An Electrophoretic Analysis of Superoxide Dismutase in Campylobacter spp.

By HIROKO E. KIKUCHI* AND TAKESHI SUZUKI
Department of Oral Microbiology, School of Dentistry, Hokkaido University, Sapporo 060, Japan

(Received 22 May 1984; revised 29 June 1984)

Superoxide dismutase (SOD, superoxide:superoxide reductase, EC 1.15.1.1) activity was studied in 23 strains of Campylobacter spp. using disc polyacrylamide gel electrophoresis. Different enzyme patterns were observed with extracts of different species of Campylobacter; three migration bands were found in all strains of C. sputorum subsp. sputorum and C. sputorum subsp. bubulus (relative mobilities, Rm, 0.57, 0.76 and 0.85), and C. fetus subsp. fetus (Rm 0.60, 0.72 and 0.81), while four migration bands (Rm 0.52, 0.57, 0.73 and 0.82) were found in C. fetus subsp. venerealis. One band (Rm 0.73) was found in C. coli CIP 7080 and two bands (Rm 0.59, 0.73) in C. jejuni CIP 702. Superoxide dismutase activities were very high in the Campylobacter strains, especially in C. fetus subsp. fetus [specific activity 7.8–55.7 U (mg protein)⁻¹] compared with those in Escherichia coli (1.5 U mg⁻¹), Propionibacterium acnes (1.6 U mg⁻¹) and Veillonella alcalescens (0.2 U mg⁻¹).

INTRODUCTION

Campylobacter jejuni is the causative agent of a bacterial diarrhoea in man (Newell, 1982; Skirrow, 1977; Smibert, 1978). Campylobacter fetus causes sterility and abortion in cattle (Smith, 1978). Campylobacter coli has been isolated from pig intestines and is reported to increase in number when the pig suffers from dysentery (Doyle, 1944). Catalase-negative non-pathogenic Campylobacter spp. found in normal reproductive organs of cattle, the human oral cavity and porcine intestinal mucosa were named C. sputorum subsp. sputorum, C. sputorum subsp. bubulus (Loesche et al., 1965) and C. sputorum subsp. mucosalis (Lawson et al., 1975), respectively, following the classification scheme of Vérón & Chatelain (1973).

Campylobacter spp. have also been found associated with purulent pyorrhoea (Dwyer & Socransky, 1968; Slots et al., 1978). Other Campylobacter spp. found in dental pockets of humans with periodontitis have been identified as C. concisus although Tanner & Badger (1981) reported that these species were serologically distinct from other Campylobacter species including C. sputorum and C. fetus and that some strains showed cross activities with antiserum obtained from Wolinella recta. Further taxonomic and biochemical studies are required on these oral Campylobacter spp.

Several reports have shown the optimal growth atmosphere for Campylobacter spp. to be 5% (v/v) oxygen (Kiggens & Plastridge, 1956; Ware et al., 1977), 6% (Reich et al., 1956) or 2.5% (Fletcher & Plastridge, 1964), suggesting that they may have a special superoxide dismutase (SOD). We have observed the growth of Campylobacter spp. in GAM semi-solid medium, a medium for the growth of anaerobic bacteria. Isolates grew 2.5 mm below the surface of this medium; different species and subspecies of Campylobacter grew at different rates at the same depth.

Hoffman et al. (1979a, b) reported that two strains of C. jejuni and one strain of C. fetus subsp. fetus showed different SOD activity staining patterns on disc polyacrylamide gel electrophoretograms. It was suggested that a particular isoenzyme of SOD might be related to the aero-

Abbreviations: NBT, nitroblue tetrazolium; Rm, relative mobility; SOD, superoxide dismutase.
tolerance of C. fetus (Hoffman et al., 1979a). In order to extend our knowledge of SOD of Campylobacter spp. in relation to their microaerophilic characteristics and species differences, we have studied SOD of C. sputorum subsp. sputorum, C. fetus subsp. fetus, C. fetus subsp. venerealis and other campylobacters by disc polyacrylamide gel electrophoresis.

METHODS

Organisms. The strains used are listed in Table 1, with their sources and habitats.

Media and cultivation. Campylobacter strains were grown in GAM broth (Nissui Co., Tokyo, Japan) placed in Petri dishes to give a large surface area. The composition of GAM broth, which is a medium for the growth of anaerobic bacteria, is as follows (l-1): peptone 10.0 g; soybean peptone 3.0 g; proteose peptone W 10.0 g; digested serum 13.5 g; yeast extract 5.0 g; beef extract 2.2 g; liver extract 1.2 g; glucose 3.0 g; KH₂PO₄ 2.5 g; NaCl 3.0 g; soluble starch 0.3 g; l-cystine. HCl 0.3 g; sodium thioglycollate 0.3 g. The pH was adjusted to 7.3 ± 0.1. The inoculum was grown in GAM semi-solid medium (GAM broth containing 1.5 g agar l⁻¹) in Erlenmeyer flasks.

Propionibacterium acnes and Veillonella alcalescens were grown in Erlenmeyer flasks filled to the top with GAM broth. Escherichia coli was grown in nutrient broth containing (l-1): meat extract 5 g; peptone 10 g; NaCl 5 g (Eiken Co., Tokyo, Japan).

All bacteria were cultured at 37 °C. Escherichia coli was harvested by centrifugation after 18 h growth and other bacteria after 48 h.

Preparation. Harvested cells were sedimented (7500 g for 10 min), washed three times with physiological saline (0.15 w-NaCl), and suspended in saline at 0.5 g wet wt ml⁻¹. After sonication at 20 kHz at 80 W for 3 min (Tomy, Ultrasonic UR 200, Japan), the homogenate was centrifuged at 12000 g for 60 min (Sorvall, RC-5). The supernatant was dialysed for 36 h in 0.02 w-phosphate buffer (pH 7.8) to remove Cu⁺⁺, Mn⁺⁺, Fe⁺⁺ and Fe⁺⁺ ions that may affect SOD activity and salts that may affect electrophoresis.

Determination of protein content and enzyme activities. Protein content was determined by the Lowry method.
Super oxide dismutase of Campylobacter spp.

SOD activity of the dialysed solutions was measured by the xanthine/xanthine oxidase/nitroblue tetrazolium (NBT) system (McCORD & Fridovich, 1969). Xanthine oxidase was added to 3 ml reaction mixture solution containing 1 × 10⁻⁴ M-xanthine, 2.5 × 10⁻⁴ M-NBT, 1 × 10⁻⁴ M-EDTA, and 0.05 M-sodium carbonate (pH 10.2) in an amount sufficient to reduce NBT to formazan at a rate such that the A₅₆₀ increased at 0.01 unit min⁻¹ at 25 °C (Hitachi spectrophotometer 200-20). The amount of SOD required to inhibit the rate of reduction of NBT by 50% under these defined conditions is defined as 1 unit of activity.

Catalase activity was detected by effervescence in 3% (v/v) hydrogen peroxide. Oxidase activity was detected using the dimethyl-p-phenylenediamine dihydrochloride reagent of Kovacs (1956).

Electrophoresis and staining. A dialysed solution of protein (0.1-0.3 mg) was electrophoresed on 7% (w/v) polyacrylamide disc gels using the method of Davis & Ornstein (1964). Running gels (pH 8-9) 6 cm long with 1 cm thick spacer gels were prepared in glass gel tubes of inner diameter 5 mm, and set in a cooling device. After stacking 50 μI 40% (w/v) sucrose solution containing protein and bromophenol blue, the gels were run at 5 mA per tube for 40 min at 12 °C in a buffer solution containing 0.6 g Tris and 2.88 g glycine l⁻¹ (pH 8.3).

SOD was detected by soaking the gels in 2.45 mM-NBT for 20 min followed by immersion for 15 min in a solution containing 28 mM-tetramethylenediamine, 28 μM-riboflavin and 36 mM-potassium phosphate (pH 7.8). The gels were then placed in small dry test tubes and illuminated for 5 to 15 min with a commercial 20 W fluorescent lamp (360-740 nm including line spectra at 400 and 435 nm) at a distance of 10 cm. During illumination, the gels turned blue except for the bands containing SOD. Illumination was stopped when maximum contrast was achieved between the unstained and blue zones (Beauchamp & Fridovich, 1971). Migration distances of negative-stained bands were converted to relative mobilities (Rm) by dividing each migration distance by that of the front marker (bromophenol blue).

Each sample was electrophoresed on two gels; one gel was stained without KCN and the other was stained in the presence of 2 mM-KCN (De Rosa et al., 1979) in order to detect the presence of Zn,Cu-SOD (Weisger & Fridovich, 1973). Dismutation of O₂ by Zn,Cu-SOD is inhibited by CN⁻, while Fe-SOD and Mn-SOD activities are unaffected by CN⁻ (Fridovich, 1974).

Three to nine cultures of each strain were analysed for all enzyme activities. Bovine blood SOD (Sigma) was used as a control.

RESULTS

The specific activities of SOD obtained for homogenates of each strain are given in Table 2. Extracts of E. coli and P. acnes had SOD specific activities of around 1.5 U (mg protein)⁻¹. Extracts of V. alcalescens showed negligible activity. Extracts of Campylobacter spp. had SOD specific activities that ranged from about 1 U (mg protein)⁻¹ in C. sputorum subsp. sputorum to above 50 U (mg protein)⁻¹ in C. fetus subsp. fetus. The SOD specific activities of C. sputorum subsp. sputorum and C. fetus subsp. venerealis were similar [means ± SD 3.4 ± 1.8 and 4.7 ± 1.3 U (mg protein)⁻¹, respectively]. While C. fetus subsp. fetus had much higher activities and also showed large activity variations between different strains [mean ± SD 30.5 ± 17.5 U (mg protein)⁻¹ for the five strains studied], variations within strains were not large in comparison with those found in C. fetus subsp. venerealis. The SOD specific activities of C. coli, C. jejuni and C. sputorum subsp. bubulus were between those of C. sputorum subsp. sputorum and C. fetus subsp. fetus. The mean SOD specific activity determined for the Campylobacter strains other than C. fetus subsp. fetus was 5.4 ± 2.2 U (mg protein)⁻¹.

All the Campylobacter strains had oxidase activity, and all except C. sputorum subsp. sputorum and C. sputorum subsp. bubulus had catalase activity. Escherichia coli, P. acnes and V. alcalescens did not have oxidase activity and P. acnes did not have catalase.

Fig. 1 shows the positions of bands stained for SOD activity after polyacrylamide disc electrophoresis of extracts of Campylobacter spp. together with those obtained for bovine blood SOD and extracts of E. coli, V. alcalescens and P. acnes. Different SOD profiles were obtained with extracts of different campylobacters. Campylobacter sputorum subsp. sputorum had one clear band of Rm 0.57 and two minor bands of Rm 0.76 and 0.85. Campylobacter sputorum subsp. bubulus had a very similar profile consisting of three bands of Rm 0.56, 0.76 and 0.85; C. coli had only one clear band of Rm 0.73; C. jejuni had two bands of Rm 0.59 and 0.73; C. fetus subsp. fetus had a minor band of Rm 0.60, a major band of Rm 0.72 and an intermediate band of Rm 0.81; C. fetus subsp. venerealis had two clear bands of Rm 0.73 and 0.82 and two trace bands of Rm 0.52 and 0.57. The SOD profiles of the different isolates were identical for a given species or subspecies.
Table 2. Activities of SOD and other enzymes in Campylobacter, E. coli, P. acnes and V. alcalescens

<table>
<thead>
<tr>
<th>Organism</th>
<th>Sp. act. of SOD* [U (mg protein)]</th>
<th>Catalase activity</th>
<th>Oxidase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. sputorum subsp. sputorum C 1</td>
<td>48 ± 0.4</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 2</td>
<td>48 ± 0.4</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 3</td>
<td>32 ± 0.2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 4</td>
<td>45 ± 0.3</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 5</td>
<td>38 ± 0.3</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 6</td>
<td>18 ± 0.1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 8</td>
<td>0.9 ± 0.1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 9</td>
<td>6.5 ± 0.5</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 14</td>
<td>1.7 ± 0.0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C 15</td>
<td>1.8 ± 0.8</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. sputorum subsp. bubulus CIP 53103</td>
<td>5.8 ± 1.0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. coli CIP 7080</td>
<td>3.9 ± 0.5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. jejuni CIP 702</td>
<td>9.0 ± 1.8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. fetus subsp. fetus CIP 5396</td>
<td>14.0 ± 2.7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 16</td>
<td>7.8 ± 3.8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 17</td>
<td>40.0 ± 2.4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 18</td>
<td>35.2 ± 3.0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 20</td>
<td>55.7 ± 2.8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. fetus subsp. venerealis CIP 6829</td>
<td>5.3 ± 1.6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 21</td>
<td>6.8 ± 0.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 22</td>
<td>3.9 ± 0.2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 23</td>
<td>2.9 ± 0.3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C 24</td>
<td>4.4 ± 0.1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. coli IID 861</td>
<td>1.5 ± 0.1</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>P. acnes ATCC 11827</td>
<td>1.6 ± 0.0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>V. alcalescens subsp. dispar ATCC 17748</td>
<td>0.2 ± 0.0</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

* Mean of three to nine determinations, ± SD.

No inhibition of SOD activity by 2 mM-KCN was observed, indicating that the enzymes in Campylobacter spp. are of the Fe-SOD and/or Mn-SOD types.

DISCUSSION

The species and subspecies of Campylobacter we studied had SOD activities higher than those of E. coli and P. acnes. Most of the campylobacters showed specific activities of around 5 U (mg protein)⁻¹. Campylobacter fetus subsp. fetus showed much higher specific activities.

It is possible to relate to some extent the SOD activity in the Campylobacter spp. to their aerotolerance. The oxygen partial pressure at which the growth of a particular isolate is inhibited was reported as follows: C. sputorum 5.3-10.7 kPa (5.2-10.6% O₂) (Loesch et al., 1965), C. jejuni 6.1 kPa (6% O₂) (Hoffman et al., 1979a), C. fetus subsp. venerealis 8.6 kPa (8.5% O₂), C. coli 12.7 kPa (12.5% O₂), and C. fetus subsp. fetus 18.1 kPa (17.9% O₂) (Ware et al., 1977). Thus aerotolerance increases with increase in the SOD activity.

Catalase is another important factor in the aerotolerance of a bacterium. Since our C. sputorum strains had no significant catalase activity, SOD may be dominant in preventing oxygen damage in these organisms. Oxygen utilization is indicated in all the Campylobacter strains studied, by the presence of a positive oxidase reaction.

The migration patterns shown in Fig. 1 suggest that Campylobacter spp. have several electrophoretically distinct variants of SOD. An isoenzyme of Rm 0.57 was the main component in C. sputorum, while an isoenzyme of Rm 0.73 is the characteristic main component of both C. fetus subsp. and of C. jejuni. However, C. jejuni is distinguishable from C. fetus by the absence of a second major isoenzyme of Rm 0.82. Campylobacter fetus subsp. fetus and C. fetus subsp. venere-
Superoxide dismutase of Campylobacter spp. 2795

C. sputorum subsp. sputorum
C. sputorum subsp. bubulcus
C. coli
C. jejuni
C. fetus subsp. fetus
C. fetus subsp. venerealis
E. coli IID 861
P. acnes ATCC 11827
V. alcalescens ATCC 17748
Control (bovine blood SOD)

Fig. 1. Drawings of electrophoretic migration patterns of SOD of six species/subspecies of Campylobacter, and of E. coli, P. acnes and V. alcalescens (control: bovine blood SOD). Crude cell-free extracts were subjected to electrophoresis, using 0-1 to 0-3 mg protein per gel. The gels (7% acrylamide) were stained for superoxide dismutase. Migration distances of negative-stained bands were converted to relative mobilities (Rm) by dividing each migration distance by that of the front marker (bromophenol blue).

eals have similar main bands (Rm 0.72, 0.81 and Rm 0.73, 0.82) but they can be distinguished from each other since the latter has two trace bands (Rm 0.52, 0.57), and the former only one (Rm 0.60).

Contrary to the results of Ware et al. (1977), inhibition of SOD activity by CN⁻ was not observed. Our results are thus in line with evidence that bacteria do not have Zn,Cu-SOD (Fridovich, 1974). Hoffman et al. (1979b) reported that the SOD of C. jejuni was an Fe-type enzyme. In view of the various enzyme activities and different electrophoretic profiles of SOD in Campylobacter spp., it seems probable that some species or subspecies of Campylobacter may also have Mn-SOD. The higher SOD activities and large activity variations in C. fetus subsp. fetus might be due to an active synthesis of Fe-SOD and/or Mn-SOD.

In conclusion, the present results indicate that the electrophoretic analysis of SOD may be useful in distinguishing C. sputorum, C. coli, C. jejuni, C. fetus subsp. fetus and C. fetus subsp. venerealis.

The authors thank Dr Hashimoto, The Hokkaido Branch Laboratory, National Institute of Animal Health, for kindly giving the strains of Campylobacter.

REFERENCES


Hoffman, P. S., Krieg, N. R. & Smibert, R. M.


Reich, C. V., Morse, E. V. & Wilson, J. B. (1956). Gaseous requirements for growth of Vibrio fetus. American Journal of Veterinary Research 17, 140–143.


