Genetic Analysis of H2, the Structural Gene for Phase-2 Flagellin in Salmonella

By S. YAMAGUCHI,† H. FUJITA,† K. SUGATA,† T. TAIRA†
AND T. IINO‡

1Department of Biology, School of Education, Waseda University, Nishiwaseda, Tokyo 160, Japan
2Faculty of Science, Tokyo University, Hongo, Tokyo 113, Japan

(Received 26 July 1983; revised 31 August 1983)

Non-flagellate H2 mutants were isolated from a phase-2 stable strain, SJW806 H1-gt- H2-enxon vh2−, a derivative of Salmonella typhimurium. By transductional crosses a deletion map and a recombination map of the H2 gene were made. There are three regions especially rich in non-flagellate mutational sites. By the use of the deletion map, mutational sites of 21 flagellar shape mutants were also determined. Most of them were located at two regions which coincide with two of the three regions rich in non-flagellate mutational sites.

A gene, vh2, is closely linked to the promoter side of the H2 gene. Three-factor transductional crosses showed that the vh2 gene was on the left of the H2 gene in the present map.

The H2 gene forms part of an operon with the distal gene rh1 which specifies the H1 repressor. Thus, a polarity effect of the H2 mutations on the expression of the rh1 gene was examined by observing whether a wild-type H1 allele introduced into the H2 mutants was expressed or not. Many of the H2 mutations were polar, and most of the strongly polar mutations were located in the left (promoter-proximal) half of the H2 gene, while most of the mutations in the right half of the gene were weakly polar or non-polar.

INTRODUCTION

Most Salmonella species carry two structural genes, H1 and H2, for flagellin, the protein component of flagellar filaments. H1 and H2 were originally defined as the genes determining antigenic specificity of phase-1 and phase-2 flagella, respectively. They determine not only the antigenic specificity of flagella but also the shape of flagellar filaments and the sensitivity of bacteria to flagellotropic phage (Iino, 1977).

The genes H1 and H2 are located far apart from each other on the Salmonella chromosome: H1 at 41 min and H2 at approximately 58 min (Sanderson & Hartman, 1978). They are expressed alternatively by the mechanism known as phase variation (Iino, 1977). The cells expressing H1 or H2 are said to be in phase-1 or phase-2, respectively. The H2 gene forms part of an operon with a gene termed rh1, which specifies a substance repressing the expression of the H1 gene in phase-2 cells (Fujita et al., 1973). Simon and his colleagues (Zieg et al., 1977; Silverman et al., 1979; Zieg & Simon, 1980) demonstrated that the expression of the H2 operon is regulated by a recombinational event which inverts a specific 900-bp DNA sequence containing the promoter region of the H2-operon. Furthermore, they demonstrated that the invertible region also contained a gene, hin (Zieg & Simon, 1980). The gene hin is identical with the gene vh2, which was originally defined as the gene controlling the frequency of phase variation (Iino, 1961) and is now known to be the gene specifying a cytoplasmic factor which catalyses the inversion of the invertible region (Kutsukake & Iino, 1980).

† Present address: Tokyo Metropolitan Research Laboratory of Public Health, Hyakunin-cho, Shinjuku-ku, Tokyo 160, Japan.
A deletion map of the H1 gene has already been reported, and some regions determining antigenic specificities of flagella as well as some mutational sites responsible for genetic alterations of flagellar shape were mapped (Horiguchi et al., 1975). The genes and regions concerning phase variation make a cluster around H2. Little genetical analysis of the H2 gene and its vicinity has been carried out.

In this study, a deletion map and a recombination map were constructed with non-flagellate H2 mutants isolated from a phase-2 stable derivative of Salmonella typhimurium, and mutational sites of some flagellar shape mutants were mapped. The position of the vh2 gene with respect to the present H2 map and the polar effect of the non-flagellate H2 mutations on the expression of the rh1 gene were also examined.

METHODS

Organisms and media. The bacterial strains used are listed in Table 1. The flagellotropic phage χ was used to select non-flagellate mutants. Phage P22 was used as the mediator in transduction experiments. Lysates of both phages were prepared by the soft agar layer method and titered on Salmonella strain SJW806. The compositions of nutrient broth, nutrient agar and semisolid medium were described by Yamaguchi et al. (1972).

Isolation of non-flagellate H2 mutants. Spontaneous non-flagellate mutants were isolated from a phase-2 stable Salmonella strain SJW806 by the combined use of the flagellotropic phage χ and semisolid medium (Yamaguchi et al., 1972). The non-flagellate phenotype may be caused by mutations not only in the H2 gene but also in any of the fla genes. To identify H2 mutants, non-flagellate mutants were subjected to a complementation test with Salmonella strain SJ814 (H1-i' H2-1.2straighth2+). SJ814 is a diphasic strain which is non-flagellate in phase-1 and produces straight flagella in phase-2. As straight flagella cannot propel bacteria this strain is non-motile in both phases. A phase-2 culture of SJ814 was used to prepare the donor phage lysate. Non-flagellate mutants showing no complementation with SJ814 were judged to be H2 mutants.

Isolation of flagellar shape mutants. Flagellar shape mutants were isolated principally according to Fujita et al. (1981). Broth cultures of the parental strain, SJW806, were left for 4-5 d at 37 °C. Dilutions of the culture were then spread on semisolid medium. After overnight incubation, clones which formed compact and dense colonies were examined for their motility in liquid medium with a photomicroscope. Clones showing behaviour characteristic of flagellar shape mutants (Iino, 1969; Fujita et al., 1981) were further examined for their flagellar morphology with an electron microscope.

Test for complementation and recombination. Complementation and recombination between pairs of non-motile mutants (including flagellar shape mutants) were examined by P22-mediated transduction. The transduction mixture was streaked in lines on semisolid medium. Production of trails (abortive transductants) and swarms (complete transductants) in the medium were used as the criteria for complementation and recombination, respectively (Yamaguchi et al., 1972). When 1.0 ml of the mixture of equal volumes of the donor phage suspension (1.0 x 10^10 p.f.u. ml^-1) and the recipient bacterial suspension (1.0 x 10^9 cells ml^-1) did not produce a swarm, the mutational sites of the donor and the recipient were regarded as overlapping each other.

For two-factor crosses between H2 mutants, the donor phage suspension adjusted to 1.0 x 10^10 p.f.u. ml^-1 was mixed with the same volume of the recipient bacterial suspension containing 1.0 x 10^9 cells ml^-1. After 10 min adsorption, 0.5 ml of the mixture was streaked in lines on semisolid medium. After overnight incubation, the number of swarms (motile recombinants) was counted. The recombination frequency between donor and recipient mutational sites was expressed as a percentage of the number of swarms obtained in the control transduction in which the H2+ strain SJW806 was used with the same recipient. In each control transduction, more than 2000 swarms were always counted.

Observation of flagellar shape by electron microscopy. Bacteria were grown in broth overnight without shaking, harvested by low-speed centrifugation and resuspended in distilled water containing 5% formaldehyde. Samples were negatively stained with phosphotungstic acid at pH 6.8 and examined in a JEM T7 electron microscope.

Table 1. Bacteria

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Genotype</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJW806</td>
<td>H1-gt' H2-enx^c- vh2^-</td>
<td>A phase-2 stable derivative of Salmonella typhimurium. H1-gt was transduced from strain SJ925 (Yamaguchi et al., 1972), and H2-enx^c- and vh2^- from S. abortus equi SL23 (Iino, 1961).</td>
</tr>
<tr>
<td>SJW1103</td>
<td>H1-i H2-enx^c- off vh2^-</td>
<td>A phase-1 stable derivative of Salmonella typhimurium. H2-enx^c- and vh2^- were introduced from SJW916, an H2^- mutant of SJW806.</td>
</tr>
</tbody>
</table>
Genetic analysis of H2 in Salmonella

Preparation of the anti-i flagella serum. Cells of SJW1103 (the antigen type of flagella is ‘i’) were suspended in 0.5% formalinized saline to give about 1 x 10^8 bacteria ml^-1. A rabbit was immunized by five successive intravenous injections with a total of 6 ml of the bacterial suspension at 3 d intervals, and bled 1 week after the final injection. Antibodies specific to the somatic antigens were removed by absorbing the serum with a non-flagellate strain derived from SJW1103.

Genotype symbols. Alleles of H1 and H2 genes expressing different flagellar antigen types are indicated by symbols designating the antigen types, e.g. H1-i, H2-enx, etc. To indicate the stable states (active and inactive) of the H2 gene in Vh2 strains, superscript symbols ‘on’ and ‘off’ are used, e.g. H2-enx^on for the active state and H2-enx^off for the inactive state of the H2-enx allele according to Enomoto & Stocker (1975). The H2 alleles which are active but carry non-flagellate mutations are described as, for example, H2-enx^-on. Flagellar shape mutations are indicated by the symbol in parentheses (Fs), placed after the mutation numbers, e.g. H2-5I (Fs).

RESULTS

Isolation of non-flagellate H2 mutants

Using the flagellotropic phage χ as the selecting agent, 7650 spontaneous non-flagellate mutant clones were isolated from a phase-2 stable Salmonella strain, SJW806 H1-^H2-enx^vh2-. Among them, 253 clones were identified as H2 mutants by the complementation test with the phase-2 culture of Salmonella strain SJ814 H1-^H2-1-straight^vh2+. Among the H2 mutants, 78 clones were stable and the others revertible.

Mapping of the H2 gene

With all the stable H2 mutants and 86 revertible ones whose reversion frequencies were not too high, deletion mapping of the H2 gene was carried out by the following two series of transductional crosses. Transductions were first carried out in all pairwise combinations among the stable mutants, and then from revertible mutants to stable ones. Of 78 stable mutants, 33 were shown to be multisite or deletion mutants. From their overlapping pattern, the H2 gene was divided into 31 deletion segments as shown in Fig. 1. Segments were given numbers from no. 1 to 31 running from left to right. Mutational sites of the mutants that were stable but yielded wild-type recombinants with all the revertible mutants were included in the group of single site mutations in the map.

As seen in Fig. 1, the deletion mapping could not determine the orientation of two regions (segments no. 1 to no. 4 and no. 12 to no. 20). Nor could deletion mapping determine the positions of the single site mutations finally allocated to segments no. 5, 11 and 21. Therefore, recombination frequencies between a standard mutational site and single site mutations were examined. As the standard site, the mutational site of strain SJW831 H2-120 (which had been allocated to segment no. 6 by deletion mapping) was used. Transduction was carried out from SJW831 and the parental H2+ strain SJW806 to the mutants to be examined, and recombination frequencies were calculated as described in the Methods. Selected results are given in Table 2. They show that the order of the segments flanking segment no. 6 is 1 to 4 – 6 – 12 to 20. The results also permit the mapping of single site mutations to one of the segments no. 5, 11 or 21 as shown in Fig. 1.

In the deletion map (Fig. 1), the segments are arbitrarily shown to be of equal length. To know more precisely the distribution of non-flagellate mutational sites within the H2 gene, mapping of single site mutations by recombination frequencies was carried out. The mutational site of strain SJW913 H2-200, the leftmost mutational site in the H2 gene, was used as the standard site. Transduction was carried out from SJW913 and the H2+ strain SJW806 to all the single site mutants shown in Fig. 1, and recombination frequencies were calculated. Figure 2 shows the distribution of the mutational sites according to their map positions, made proportional to recombination frequencies. Ranges of distribution of mutational sites assigned to respective deletion segments are also shown in the figure. Discrepancies found in the order of some mutational sites between the deletion map and the recombination map are within the limit of errors of recombination frequencies. As seen in the figure, the distribution of mutational sites is not random. Three regions, that is, regions around the map positions 4-0, 12-5 and 21-5, respectively, are especially rich in non-flagellate mutational sites.
Fig. 1. Deletion map of the H2 gene in Salmonella strain SJW806 H2-exx. Horizontal lines represent the extent of respective deletions. Mutations that were stable but yielded flagellate recombinants with all the revertible mutants were included in the group of single site mutations. Orientation of two regions comprising segments no. 1 to no. 4 and no. 12 to no. 20, respectively, and positions of single site mutations assigned at segments no. 5, no. 11 and no. 21 were determined by the help of recombination frequencies.
Table 2. Recombination frequencies between strain SJW831 H2-120 and non-flagellate
H2 mutants

Recombination frequencies were measured by transduction. A known volume of the transduction
mixture was brushed in lines on semisolid medium. After overnight incubation, the numbers of swarms
were counted. The recombination frequency was expressed as percentage of the number of swarms
obtained in transduction from the wild-type strain SJW806.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mutation</th>
<th>Segment*</th>
<th>No. of motile recombinants in transduction from</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJW913</td>
<td>H2-200</td>
<td>1</td>
<td>(A) SJW806 H2+ 2114 120 5.7</td>
</tr>
<tr>
<td>SJW869</td>
<td>H2-137</td>
<td>2</td>
<td>(B) SJW831 H2-120 3019 136 4.5</td>
</tr>
<tr>
<td>SJW928</td>
<td>H2-215</td>
<td>3</td>
<td>2623 105 4.0</td>
</tr>
<tr>
<td>SJW925</td>
<td>H2-212</td>
<td>4</td>
<td>2460 45 1.8</td>
</tr>
<tr>
<td>SJW986</td>
<td>H2-263</td>
<td>5</td>
<td>2011 33 1.6</td>
</tr>
<tr>
<td>SJW1061</td>
<td>H2-338</td>
<td>5</td>
<td>2338 29 1.2</td>
</tr>
<tr>
<td>SJW1007</td>
<td>H2-284</td>
<td>5</td>
<td>2016 25 1.2</td>
</tr>
<tr>
<td>SJW831</td>
<td>H2-120</td>
<td>6</td>
<td>2320 0 0.0</td>
</tr>
<tr>
<td>SJW810</td>
<td>H2-101</td>
<td>11</td>
<td>2784 23 0.8</td>
</tr>
<tr>
<td>SJW944</td>
<td>H2-230</td>
<td>12</td>
<td>2439 35 1.4</td>
</tr>
<tr>
<td>SJW818</td>
<td>H2-109</td>
<td>13</td>
<td>2428 49 2.0</td>
</tr>
<tr>
<td>SJW812</td>
<td>H2-103</td>
<td>18</td>
<td>2954 77 2.6</td>
</tr>
<tr>
<td>SJW843</td>
<td>H2-131</td>
<td>19</td>
<td>2783 162 5.8</td>
</tr>
<tr>
<td>SJW895</td>
<td>H2-182</td>
<td>20</td>
<td>2856 172 6.0</td>
</tr>
<tr>
<td>SJW824</td>
<td>H2-113</td>
<td>21</td>
<td>2291 161 7.0</td>
</tr>
<tr>
<td>SJW837</td>
<td>H2-125</td>
<td>21</td>
<td>2401 168 7.0</td>
</tr>
<tr>
<td>SJW838</td>
<td>H2-126</td>
<td>21</td>
<td>2235 157 7.0</td>
</tr>
<tr>
<td>SJW841</td>
<td>H2-129</td>
<td>21</td>
<td>2512 189 7.5</td>
</tr>
</tbody>
</table>

* Segment no. in the deletion map of the H2 gene (Fig. 1), to which respective mutational sites were assigned.

Fig. 2. Distribution of non-flagellate mutations in the H2 gene. The scale represents the distance from
the leftmost mutational site H2-200, made proportional to recombination frequencies. Mutational sites
shown by closed circles are piled up every 0.25 interval. Circled figures represent the segment numbers
in the deletion map (Fig. 1). The ranges shown by the segment numbers represents the distribution of
mutational sites assigned to respective segments in the deletion map.

Mapping of the mutational sites responsible for alteration of flagellar shape

Bacterial flagella show a helix with wavelength and wave height characteristic of bacterial
strains; e.g. the wavelength and the wave height of flagella of strain SJW806 are 2.47 ± 0.08 μm
and 0.32 ± 0.02 μm, respectively. Several types of flagellar shape mutants have been reported.
Curly mutants carry flagella of the wavelength about half the normal. Flagella of straight
mutants lack the wave form. Polymorphous mutants carry flagella of several distinct forms
including straight, curly and sometimes normal. Heteromorphous mutants carry irregular-

shaped flagella. These genetic alterations in flagellar shape are due to mutations in the flagellin structural gene, H1 or H2 (Iino, 1969, 1977). To understand the genetic determination of flagellar shape it is desirable to know the correlation between altered flagellar shapes and the sites of mutations responsible for the alterations. Therefore phase-2 flagellar shape mutants were isolated and their mutational sites on the present deletion map determined.

From strain SJW806, 150 spontaneous flagellar shape mutants were isolated by the procedure described in the Methods. Twenty mutants, randomly chosen, were scrutinized for their flagellar shape by electron microscopy, and classified into four groups. The first group (curly type) comprised SJW548 H2-52 (Fs) and nine other mutants; average wavelength and wave height of their flagella were 1.34 ± 0.03 μm and 0.29 ± 0.01 μm, respectively. The second group (small amplitude type) comprised SJW540 H2-54 (Fs) and six other mutants; the average wavelength and wave height of their flagella were 0.45 ± 0.02 μm and 0.100 ± 0.004 μm, respectively. In liquid medium, mutants of these two groups showed rotational movement and aggregation that are characteristic of curly mutants (Iino, 1969). The third group comprised only one polymorphous mutant, SJW550 H2-64 (Fs). Most flagella of this strain were either normal or curly, and a few (less than 5% of flagella) carried both types of waves. In liquid medium, most organisms of this strain moved rotationally, but some wriggled and a few showed normal translational movement. Aggregation in liquid medium was often observed but was weaker than that of the two former groups. The fourth group comprised two heteromorphous mutants, SJW542 H2-56 (Fs) and SJW544 H2-58 (Fs). Their flagella were mostly irregular with wavelength longer than normal. Aggregation in liquid medium was not observed in these mutants. An electron microscope survey of the remaining 130 flagellar shape mutants showed that they belonged to or closely resembled one or other of the four groups. No straight mutant was found among them.

Using the H2 deletion mutants as recipients, the mutational sites of the twenty flagellar shape mutants were mapped by transductional crosses. As no straight mutant was obtained from strain SJW806, the phase-2 straight strain SJ814 was included in the experiment. Results are shown in Fig. 3. The mutational sites were distributed roughly to two regions, segments no. 6 to no. 9 and segments no. 25 to no. 30. These regions almost coincide with two of the three regions that are especially rich in non-flagellate mutational sites.

Position of the vh2 gene relative to the H2 map – determination of the promoter side of the H2 map

No mutant has so far been obtained which has been confirmed to be defective in the promoter of the H2 operon. However, the promoter region of the H2 operon is in the invertible region or so-called phase determinant region (PD) (Silverman et al., 1979; Zieg & Simon, 1980; Enomoto & Stocker, 1975). Moreover the gene termed hin or vh2 is included in the PD region (Zieg & Simon, 1980). The vh2 gene promotes phase variation by specifying the cytoplasmic factor that catalyses the inversion of the PD region (Kutsukake & Iino, 1980). Strains carrying a vh2- mutation, in which the H2 operon has been stabilized in either the ‘on’ or the ‘off’ state, are available (Iino, 1961). Thus, an attempt was made to determine the position of a vh2- mutation relative to the H2 gene to discover the location of the promoter on the H2 map.

Determination of the position of the vh2 gene relative to the H2 gene was accomplished by three-factor P22 transductional crosses between a Vh2+ strain and phase-2 stable Vh2- strains both carrying a non-motile mutation in the H2 gene. Motility was used as the selected marker and the Vh2 character as the unselected marker. The Vh2+ strain used was SJ814 H1-i- H2- enx-straight vh2+ . This strain shows phase variation between non-flagellate phase-1 and straight flagellar, therefore non-motile, phase-2. The mutational site responsible for phase-2 straight flagella in SJ814 is located at deletion segment no. 29 (Fig. 3) as described above. The Vh2- strains used were four non-flagellate H2 mutants H1-gt- H2-enx- on vh2- carrying deletions in the H2 gene; that is, SJW842 H2-130, SJW1039 H2-316, SJW1041 H2-318 and SJW1002 H2-279. Deletions in the first three strains are to the left of the straight flagellar mutational site of SJ814 and that in the fourth is to the right of it. The latent phase-1 in these strains is non-flagellate because of the H1-gt- mutation.
Genetic analysis of H2 in Salmonella

![Deletion map of the H2 gene](image)

Table 3. Determination of the position of the vh2 gene with respect to the H2 gene by three-factor transductional crosses

Three-factor transductional crosses were carried out from the phase-2 culture of Salmonella strain SJ814 H1-I- H2-I-2straight vh2+ to four phase-2 stable H2- strains H1-gt- H2-enx- vh2-. H2+ recombinant swarms on semisolid medium were isolated and their Vh2 character was determined. The relative order of the mutational sites, inferred from these results, is shown in Fig. 4. The figures in parentheses represent crossover regions shown in Fig. 4.

<table>
<thead>
<tr>
<th>Transduction recipient</th>
<th>vh2+</th>
<th>vh2-</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJW842 H2-130</td>
<td>122 (1,3)</td>
<td>12 (2,3)</td>
</tr>
<tr>
<td>SJW1039 H2-316</td>
<td>143 (1,3)</td>
<td>0 (2,3)</td>
</tr>
<tr>
<td>SJW1041 H2-318</td>
<td>153 (1,3)</td>
<td>0 (2,3)</td>
</tr>
<tr>
<td>SJW1002 H2-279</td>
<td>0 (1,2,3,4)</td>
<td>120 (4,5)</td>
</tr>
</tbody>
</table>

Transduction was carried out from a phase-2 culture of SJ814 to the nonflagellate H2 mutants. Transduction mixtures were streaked in lines on semisolid medium and motile H2+ recombinants that appeared as swarms were then examined for their Vh2 character using the following principle. The H2+ recombinants that have received the vh2+ allele from the donor will segregate non-flagellate phase-1 cells expressing H1-gt- in their descendants through phase variation. On the other hand the H2+ recombinants that have retained the recipient vh2- allele will produce motile phase-2 cells only. Thus they can be distinguished from each other by spreading cultures of them on semisolid medium. The H2+ Vh2+ clones will produce not only swarming colonies of motile phase-2 cells but also compact colonies of non-flagellate phase-1 cells, while the H2+ Vh2- clones will produce swarming colonies of motile phase-2 cells only.

Results of the three-factor transductional crosses are shown in Table 3. When SJW1002 H2-279 was the recipient, all the motile H2+ recombinants retained the recipient Vh2- character. When the other three deletion mutants were the recipients, all or almost all the motile H2+ recombinants had acquired the donor Vh2+ character. Assuming that each of these motile recombinants was produced by two crossovers, these results can be explained only if the vh2 gene is located to the left of the H2 gene, as shown in Fig. 4. In crosses in which SJW1039 H2-316 and SJW1041 H2-318 were used as recipients, all the H2+ recombinants were Vh2- suggesting that the deletions in these strains cover the vh2- mutational site.
Donor: SJ814

\[H2-1,2^{\text{straight}} \]

Recipients:

- SJW842 H2-130
- SJW1039 H2-316
- SJW104 H2-318
- SJW1002 H2-279

Fig. 4. An arrangement of the \(vh2 \) and \(H2 \) mutational sites, that explains the occurrence of the \(H2^+ \) recombinants in three-factor crosses shown in Table 3. The horizontal lines represent the deleted regions in recipients. According to this arrangement, the occurrence of all the \(H2^+ \) recombinants shown in Table 3 is explained by two crossovers. The deletions \(H2-316 \) and \(H2-318 \) may extend to the position of the \(vh2 \) mutation.

Fig. 5. Relation between motility and total length of phase-1 flagella per cell in \(H2 \) mutants in which the transduced \(H1-i \) allele is expressed to various degrees. Small inocula of the \(H2 \) mutants carrying the transduced \(H1-i \) allele were placed on semisolid medium plates. After 8 h incubation, the areas of swarms were compared with that of the phase-1 stable strain SJW1103, the donor of the \(H1-i \) allele. Total length of flagella per cell is the mean of measurements on 70 to 80 cells. The result shows that the relative size of swarms is almost proportional to the total length of flagella per cell.

Polar effect of non-flagellate \(H2 \) mutations on the expression of the \(rhl \) gene

The \(H2 \) gene constitutes an operon together with the \(rhl \) gene that codes for a cytoplasmic substance repressing the expression of the \(H1 \) gene in phase-2 cells (Fujita et al., 1973). Silverman et al. (1979) obtained results showing that in the operon the order of transcription is \(H2 \) and then \(rhl \). Thus, it is predicted that some of the non-flagellate \(H2 \) mutants should have a polar effect on the expression of the \(rhl \) gene. To test this, a wild-type \(H1 \) allele was introduced by transduction into the non-flagellate \(H2 \) mutants \(H1-gt^-H2-enx^-vt2^-rhl^+ \) in place of the preexisting \(H1-gt^- \) allele. If an \(H2 \) mutation has a polar effect on the \(rhl \) gene, the wild-type \(H1 \) allele introduced into it will be expressed. Transductant clones that have received the wild-type \(H1 \) allele will appear as swarms in semisolid medium.

Transduction of the wild-type \(H1 \) allele was carried out from a phase-1 stable strain, SJW1103 \(H1-i,H2-enx^-vt2^- \), to all the single site non-flagellate \(H2 \) mutants. The transduction mixture was streaked in lines on semisolid medium and incubated overnight. As expected, swarms appeared in transductions with many but not all of the recipients. The size of swarms varied with recipients. Swarmed clones were subcultured on nutrient agar and examined for their flagellar antigen type by the slide agglutination test with anti-i serum. All of them were agglutinated by the antiserum, showing that in these swarmed clones the introduced \(H1-i \) allele was expressed.
Fig. 6. Polarity values of H2 mutations on the expression of rhl, plotted according to their location in the H2 gene. Polarity values were expressed as the relative size of phase-1 swarms to that of Salmonella typhimurium SJW1103. The abscissa represents the distance from the leftmost mutation H2-200, made proportional to recombination frequencies.
The number of flagella per cell and the length of individual flagella were examined by electron microscopy with representative transductant clones differing from each other in size of swarms. In general, the larger the spreading ability of a clone the larger both the number of flagella per cell and the average length of flagella. Furthermore the average values of the total length of flagella per cell were roughly proportional to the swarmed area of the clones in semisolid medium, as seen in Fig. 5. Assuming that the total length of flagella per cell is proportional to the production of flagellin by the cell and that the production of flagellin is inversely proportional to the amount of the HI-repressor produced by the rhl gene, we tentatively define here the size of the swarm of a transductant clone relative to that of the wild-type strain SJW1103 as the polarity value of its H2 mutation on the rhl gene. Thus, a polarity value of 1 indicates that the H2 mutation in the clone is strongly polar, whereas a polarity value of 0 indicates that the H2 mutation is non-polar. Mutants that did not produce any phase-1 swarm when the wild-type H1-i allele was introduced were regarded as non-polar. In Fig. 6, polarity values calculated for single site H2 mutations were plotted according to their location on the recombination map of the H2 gene. From the figure, it is immediately apparent that many strongly polar mutations are located in the left half of the H2 gene, while most of the mutations located in the right half are weakly polar or non-polar.

The H2 deletions shown in Fig. 1 were also examined for polarity on the rhl gene. Among them, eight relatively short deletions, that is H2-124 (SJW836), H2-134 (SJW846), H2-136 (SJW848), H2-148 (SJW860), H2-274 (SJW997), H2-275 (SJW998), H2-279 (SJW1002) and H2-308 (SJW1031), were shown to be non-polar, while the other 27 deletions were strongly polar.

DISCUSSION

Among the non-flagellate mutants those lacking the flagellar filament but retaining other parts of flagella, a class to which the non-flagellate H2 mutants belong, are sensitive to the flagellotropic phage χ (Yamaguchi et al., 1977) but their sensitivity to χ is rather low in liquid medium. Thus, non-flagellate H2 mutants were selected efficiently by the use of the phage χ in semisolid medium.

The genes and regions concerning phase variation cluster around the H2 gene, but genetical analysis of the H2 gene has lagged behind that on the H1 gene. The deletion map of the H2 gene constructed here will facilitate the genetical analysis of the H2 gene and its vicinity.

Mapping of non-flagellate H2 mutations by recombination frequencies (Fig. 2) showed that there are three especially mutable regions in the H2 gene. Lowy & Hanson (1965) proposed a model for flagellar filaments constructed of spherical flagellin molecules of 5.6 nm diameter. Subsequently an elongated shape was proposed for the flagellin molecule to explain the chevron appearance of filaments observed by electron microscopy (O'Brien & Bennet, 1972). Shirakihara & Wakabayashi (1979) showed by three-dimensional image reconstruction from electron micrographs that in flagellar filaments flagellin molecules are highly elongated and have a beaded substructure, that is, there are four high density regions or domains C, I, M and S, situated at radii of about 1.5, 4.0, 7.0 and 8.0 nm in flagellar filaments. According to their model, the inner regions of flagellin, domains C and I and a part of the domain M, may contribute to the interaction with neighbouring flagellin molecules. The domain S and the major part of the domain M protrude at the surface of the filaments. The three regions in the H2 gene which were shown to be especially rich in non-flagellate mutational sites may correspond to the inner high density regions which are important for flagellin to polymerize into flagellar filaments.

The mutational sites of three phase-1 curly flagellar strains are located in a single segment of a sixteen-segment deletion map of the H1 gene (Horiguchi et al., 1975). We show here that the mutational sites of 21 phase-2 flagellar shape mutants are located in two separate regions. The regions almost coincide with two of the three regions that are rich in non-flagellate mutational sites. This result shows that these regions are important not only for assembly of flagellin into a filament but also for the determination of the mode of assembly.

Among mutants with altered flagellar antigen, isolated from a phase-1 stable Salmonella strain, we have recently found a mutant in which the shape of flagellar filaments is normal but the molecular weight of flagellin has been reduced to three-quarters that of the parental type.

On: Fri, 12 Oct 2018 18:23:56
flagellin (S. Yamaguchi, unpublished). Genetical analysis showed that in the H1 gene of the mutant a region had been deleted, where non-flagellate mutational sites are rarely located. The three-dimensional image reconstruction from electron micrographs of its flagellar filament revealed that in flagellin the size of the high density regions S and M was diminished (Y. Shirakihara et al., unpublished). These observations suggest that the region deleted in this mutant participated in determining the antigenic specificity of flagellin but not in the polymerization or determination of shape of flagellar filaments. Thus, the combination of three-dimensional analysis and genetical analysis of flagellins carrying various mutant characters is expected to contribute much to the understanding of the relation between the structure and the function of flagellin.

The non-flagellate H2 mutants obtained here may include mutants defective in the promoter of the H2 operon, but they cannot be distinguished from those defective in the H2 structural gene. Therefore no information on the direction of transcription can be obtained solely from the present map of the H2 gene. Fortunately the promoter of the H2 operon has been mapped between the H2 gene and the hin or vh2 gene (Zieg & Simon, 1980). Thus, to determine which end of the H2 map is promoter-proximal, the position of the vh2 gene relative to the H2 gene was examined. The vh2 gene was shown to be located to the left of the H2 gene, so that the promoter is located at the left end of the H2 gene on the present map.

Many of the non-flagellate H2 mutations have a polar effect on the expression of the rhl gene. The polarity value of an H2 mutant is defined as the relative size of a swarm of the H2 mutant in semisolid medium, after introduction of a wild-type H1 allele. This definition is based on the observation that the relative size of swarms of the transductant clones was roughly proportional to the total length of flagella per cell. We have no means at present to measure the amount of H1 repressor substance directly. In general, the further to the right within the H2 gene the mutational site, the lower the polarity value of the mutation. This indicates that the rhl gene is located to the right of the H2 gene, so that the promoter of the H2 operon must be located to the left of the H2 gene.

REFERENCES

