Altered Mercury Transport in a Mutant of *Pseudomonas fluorescens* B69

By TAMAR BARKAY† and RITA R. COLWELL*

Department of Microbiology, University of Maryland, College Park, Maryland 20742, U.S.A.

(Received 30 November 1982; revised 29 March 1983)

A 34 MDal plasmid harboured by *Pseudomonas fluorescens* B69 carried a gene coding for the mercuric reductase enzyme, thus promoting mercury resistance in the host strain. Mercury-sensitive variants were isolated when a hypersensitive, cured derivative of strain B69 was exposed to 10 μg mercury (II) ml⁻¹. The alteration in mercury transport appeared to be the result of a mutation, since a transconjugant of the mutant, which carried the mercury-resistance plasmid, showed a reduced rate of mercury volatilization compared to the parental resistant strain. In addition, more mercury was tightly bound to the mutant cells. This phenomenon represents a new aspect of bacterial resistance to mercurials.

INTRODUCTION

The ‘classic’ mercury resistance mechanism in bacteria is the inducible reduction of ionic mercury (Hg²⁺) to the volatile elemental form (Hg⁰), which leaves the growth medium due to its high vapour pressure, allowing commencement of bacterial growth (Weiss et al., 1978). This activity is conferred by mercuric reductase, a cytoplasmic enzyme (Schottel, 1978). Bacteria which are resistant to, and volatilize mercury from organomercurial compounds, produce an organomercurial lyase in addition to the mercuric reductase (Summers & Silver, 1978). Both enzymes are encoded by genes carried on plasmids in *Escherichia coli*, pseudomonads and *Staphylococcus aureus*. Those plasmids which carry genes for the reductase and lyase are termed ‘broad range’ mercury-resistance plasmids, whereas plasmids which carry the reductase gene alone are termed ‘narrow range’ resistance plasmids (Weiss et al., 1978). The mercuric reductase gene (*merA*) is a part of the *mer* operon, which also includes an inducible transport gene (*merT*) and is positively regulated by the *merR* gene product in the presence of certain mercurial compounds. Mercury transport mediated by *merT* is detected in cells carrying an inactive *merA* gene by hypersensitivity to, and hyperbinding of, mercury, compared with mercury-sensitive cells which do not carry the *mer* operon (Foster et al., 1979).

Although the volatilization of mercury is the best understood mercury-resistance mechanism (Summers & Silver, 1978), alternative mechanisms exist. Two such examples of plasmid-determined resistance are the formation of a complex of inorganic mercury with H₂S (Pan-Hou & Imura, 1981) and the presence of a cell wall barrier to ionic mercury (Pan-Hou et al., 1981). Involvement of host cell functions in the mercury-resistance mechanism was suggested by the observed differences in the degree of resistance to mercury demonstrated by *Proteus mirabilis* and *E. coli*, each of which harboured the same mercury-resistance plasmid (Nakahara et al., 1979a).

Pseudomonas fluorescens B69 is a mercury-resistant bacterium isolated from Chesapeake Bay and identified and classified by Austin et al. (1977). Mercury resistance in this strain was conferred by the reduction of the mercuric ion to the volatile elemental form (Olson et al., 1979), and its extracts contained mercuric reductase activity (S. Silver & T. Kinscherf, personal

† Present address: Program in Social Ecology, University of California, Irvine, California 92717, U.S.A.

Abbreviation: MIC, minimum inhibitory concentration.
A 34 MDal plasmid carried by \textit{P. fluorescens} B69 was tentatively identified as a mercury-resistance plasmid, since its spontaneous curing resulted in loss of resistance to mercury (Olson \textit{et al}., 1979). In this communication, we describe a mutant derivative of \textit{P. fluorescens} B69 which can grow in elevated concentrations of mercurials after elimination of the mercury-resistance plasmid harboured by the parental strain.

METHODS

\textit{Bacterial growth media.} Unless specifically mentioned, all experiments were carried out using Yamada medium (Yamada \& Tonumura, 1972) modified to support growth of marine and estuarine bacteria (Olson \textit{et al}., 1979).

\textit{Resistance to mercurial compounds.} Susceptibility to mercurial compounds was determined using the disc diffusion test (Bauer \textit{et al}., 1966). Exponentially growing cultures (turbidity, \(A_{525} = 0.2\)) were spread on a solid medium and a disc (Schleicher \& Schuell, Keene, N.H., U.S.A.) impregnated with the inhibiting compound was placed in the centre of the agar plate after inoculation. Plates were incubated at 25 °C for 48 h, after which the diameter of the zone of inhibition were determined. Mercury compounds tested included: mercuric chloride (Fisher Scientific Company, Fair Lawn, N.J., U.S.A.), mercuric acetate, sodium ethylmercurithiosalicylate (thimerosal) and p-hydroxymercuribenzoate (Sigma); all were dissolved in distilled H2O. Phenylmercuric acetate and fluorescein mercuric acetate (Sigma) were dissolved in methanol and 0.4 M NaOH, respectively. A solution (1 M in H2O) of methylmercuric hydroxide was purchased from Alfa Division, Ventron Co. (Danvers, Mass., U.S.A.). Minimal inhibitory concentrations (MICs) of inorganic mercury (as HgCl2) were determined by diluting cultures (1:100) in the exponential phase of growth into a series of tubes containing several concentrations of the test compound. Results, i.e. growth versus no growth, compared with growth in the absence of mercury, were recorded after incubation for 48 h at 25 °C.

\textit{Mercury analysis.} Volatilization of mercury was determined as previously described (Olson \textit{et al}., 1979). Total mercury was determined by direct application of liquid samples into the graphite furnace of an atomic absorption spectrophotometer (Perkin Elmer, model 460). Measurements were carried out under the following conditions: dry cycle for 30 s at 110 °C; char cycle, 0 s at 110 °C; atomization, 10 s at 950 °C. Atomized mercury was measured at 253 nm. The spectrophotometer internal standard system, using three reference points [S1 = 10, S2 = 5 and S3 = 2.5 μg Hg (as HgCl2) ml\(^{-1}\)] was employed for calibration.

\textit{Construction of transconjugant strains.} A 34 MDal plasmid was introduced into the cured strain B69A and the mutant strain B69AR1 by conjugation between spontaneous streptomycin-resistant derivatives of these strains, as recipients, and \textit{P. fluorescens} B69 as donor. Recipients were selected by plating a ten-fold concentrated, late-exponential phase culture on to a medium containing 300 μg streptomycin sulphate (Sigma) ml\(^{-1}\). About 10³ colonies per plate were visible after incubation for 48 h at 25 °C. Overnight cultures of the donor, strain B69, and recipients, either B69A or B69AR1, were diluted 1:50 into fresh broth and incubated, with shaking, at 25 °C till a turbidity of \(A_{525} = 0.5\) was reached. Mating mixtures, consisting of 0.95 ml of diluted (1:25) recipient suspensions and 0.05 ml of similarly diluted donor suspension were prepared and incubated at 25 °C with slow shaking, at 50 r.p.m. on a rotary shaker. Matings were halted after 2 h by diluting and plating the mating mixtures. Transconjugants were selected on a solid medium containing 300 μg streptomycin sulphate ml\(^{-1}\) and 15 μg Hg (as HgCl2) ml\(^{-1}\). Donor cells were enumerated as previously described (Olson \textit{et al}., 1979) on a solid medium containing only 10 μg Hg (as HgCl2) ml\(^{-1}\) as the selective agent. The plates were incubated for 48 h at 25 °C. Efficiency of conjugation was found to be 1.5 × 10\(^{-4}\) transconjugants per donor cell. Controls, consisting of donor and recipient, were treated identically and did not yield any streptomycin-mercury-resistant derivatives.

Purified clones of transconjugants were designated B69A* and B69AR1* for the cured and mutant strains, respectively. The physical presence of a 34 MDal plasmid in DNA preparations from the two transconjugants was detected by agarose gel (0.4%) electrophoresis (Olson \textit{et al}., 1979) modified to support growth of marine and estuarine bacteria (Olson \textit{et al}., 1979). The proportion of cell-associated mercury, as a percentage of the total mercury, was determined for cultures at the end of the exponential growth phase. Samples for the determination of total mercury were withdrawn prior to separation of cells from the growth medium. Cells were spun down (8000 g, 15 min, 5 °C) and the supernatant removed. The pellet was rinsed once and then resuspended in an equal volume of fresh broth. The amounts of mercury in each one of the fractions was determined as described above. Cell rupture and separation of cell walls was carried out as described by Work (1971).

RESULTS

\textit{Isolation of mercury-sensitive mutants}

\textit{Pseudomonas fluorescens} B69A is a mercury-hypersensitive strain, obtained when the mercury-resistant strain B69 is cured of a 34 MDal plasmid (Olson \textit{et al}., 1979). The presence of mutant derivatives, less susceptible to mercury than the hypersensitive B69A, was suggested by
Mercury transport mutant of *P. fluorescens*

Table 1. Resistance of *P. fluorescens* strains B69, B69A and B69AR1 to mercury compounds

<table>
<thead>
<tr>
<th>Zone of inhibition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>Mercuric chloride</td>
</tr>
<tr>
<td>Mercuric acetate</td>
</tr>
<tr>
<td>Sodium ethylmercurithiosalicylate</td>
</tr>
<tr>
<td>p-Hydroxymercuribenzoate</td>
</tr>
<tr>
<td>Phenylmercuric acetate</td>
</tr>
<tr>
<td>Fluorescein mercuric acetate</td>
</tr>
<tr>
<td>Methylmercuric hydroxide</td>
</tr>
</tbody>
</table>

* The zone of inhibition is the diameter (mm) around discs impregnated with 50 μg of the indicated compound. Values are the mean of duplicate determinations.

two observations. Firstly, delayed growth (with a lag period of 3 d) was observed in a mercuric chloride-amended broth culture [10 μg Hg (as HgCl₂) ml⁻¹] of B69A. Secondly, single colonies of B69A were detected within the clear zone of inhibition around discs impregnated with mercuric chloride. The adaptation-mutation test of Luria & Delbrück (1943) was employed in order to demonstrate that the derivative strains resulted from a mutation event, rather than adaptation to growth in the presence of mercury. The mutation rate was 3.5 × 10⁻⁷ mutational events per generation for strain B69A.

A representative mutant strain, designated B69AR1, was isolated and characterized. The degree of resistance to mercuric compounds was determined, using the disc diffusion test. Results indicated that the resistance of the mutant strain was between that observed for resistant parental strain B69 and the hypersensitive strain B69A (Table 1). MICs determined for strains B69, B69A, and B69AR1 were 25, 0.25, and 5.0 μg Hg (as HgCl₂) ml⁻¹, respectively. Resistance patterns obtained for some of the organomercurials followed those observed for inorganic mercury (Table 1). Thus, strain B69A was found to be hypersensitive to mercuric acetate and fluorescein mercuric acetate, whereas B69 and the mutant strain (i.e. B69AR1) were resistant and sensitive to these compounds, respectively. Strain B69A was sensitive to, and strains B69 and B69AR1 were resistant to p-hydroxymercuribenzoate.

Resistance to several antibiotics and various heavy metal salts was tested, in order to determine whether the mutation which renders B69AR1 sensitive to mercury also altered susceptibility to other antibacterial agents. No such alterations were detected, i.e. the previously reported resistance patterns (Olson *et al.*, 1979) were observed for the mutant strains.

Mercury concentrations in the medium were monitored during growth of strain B69AR1 (Olson *et al.*, 1979). Loss of mercury from the medium was not observed, even though a 10000-fold increase in cell mass was detected after incubation for 30 h. Thus, the partial gain of resistance in strain B69AR1 did not arise from volatilization of mercury.

Mercury volatilization by transconjugant strains

Volatile rates of mercury (as HgCl₂), were determined for strains B69, B69A* and B69AR1*. Cultures, induced by overnight growth in broth amended with 1.0 μg Hg ml⁻¹, were diluted 1:100 into fresh medium containing 10 μg Hg ml⁻¹. Volatilization and growth kinetics were monitored as previously described (Olson *et al.*, 1979). Loss of mercury from the growth media of the three tested strains and of an uninoculated control is illustrated in Fig. 1. Identical volatilization patterns were observed for the parental strain B69 and strain B69A*, with loss of 70% (w/v) of added mercury occurring within 12 h. A reduced rate of volatilization was observed for strain B69AR1*, with as much as 80% (w/v) of the added mercury still present in the growth medium after 26 h of incubation. Identical bacterial growth patterns were demonstrated by the three strains, with a cell density of 5-0 × 10⁹ cells ml⁻¹ at the end of the exponential growth phase.
Fig. 1. Mercury volatilization by *P. fluorescens* B69, B69A* and B69AR1*. Loss of mercury from the growth medium was monitored as described in Methods. The percentage of the total mercury added (as HgCl₂) remaining in the medium is given for strains: B69 (○); B69A* (△); B69AR1* (□); and uninoculated control (●).

Table 2. Distribution of mercury (as HgCl₂) in growth medium and cell mass after incubation for 26 h

<table>
<thead>
<tr>
<th>Strain</th>
<th>Total (µg ml⁻¹)</th>
<th>Supernatant (µg ml⁻¹)</th>
<th>%*</th>
<th>Pellet (µg ml⁻¹)</th>
<th>%*</th>
<th>10⁻⁹ × no. 10¹¹ × Hg of cells ml⁻¹$</th>
<th>10⁻¹ × Hg per cell (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B69</td>
<td>3.42</td>
<td>3.56</td>
<td>100</td>
<td>0.1</td>
<td>2.9</td>
<td>6.2</td>
<td>1.6</td>
</tr>
<tr>
<td>B69A*</td>
<td>3.49</td>
<td>3.87</td>
<td>100</td>
<td>0.06</td>
<td>1.7</td>
<td>3.2</td>
<td>1.9</td>
</tr>
<tr>
<td>B69AR1*</td>
<td>9.00</td>
<td>7.84</td>
<td>87.1</td>
<td>1.32</td>
<td>14.7</td>
<td>5.6</td>
<td>24.0</td>
</tr>
</tbody>
</table>

† Mercury was analysed as described in Methods.
‡ Percentage of total mercury.
§ Cell counts were determined by spread-plating diluted samples on modified Yamada medium (Olson *et al.*, 1979). Inoculated plates were incubated for 48 h at 25 °C.

Association of mercury with cells

The amounts of mercury associated with the cells of strains B69, B69A* and B69AR1* after 26 h of growth in Hg (as HgCl₂)-amended medium were determined (Table 2). Only negligible amounts of mercury were associated with the cells of strains B69 and B69A*. In contrast, 14.7% of the residual mercury was associated with the cells of strain B69AR1*. When the amount of mercury per viable cell was calculated, B69AR1* cells were found to be associated with at least ten times more mercury than B69 and B69A* cells (Table 2). When a similar analysis was carried out with strain B69AR1, 15.5% of the total mercury, i.e. 0.89 µg Hg ml⁻¹ of the total of 5.69 µg Hg ml⁻¹, was cell-associated (data not shown).

Cell-associated Hg was found exclusively in the cell envelope fraction, analysed after cellular disruption with a French Pressure Cell (Aminco 4-3396, Travenol Labs, Inc., Savage, Md., U.S.A.) and fractionation by ultracentrifugation at 120000 g for 20 min. Washing the cell walls with fresh growth medium did not release any bound mercury, indicating a tight association of the Hg to the wall material. Bound mercury was released after overnight incubation with trypsin (Sigma) added to a final concentration of 1.2 µg ml⁻¹. Loss of bound mercury was not detected when cell wall preparations were similarly incubated in the absence of trypsin.
DISCUSSION

The conjugal transfer of mercury resistance from *P. fluorescens* B69 to its isogenic strain B69A confirms the identification of the 34 MDal plasmid as a mercury-resistance plasmid. Resistance patterns to organomercurials (Table 1), indicate that the 34 MDal plasmid is a ‘narrow range’ mercury-resistance plasmid, since it conferred resistance to *p*-hydroxymercuribenzoate and fluorescein mercuric acetate, but not volatilization of mercury from these compounds (Barkay, 1980). No other resistance to antibacterial agents was co-transferred with mercury resistance to the recipient strains, indicating no genetic linkage between this trait and the resistances observed for *P. fluorescens* B69 (Olson et al., 1979).

Mutants able to grow in the presence of an elevated concentration of mercury were selected when the hypersensitive strain B69A was exposed to 10 μg Hg (as HgCl₂) ml⁻¹. The mutation might have been masked by the higher level of resistance conferred by the mercury-resistance plasmid in the parental strain B69. Isolation of mutants, therefore, would not be achieved until the plasmid was eliminated. The resistance level demonstrated by strain B69AR1 [5.0 μg Hg (as HgCl₂) ml⁻¹] was in the range found for mercury-sensitive hospital bacterial isolates (Nakahara et al., 1977). However, no information is available for resistance levels of sensitive bacteria isolated from the aquatic environment.

Levels of mercury resistance demonstrated by strains B69, B69A and B69AR1 are similar to those reported for resistant, hypersensitive, and sensitive *E. coli* strains, respectively. On a genetic basis, hypersensitivity to mercury is attributed to an active merT gene in the absence of a functioning merA gene (Foster et al., 1979; Summers & Kight-Olliff, 1980). If resistance in strain B69 resulted from a similar phenomenon, a functioning merT gene should be present in strain B69A, implying that either merT is not carried on the 34 MDal plasmid, or that an additional merT gene is part of *P. fluorescens* B69 genome. Wang et al. (1978) reported a plasmid-determined increased sensitivity to mercury, which they attributed to an active merT gene. Information presently available is not sufficient to draw conclusions as to the genetic origin of the hypersensitivity observed for strain B69A.

Strain B69AR1 phenotype appears to arise from an alteration in cell wall permeability to mercury. A reduced rate of volatilization was demonstrated by strain B69AR1*, compared to strains B69 and B69A* (Fig. 1). The mercury-resistance plasmid was present in strain B69AR1*, judged by its physical presence in DNA preparations, this strain’s full resistance to mercury, and the fact that it volatilized mercury (albeit at lower rates). Therefore, the only possible explanation for the decrease in the rate of mercury volatilization must lie in a reduced transport of this heavy metal from the growth medium to the cytoplasmic mercuric reductase.

Mercury-sensitive derivatives of hypersensitive *E. coli* strains were described by Foster & Nakahara (1979), who ascribed this phenomenon to the inactivation of the permease gene, merT. Hypersensitive cells, containing an active merT, hyperbound mercury, compared to sensitive merT cells (Nakahara et al., 1979b). No such differences in binding of radioactive mercury were detected when the procedure described by Nakahara et al. (1979b) was performed with strains B69A and B69AR1. Both of the strains that were tested bound identical amounts of mercury, yielding similar binding rates (data not shown). However, B69AR1 and B69AR1* cultures at the late-exponential phase of growth were consistently found to be associated with greater amounts of mercury than B69 or B69A*. We therefore suggest that the impaired step in the transport of mercury in the mutant strain is not the merT-mediated function, but, more likely, another, as yet unidentified part of the transport system. Alternatively, the possibility remains that mercury transport in *P. fluorescens* B69 differs from the system studied in *E. coli*.

In summary, *P. fluorescens* B69AR1 appears to possess a mutation involved in mediating reduced mercury transport through the cell envelope. Since this mutation does not seem to affect the mercuric permease gene, merT, it indicates that either additional components of the mercury transport system exist or else that *P. fluorescens* B69 mercury transport system differs from the *E. coli* system. The results of this study suggest the complex role of mercury transport in bacterial resistance to mercurials.
We thank Dr David Popkin for his assistance with the conjugation experiments. Our grateful appreciation is expressed to Mrs Gwen Brown for her expert assistance in preparing the manuscript. This work was supported by the U.S. National Science Foundation Grant no. DEB 77-14646 and National Oceanic and Atmospheric Administration Sea Grant 04-8-MOI-71.

REFERENCES

