{BamHI}\) deletion derivative of pGS93. Plasmids pGS144 and pGS145 were obtained by re-cloning the 2-4 kb \(\text{SphI}−\text{BglII}\) (pGS56) and 1-85 kb \(\text{EcoRI}−\text{PstI}\) (pGS93) fragments into pBR322. In each case the reconstructed plasmids were recovered as \(\text{Amp}^R\) \(\text{Tet}^S\) or \(\text{Tet}^R\) \(\text{Amp}^S\) transformants of ED8641 and their structures were confirmed by restriction analysis. Their ability to complement the \(\text{fumA1}\) lesion was then tested non-selectively by first isolating \(\text{Amp}^R\) transformants of JRG1331 (\(\text{fumA1 gyrA}\)). Fum\(^+\) exconjugants were selected on fumarate minimal medium containing nalidixic acid (10 \(\mu\)g ml\(^{-1}\)) to counterselect the donors. The plasmid contents of ten independent Fum\(^+\) colonies were examined and four different types of ColEl-fum\(^+\) plasmids were detected: pGS77 (23.2 kb), pGS78 (23.0 kb), pGS79 (17.3 kb), and pGS80 (20.8 kb). Restriction analysis (Fig. 2) with combinations of five restriction endonucleases revealed the presence of four overlapping inserts, which also overlap the 8-2 kb \(\text{HindIII}\) fragment that had been isolated previously in several \(\lambda\text{fumB}\) transducing phages and was later subcloned in the pBR322-fum\(^B\) plasmid, pGS56 (Guest \& Roberts, 1983). The corresponding segments of bacterial DNA (10-7 to 16-6 kb) were clearly derived from a 23-3 kb region of the bacterial chromosome containing the \(\text{fumB}\) gene, and the results indicated that \(\text{fumB}\) is expressed from a common 3.4 kb region (Fig. 2). It is not clear why no ColEl-fum\(^A\) plasmids were recovered, but an exhaustive search was not made.
Fig. 3. Physical maps of derivatives of plasmid pBR322 containing different segments of the 8.2 kb fumB region. The phenotypic characteristics conferred by the plasmids are abbreviated: F+, Fum+; M+, Mel+; A8, Amp8; T8, Tet8. The bacterial DNA is denoted by open bars, the vector by thick lines, and sufficient vector restriction sites are indicated to define its relative orientation. The locations and polarities of specific genes are indicated. A scale (1 division = 1 kb) is included in the map and the restriction sites are abbreviated as follows: A, AciI; B, BamHI; Bc, BclI; Bg, BglII; H, HindIII; Hp, HpaI; P, PsI; Pvu, PvuI; R, EcoRI; Sp, SphI.

It is interesting that the smaller plasmids induce a more vigorous Fum+ phenotype in the fumAI host. This presumably reflects the copy-dependent complementation of fumAI by fumB+ and the inverse relationship between plasmid size and copy number. The smaller plasmids also improve the rate and extent of growth on the permissive substrate, malate, for unknown reasons.

Using the maxicell procedure to detect the polypeptides expressed by different plasmids, it was clear that one component (61 kDal) is specifically associated with the fumB gene (Fig. 4). This is the left orientated product that has the same mobility as the 1647 bp-encoded fumA gene product (Guest & Roberts, 1983; Miles & Guest, 1984a). The 56 kDal product appeared to be encoded to the left of the fumB gene, and no other products or meaningful deletion or fusion products were detected in these experiments.

Chromosomal location of the fumB gene

Because there are no fumB mutants, and because such mutants are unlikely to have a Fum− phenotype (or any other easily predicted phenotype), the conventional methods of gene mapping were excluded. However, this difficulty was circumvented by strategies that rely on DNA homology to direct the insertion of the cloned fumB gene into the fumB region of the chromosome along with recognizable markers provided by the phage or plasmid vectors.

Mapping by zygotic induction. Zygotic induction occurs when an integrated prophage of a donor strain is transferred to the repressor-free cytoplasm of a non-immune recipient, and the approximate position of a prophage can be estimated from the onset of phage production in interrupted mating experiments (Jacob & Wollman, 1956). Using an integration-deficient λfumB transducing phage [λG141; λfumB Δ(att-red) imn21], lysogenic derivatives of three different Hfr strains (Fig. 5) were constructed by rec-mediated integration in the fumB region of the host chromosome. Interrupted matings between KL14(AG141) and AB2294(F− λ−) gave a time of prophage entry corresponding to 90–99 min on the linkage map, just clockwise of metE (86 min) but anticlockwise of proA (6 min). Other matings involving H(λG141) and KL16(λG141) showed no sign of prophage transfer within the first 60 min, whereas a λG140
prophage (λfumB, att+ int+ red+) entered at a time corresponding to the primary λ attachment site (attλ; 17 min) in a control experiment with H(λG140) as the lysogenic donor.

Mapping by conjugational linkage analysis. The replication of a ColE1-derived plasmid requires DNA polymerase I to be active in the transformed cells (Kingsbury & Helinski, 1970). Consequently a plasmid such as pGS56 (fumB+ AmpR) will only persist in a polA mutant if it is integrated into the chromosome. As a result an AmpR marker is delivered to a region of mutual homology, and can be used to locate genes that have been cloned but do not have a readily identifiable phenotype (Greener & Hill, 1980; Silver & Wickner, 1983). Two Hfr polA strains, CH931 (related to H) and JRG1595 (from KL14), were transformed with pGS56 and AmpR transformants were recovered, albeit at low frequencies (~200 per µg of plasmid DNA). These were tested for retention of the polA mutation, Hfr activity, and ampicillin-resistances consistent with single rather than multiple copies of the plasmid (<100 µg ml⁻¹ not >2 mg ml⁻¹, respectively). One derivative of each type (CH931::pGS56 and JRG1595::pGS56) was then used for conjugation with several multiply-marked recipients: X478G3, AB2294 and JC1552.

Fig. 4. Autoradiogram of 35S-labelled polypeptides expressed from cloned genes. Plasmid-containing cultures were labelled for 2 h by the maxicell procedure. The molecular masses (kDal) of the polypeptides were deduced by reference to a set of standards.
Fig. 5. Genetic map of *E. coli* K12 showing the locations of relevant markers and the points of origins of the Hfr strains.

Table 2. Transductional mapping of the integrated *fumB* plasmid (pGS56)

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Selection</th>
<th>Transductants per 10^6 P1kc</th>
<th>Number tested</th>
<th>Amp^R (fumB)</th>
<th>Cotransduction frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JC1552</td>
<td>MetB^+</td>
<td>5</td>
<td>100</td>
<td>0</td>
<td><1</td>
</tr>
<tr>
<td>AB2495</td>
<td>ArgE^+</td>
<td>7</td>
<td>100</td>
<td>0</td>
<td><1</td>
</tr>
<tr>
<td>JRG820</td>
<td>Mel^+</td>
<td>90</td>
<td>200</td>
<td>196</td>
<td>98</td>
</tr>
<tr>
<td>JRG780</td>
<td>FrdA^+</td>
<td>60</td>
<td>200</td>
<td>96</td>
<td>48</td>
</tr>
<tr>
<td>RM1003</td>
<td>PurA^+</td>
<td>39</td>
<td>280</td>
<td>101</td>
<td>36</td>
</tr>
<tr>
<td>Q11</td>
<td>Fdp^+</td>
<td>8</td>
<td>400</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>PA2004</td>
<td>PyrB^+</td>
<td>14</td>
<td>300</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

The relative positions of the points of origin of the donor strains and the selective markers are shown in Fig. 5. In each case streptomycin-resistant exconjugants were selected after 100 or 120 min matings and the predictable gradients of marker transmission were obtained for nearly all the selected markers.

With the CH931 derivative the gradient was *proC*^+^ > *trp*^+^ > *his*^+^ > *metE*^+^, *ilvD*^+^, *leu*^+^ and Amp^R (fumB), the transfer of *leu*^+^ being unusually low for what should have been the earliest marker (Fig. 5). The coinheritance frequencies for non-selective donor markers amongst the Amp^R (fumB) Str^R exconjugants were: *leu* (40%); *metE* (28%); *ilvD* (25%); *malA* (9.2%); *his*, *trp* and *proC* (<1%). These results indicate that *fumB* is closest to the *leu* marker, but the relatively high linkages with the late markers (*metE* and *ilvD*) suggest that it lies anticlockwise of *leu* and therefore close to the sex plasmid integration site. In this position the *fumB* plasmid could interfere with the transfer and integration of the early marker (*leu*), and if it is really a late marker the cotransfer with *leu* may be abnormally high due to F-prime activity in the donor culture.

With the KL14 derivative the gradient of marker transfer was *argG*^+^ > *malA*^+^ > *metB*^+^ > *leuB*^+^ and Amp^R (fumB), and the coinheritance frequencies of non-selective markers amongst the Amp^R (fumB) Str^R exconjugants were: *metB* (78%), *leuB* (48%), *malA* (11%) and *argG* (4%). These results indicate that *fumB* is closer to *metB* (89 min) than to *leuB* (2 min), and a detailed analysis of non-selective marker distribution in the *Leu*^+^ Str^R* exconjugants confirmed that the *fumB* gene (Amp^R) is located between these two markers. Furthermore, since *fumB* is not an early marker with HfrH derivatives, it probably lies between 89 and 97 min.

Transduction studies. The location of the *fumB* gene was further investigated by transduction tests in which a P1kc lysate of CH931::pGS56 was used with a variety of recipient strains containing selectable markers in the *metB* to *pyrB* (89–97 min) region (Table 2). The results show
that the *fumB* gene is extremely close to the *mel* operon at 93·4 min, and probably clockwise to *mel* because the *fumB–frdA* (48%) and *fumB–purA* (36%) linkages are somewhat larger than the corresponding *mel–frdA* (24%) and *mel–purA* (48%) linkages (Spencer et al., 1976). The relationship between *fumB* and other markers in the 93–94 min region, *proP* (*levV*) *melA,B* (*bomA*) *pheR* *lysU* *cadA* *dkgR* *aspA* *mopA,B* *ampC* (Backmann, 1983; VanBogelen et al., 1983) was not investigated but it is likely that it is at least as close to *mel* as *cadA*.

Relationships between *fumB* and neighbouring genes

The very close proximity of the *mel* and *fumB* loci focused attention on the *mel* region, and it was found that two of the ColEl–*fumB*+ plasmids (pGS77 and pGS78; Fig. 2) and two of the seven pBR322 derivatives (pGS56 and pGS100; Fig. 3) complemented the *mel* lesions of three mutants: M2508 (*melA*), M1900 (*melB*) and JRG820 (*mel-l*). This locates the *mel* genes in the 4·6 kb *HindIII–EcoRI* segment on the left of the restriction maps in Fig. 2 and 3.

It was also realized that ColE1 plasmids from the Clarke-Carbon gene bank containing the *mel, lysU* and *cad* genes had been identified (Tsuchiya et al., 1982; Hanatani et al., 1984; VanBogelen et al., 1983; Neidhardt et al., 1983). Furthermore, the nucleotide sequences of the *mel* promoter, part of the proximal *melA* (*α*-galactosidase) gene, and the complete *melB* (melibiose carrier) gene have now been defined (Shimamoto et al., 1984; Yazyu et al., 1984). The relevant ColEl–*melA*+*B*+ (pLC17–38 and pLC25–33) and ColEl–*cadA*+*lysU*+ (pLC4–5) plasmids were isolated and each resembled the colEl–*fumB*+ plasmids in complementing the *fumA*+ mutant. Their restriction patterns were identical to three of the previously-defined ColEl plasmids: pGS77, pGS78 and pGS80, respectively (Fig. 2).

The positions of the *melA* and *melB* genes have been defined relative to the restriction map (Fig. 3) and their products have been identified as polypeptides of 50 (melA) and 31 kDal (melB) using the maxicell technique (Hanatani et al., 1984). The estimate for the *melB* product is much lower than the value of 52 kDal derived from the nucleotide sequence, the discrepancy being attributed to the abnormally low mobility of hydrophobic proteins in SDS-polyacrylamide gels (Yazyu et al., 1984). It is very probable that the 56 (or 52) and 33 kDal components detected previously with pGS56 and *fumB* correspond to the *melA* and *melB* products.

The *mel* and *lac* operons each possess promoter-proximal galactosidase genes (*melA, lacZ*), and comparable carrier protein genes (*melB, lacY*) that are flanked by analogous intercistronic elements, so the existence of a distal gene (*melC*) equivalent to lacA is anticipated (Yazyu et al., 1984). This would be located between the *melB* and *fumB* genes where there is sufficient coding capacity for a polypeptide of ≤35 kDal (Fig. 3).

The ColEl–*cadA*+*lysU*+ plasmid (pLC4–5) encodes lysine decarboxylase (~75 kDal), two forms (II and IV) of the inducible lysyl-tRNA synthetase (61 kDal; a component of the *htpR*-controlled high-temperature production regulon), and one or two unidentified polypeptides (~60 and 62 kDal) (VanBogelen et al., 1983; Neidhardt et al., 1983). The *fumB* product may correspond to any of the latter three, although it is unlikely to be *lysU* because only one ColEl–*lysU*+ plasmid has been found in the Clarke-Carbon gene bank, whereas at least four different ColEl–*fumB*+ plasmids have been isolated. However, the structural relationships between the plasmids suggest that pLC17–38 should include at least *cadA* or *lysU* (Fig. 2).

Hybridization studies

The *fumA* and *fumB* genes of *E. coli* and the *citG* gene of *B. subtilis* were examined for homology by DNA–DNA hybridization. Radioactive probes were prepared from M13 clones containing segments of the *fumA* and *citG* regions. The *fumA* probe included almost all of the *fumA* gene in a 1570 nucleotide *BclI* segment of DNA, whereas the specificity of the *citG* probe was conferred by a 2700 nucleotide *SstI* fragment containing all of the *citG* gene and about half of the *gerAI* gene (Fig. 1). In both cases radioactivity was incorporated by synthesizing the complementary strand of the single-stranded M13 vector DNA using a hybridization-probe primer (Hu & Messing, 1982). The results of hybridization at both high and low stringencies with Southern blots of *HindIII* plus *EcoRI* digests of *fumA, fumB* and *citG* DNA are shown in Fig. 6. The *fumA* probe hybridizes to the major *fumA* (3·5 kb) and *fumB* (3·6 kb) fragments, and
Fig. 6. Autoradiograph showing the hybridization of 32P-labelled $fumA$- and $citG$-containing M13 DNA probes (see Fig. 1) to HindIII plus EcoRI fragments of $\lambda fumA$ ($\lambda G135$), $\lambda fumB$ ($\lambda G139$) and $\lambda citG$ ($\lambda G142$) DNA. A diagram of the restriction patterns obtained by agarose gel electrophoresis and the sizes of key fragments is included: ---, λ vector DNA; ----, bacterial DNA.

It detects some larger but minor partial digestion products. It also hybridizes weakly to the 2.7 kb $\lambda fumA$ fragment, but not at all to $\lambda citG$. The $citG$ probe hybridizes to the corresponding fragments of $\lambda citG$, but not to the $fumA$- or $fumB$-containing fragments. However, the $citG$ probe does find homology in the 2.7 kb fragment that is adjacent to the 3.5 kb $fumA$ fragment in $\lambda fumA$ (Fig. 6), and the hybridization persists at high stringency (not shown). These observations strongly indicate that the $fumA$ and $fumB$ genes are homologous to each other but not to the $citG$ gene. They also identify a region adjacent to the $fumA$ gene that is homologous to the $citG$ region but only weakly homologous to $fumA$. The nature of these homologies which could involve $citG$ or $gerAI$, and $g48$ or some other unidentified $E. coli$ gene, will be discussed later.

The same probes were used for hybridization with total DNA extracted from bacteria from several genera: Bacillus, Enterobacter, Escherichia, Proteus, Pseudomonas and Serratia. Positive results were obtained for the $fumA$ probe with all except Bacillus and Proteus, though the Pseudomonas reaction was very weak. In contrast the $citG$ probe gave a positive reaction with all of the test organisms (data not shown).
Fumarase genes of *E. coli*

<table>
<thead>
<tr>
<th>fumC</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MNTVRSEKDSMGAIDVPADKLWGQTORSLSHPRISTEKMTSILI</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>citG</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>MEYRIERDTSMGSEVDPADKWAGQTSORSKENGKIGSEKMPMRVY</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fumC</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QCIALTKRAAKVKVEGLLWSAQSAAIRQASEMVGAGQPF</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>citG</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>KAFAILKSTALANKRLGNLDEKKEAAIAYACDDVQDKYDDNF</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

*Fig. 7. Alignment of the N-terminal sequences of the products of the putative fumarase structural genes of *E. coli* (*fumC = g48*) and *B. subtilis* (*citG*). Identical residues are indicated by asterisks and vertical bars denote conservative substitutions scoring ≥ 0.12 in MDM7 (Schwartz & Dayhoff, 1978).*

DISCUSSION

The *fumB* gene is characterized by its ability to complement the fumarase deficiency conferred by the *fumA1* mutation, but only in multi-copy situations. Many features of the *fumB* gene, including its relationship with the previously-defined *fumA* gene, have now been established as a result of studies with the cloned gene. Genetic mapping with λ*fumB* prophages and integrated *fumB* plasmids has located the *fumB* gene at 93.5 min, very close to the *mel* operon, but distinct from the *fumA* gene at 35.5 min. The identification of a series of ColE1 hybrid plasmids with overlapping inserts spanning the *melAB-fumB-cadA* region has defined the orientation of a 23-3 kb segment of bacterial DNA relative to the linkage map (left to right in Fig. 2 corresponds to clockwise). The *fumB* coding region has been located and shown to resemble the *fumA* gene in expressing a similarly-sized product (61 kDal) with the same anticlockwise polarity. Their mutual homology has been established in hybridization studies and this suggests that they are functionally-related genes which complement the *fumA1* lesion by analogous mechanisms, even though *fumB* appears less efficient. The discovery that the *B. subtilis* fumarase gene (*citG*) is homologous with a *fumA*-linked gene (*fumC*), but not with *fumA* or *fumB*, increases the complexity of the situation and raises further questions concerning the functions (structural or regulatory) of the *fum* (and *citG*) genes.

Relationship between *citG* and *g48* (*fumC*). The detection of good hybridization between the *citG* probe and the restriction fragment adjacent to *fumA* focuses attention on a potential relationship between *citG* and *g48*. The unidentified gene (*g48*) encodes a polypeptide of approximately the same size as the *citG* product. Moreover an open reading frame encoding what is presumed to be the N-terminal segment of the *g48* product was defined during the sequencing of the *fumA* gene (Miles & Guest, 1984a). The N-terminal segments of the *citG* and *g48* products possess a remarkably high degree of homology (Fig. 7). Some 51% of the residues in the *B. subtilis* protein are retained in the *E. coli* sequence, and the homology increases to 73% when conservative substitutions scoring ≥ 0.12 in the MDM15 mutation data matrix (Schwartz & Dayhoff, 1978) are included. The same degree of homology (51% identity) is found at the DNA level, but this is apparently not sufficient (or sufficiently extensive) to promote detectable hybridization between the *citG* probe and the corresponding 3-5 kb fragment of λ*fumA* (Fig. 6). Preliminary sequence analysis indicates that the homology with *citG* continues in the *g48* region of the 2-7 kb fragment, where hybridization is detected. Because the *citG* gene complements fumarase mutants of *B. subtilis* and because it also directs the synthesis of fumarase in *E. coli* it is very probable that *citG* is a fumarase structural gene (Moir et al., 1984). It is also likely that *citG* expression in *E. coli* is unaffected by any regulatory constraints that may operate on *citG* in *B. subtilis*, or on the corresponding gene in *E. coli*. It would therefore appear that the homologous *E. coli* gene (*g48*) is a fumarase structural gene (now designated *fumC*). This means that *E. coli* probably elaborates a fumarase that is approximately the same size as those of the Gram-positive bacterium and mammalian tissue (Kobayashi & Tuboi, 1983).
The nature of the fumA1 mutation and the relationship between fumA and fumB. One explanation for the present results is to propose that the fumA1 mutation inactivates a positive regulator or gene activator (the fumA product) that is essential for the expression of the fumarase structural gene ($g_{48} = \text{fum}C$). The fumA–fumC intergenic region (139 bp) appears to contain a rho-independent terminator for fumA, a potential fumC promoter, and regions of hyphenated dyad symmetry in the promoter and the segment encoding the 5'-end of the putative fumC transcript (Miles & Guest, 1984a). No fumA–fumC readthrough transcript was detected, so it would appear that the genes are expressed independently. It is therefore feasible that the transcription of fumC could be controlled by the fumA product, possibly by a mechanism involving a coactivator, as is observed for several positive regulators (Raibaud & Schwartz, 1984).

According to this view the fumC gene must be tightly controlled because very little fumarase is synthesized by the fumA−fumB+ strain (EJ1535), and attempts to generate a Fum+ phenotype by constructing a pBR322 derivative containing the fumC+ gene but no other selectable marker were unsuccessful (Guest & Roberts, 1983). It also follows from the strong homology between fumA and fumB, that fumB should encode an analogous product which might only activate fumC expression when amplified. Presumably it could have a higher affinity for the regulatory region of some other gene, but would function in place of fumA in the same way that elevated levels of the Trp repressor protein repress the transcription of other amino acid biosynthetic systems (Bogosian & Somerville, 1983). The potential target of fumB regulation is unknown, but it is probably not an adjacent gene like the fumA–fumC system because the mel operon converges on fumB and the putative melC gene is likely to occupy most of the space between melB and fumB. Several regulatory genes are located in the critical segment of the linkage map (e.g. bymA, pheR and dgkR) but it is not known whether any of these are related to fumB (Bachmann, 1983). It is interesting that plasmid pGS54, which contains the 6.2 kb HindIII fumA fragment (Fig. 1), consistently generates four times as much fumarase as the EcoRI deletion-derivative (pGS57) with the smaller 3.5 kb HindIII–EcoRI fumA fragment (Guest & Roberts, 1983). This could mean that the proposed structural and activator genes (fumC and fumA) are both amplified with pGS54, whereas the activator alone is amplified with pGS57, and fumarase production would thus be limited to the amount that could be generated from the single copy of the fumC gene in the chromosome.

Confirmation of the functions proposed for the fum genes is now being sought by several methods including the isolation of specific fumA and fumC mutants, the construction of compatible fumA and fumC plasmids to test for complementation in the trans situation, the isolation of fumC–lac fusions to test the prediction that fumA is needed to activate fumC expression, and the isolation and enzymological characterization of the various gene products. There are other explanations for the observed results. For example the three fum genes could encode distinct structural or organizational components contributing to different fumarase activities. This would probably mean that the fumarase deficient strain (EJ1535) is a double mutant (fumA fumC). Some support for this comes from the weak hybridization between the fumA probe and the fragment containing fumC, which suggests that some homology may be found between fumA and fumC (rather than another gene in that fragment). Although they have not been excluded these and other such possibilities are at present considered plausible but less attractive. If the favoured proposals are substantiated then the fumA gene will be the first example of a regulatory gene controlling the expression of a citric acid cycle enzyme.

We are very grateful for the mutant strains provided by Elliot Juni, Barbara J. Bachmann and many others, to the Medical Research Council for a research studentship (J.S.M.), and for support from the Science and Engineering Research Council.

REFERENCES

HANATANI, M., YAZYU, H., SHIOTA-NIIYA, S., MORI-
DRETZEN, G., BELLARD, M., SASSONE-CORSI, P.

dehydrogenase mutants in Escherichia coli K-12.
Journal of Bacteriology 102, 722–728.

nucleotide sequence of the fumarase gene, fumA, of
Escherichia coli. Nucleic Acids Research 12, 3631–
3642.

mapping and expression of the fumarase gene of
Escherichia coli K12. Journal of General Microbiology
130, 3099–3107.

nucleotide sequence of the fumarase gene (citG) of Bacillus

148, 161–178.

COURTRIGHT, J. B. & ROBERTS, R. E. (1989). Sequence and Structure,
volume 5. (supplement 3), pp. 335–358. Edited by M. O. Dayhoff. Washington,
DC: National Biomedical Research Foundation.

stranded bacteriophage as an aid to rapid DNA
sequencing. Journal of Molecular Biology 243, 161–
178.

colicinogenic factor El. Biochemical and Biophysical Research Communications
41, 1538–1544.

the bacterial plasmid colicinogenic factor El. Bio-
chemical and Biophysical Research Communications
41, 1538–1544.

COURTRIGHT, J. B. & ROBERTS, R. E. (1993). End group analysis of
the bacterial plasmid colicinogenic factor El. Bio-
chemical and Biophysical Research Communications
41, 1538–1544.

COURTRIGHT, J. B. & ROBERTS, R. E. (1994). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (1996). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (1997). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (1999). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2001). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2002). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2004). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2007). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2008). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2009). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2010). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2011). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2012). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2013). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2014). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2016). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2017). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2018). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2019). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2020). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2021). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

COURTRIGHT, J. B. & ROBERTS, R. E. (2022). Amplification and
product identification of the fmr gene of Escherichia coli. Journal of General Microbiology
128, 222–2228.

