SHORT COMMUNICATION

Transfer of RP4::Mu to Salmonella typhimurium

By I. R. BEACHAM* AND S. GARRETT

School of Science, Griffith University, Nathan, Queensland, 4111, Australia

(Received 1 August 1980; revised 12 December 1980)

Restriction-proficient strains of Salmonella typhimurium are shown to be ineffective as recipients of normal RP4::Mucts62 due to the operation of two restriction systems (hsdSA and hsdLT) on the Mu moiety of this plasmid. Strains mutant in both these hsd loci are excellent recipients.

INTRODUCTION

RP4::Mu hybrid plasmids have been demonstrated to be of great potential significance for the in vivo genetic engineering of a variety of bacterial genera (Dénarié et al., 1977; Faelen et al., 1977). This is due to the transposable nature of Mu and to the exceptionally broad host range of the P group plasmid RP4. Thus bacteriophage Mu DNA which has a very limited host range can be introduced into a variety of hosts as RP4::Mu. However, the properties of this plasmid vary in different hosts.

Salmonella typhimurium is resistant to Mu infection (Taylor, 1963). In this report we describe the transfer of RP4::Mucts62 from Escherichia coli to the closely related Salmonella typhimurium and the expression of the plasmid in this new host.

METHODS

Bacterial strains and plasmids. Relevant genotypes are given in Tables 1 and 2. Escherichia coli strain 4K was originally obtained from Dr S. W. Glover (Bannister & Glover, 1970). Salmonella typhimurium strain JC5466 carrying RP4 or pGM14 (=RP4::Mucts62) are described by Dénarié et al. (1977), and were obtained via Dr J. Pemberton. Salmonella typhimurium strains 4233, 4296, 4423 and 4253 were obtained from Dr S. Hattman (see Hattman et al., 1976) and Dr K. Sanderson, and strain SL1654 (=CL4419) from Dr B. A. D. Stocker. The latter strain is hsdM+ at both the hsdLT and hsdSA loci (see Ornellas & Stocker, 1974).

Media. R broth (Beacham & Yagil, 1976) was used for all conjugation experiments and for assays of Mu. Selective medium was appropriately supplemented M9 minimal medium (Miller, 1972) with 0.2% (w/v) glucose as carbon source.

Conjugation. For quantification of transfer frequency, crosses were performed using filter matings. Equal cell numbers of donor and recipient were deposited on a Millipore filter (0.45 μm pore size) and the filter was then placed on solidified R broth medium for 2–4 h. Patch matings (Holloway, 1978) were sometimes used to ascertain that transfer frequencies were high or to construct particular strains. Selection for simultaneous ampicillin resistance (ApR) and tetracycline resistance (TcR) was used to detect transfer of RP4 markers. Transconjugants were checked for appropriate genetic markers.

Induction and assay of Mu. Mu was assayed by the soft agar overlay method. Heat induction of Mucts62 was performed as described by Bukhari & Ljungquist (1977). Immunity to Mu was determined by spotting a drop of Mucts62 lysate on a lawn of cells in soft agar and incubating at 28 °C.
RESULTS AND DISCUSSION

Crosses between an *E. coli* strain [JC5466(pGM14)] carrying RP4::Mucts62 and an *S. typhimurium* recipient (B96 or SA1475) revealed an extremely low level (1 × 10⁻⁷ to 5 × 10⁻⁷, or less, per donor) of Ap⁺Te⁺ transconjugants (Table 1). Overnight matings (patch or filter) were usually necessary to obtain even a few transconjugants. These putative RP4::Mu-containing *S. typhimurium* recipients transferred the drug resistance markers at high frequency to secondary *S. typhimurium* and *E. coli* recipients in patch matings. However, most of the original transconjugants and the secondary *E. coli* recipients were (a) not temperature sensitive for growth and (b) did not produce Mu particles after heat induction. One secondary *E. coli* recipient was tested and was additionally found to be not immune. A minority (about 10%) of the secondary *E. coli* recipients were slightly temperature-sensitive in that smaller irregular-shaped colonies were obtained at the high temperature and these were also immune to Mu. However, they did not produce Mu after heat induction. Crosses with an RP4 donor [strain JC5466(RP4)] showed that this plasmid was transferred at high frequency to *S. typhimurium* (Table 2). We conclude that only those RP4 plasmids which have lost Mu DNA, or plasmids in which Mu is defective, are transferable to *S. typhimurium*. Whilst restriction or zygotic induction could simply explain a low frequency of transfer of RP4::Mu to *S. typhimurium*, the reason for a total absence of detectable non-defective plasmid transfer was less apparent. Zygotic induction seemed particularly unlikely since *E. coli* recipients which are not lysogenic for Mu are good recipients of RP4::Mucts62. However, use of an *S. typhimurium* recipient deficient in two out of the three known restriction systems (Colson et al., 1970; Colson & Van Pel, 1979) resulted in a high frequency of transconjugants (Tables 1 and 2). *S. typhimurium* recipients of pGM14 in turn transferred drug resistance at high frequency back to *E. coli* (Table 2) and to

### Table 1. Transfer frequency of RP4::Mucts

<table>
<thead>
<tr>
<th>Donor</th>
<th>Recipient</th>
<th>Restriction genotype of recipient</th>
<th>Transfer frequency (per initial donor)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>E. coli</em></td>
<td><em>S. typhimurium</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>SL1654</td>
<td>hsdLT⁻ hsdSA⁻</td>
<td>2.3 × 10⁻³</td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>SA1475</td>
<td>hsdLT⁺ hsdSA⁺</td>
<td>&lt;5 × 10⁻⁸</td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>B96</td>
<td>hsdLT⁺ hsdSA⁺</td>
<td>5 × 10⁻⁷</td>
</tr>
</tbody>
</table>

### Table 2. Transfer frequencies of RP4 and RP4::Mucts

<table>
<thead>
<tr>
<th>Donor</th>
<th>Recipient</th>
<th>Restriction genotype of recipient</th>
<th>Transfer frequency (per initial donor)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>E. coli</em></td>
<td><em>S. typhimurium</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JC5466(RP4)</td>
<td>4233</td>
<td>hsdLT⁺ hsdSA⁺</td>
<td>1.7 × 10⁻⁴</td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>4233</td>
<td>hsdLT⁺ hsdSA⁺</td>
<td>1.3 × 10⁻⁷</td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>4296</td>
<td>hsdLT⁻ hsdSA⁻</td>
<td>1.3 × 10⁻⁴</td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>4423</td>
<td>hsdLT⁺ hsdSA⁻</td>
<td>4.6 × 10⁻⁷</td>
</tr>
<tr>
<td>JC5466(pGM14)</td>
<td>4253</td>
<td>hsdLT⁻ hsdSA⁺</td>
<td>2.4 × 10⁻⁶</td>
</tr>
<tr>
<td><em>S. typhimurium</em></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B96(pGM14)*</td>
<td>4K</td>
<td>hsdK⁺</td>
<td>7.3 × 10⁻³</td>
</tr>
<tr>
<td>B96(pGM14)*</td>
<td>C600</td>
<td>hsdK⁻</td>
<td>4.7 × 10⁻³</td>
</tr>
</tbody>
</table>

* This strain was derived from a mating between B96 and SL1654(pGM14). The latter was derived from a cross with JC5466(pGM14) such as that shown in Table 1.
S. typhimurium (data not shown). Salmonella typhimurium recipients of RP4::Mucts62, from E. coli or from S. typhimurium, produced approximately the same amount of Mu after heat induction of liquid cultures as E. coli (10^7 to 3 x 10^8 plaque-forming units ml^-1), and obvious lysis of the culture was observed. However, temperature sensitivity of single colonies was not observed; this is in contrast to E. coli (RP4::Mucts62) which at 41 °C gave rise to only very small 'nibbled' colonies.

To ascertain the relative importance of the LT and SA restriction systems, the frequency of transfer to strains mutant in either the hsdLT or hsdSA loci was determined. (The role of the third restriction locus, hsdSB, was not tested.) It is evident that both the hsdLT and hsdSA systems are involved in the restriction of Mu since transfer to such strains was greatly reduced relative to transfer to an hsdLT^-hsdSA^- recipient (Table 2). In these crosses the nature of the transconjugants with restricting recipients was not tested. It may also be noted (Table 2) that no restriction by E. coli from an S. typhimurium donor was observed.

Given the relative ease with which RP4::Mucts (or a related hybrid plasmid) has been transferred to quite unrelated genera such as Rhizobium, Pseudomonas, Klebsiella, Rhodopseudomonas and Erwinia (Boucher et al., 1977; Denarie et al., 1977; Tucker & Pemberton, 1979; Coplin, 1979), the complete lack of transfer to S. typhimurium was initially surprising; however, the operation of (at least) two restriction systems would seem to offer an explanation. Evidently only the Mu portion of the plasmid is significantly restricted (Table 2); the defective RP4::Mu plasmids have perhaps escaped restriction by virtue of loss of restriction sites (in Mu genes) for the LT or SA restriction enzymes. In fact, this would seem to be a useful system with which to isolate mutants of Mu in essential functions. Such reasoning also leads to the expectation that hsdLT^- or hsdSA^- mutant recipients in the population would be found with normal RP4::Mucts, though this was not found. Low frequency transfer of RP4::Mu to restriction proficient S. typhimurium also offers an alternative to Rhizobium meliloti (Boucher et al., 1977) for detecting insertion of Mu into RP4.

Transfer to R. meliloti is similar to that reported here in that, firstly, restriction also seems to reduce transfer to this organism as judged by the effect of heat treatment of the recipients. Secondly, transfer to R. meliloti is reduced about 10^4-fold due solely to the Mu phage moiety of the hybrid plasmids; however, in this case the reason may be partly related to the expression of Mu genes in this organism, rather than solely restriction, since a 'small colony' phenotype results.

In summary, it appears that transfer of RP4::Mucts62 to S. typhimurium LT2 is unusual in that restriction seems to be a complete barrier to transfer of the normal hybrid plasmid, but, as expected, once this barrier is surmounted the expression of Mu appears normal.

We thank the ARGC and URGC for their support, and those who generously supplied strains.

REFERENCES


Short communication


