Kinetics of Growth of the Ciliate *Tetrahymena pyriformis* on *Escherichia coli*

By PATRICIA J. WATSON,† KAZUHISA OHTAGUCHI‡ AND A. G. FREDRICKSON*

*Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

(Received 23 May 1980)

The growth of the ciliate *Tetrahymena pyriformis* on non-growing *Escherichia coli* has been studied by following the time courses of population densities and protozoan mean cell volume in batch cultures. Viable, non-encysted protozoa always stopped feeding before the bacterial density was reduced to zero and non-feeding ciliates tended to swim faster than feeding ciliates. In addition, the number of bacteria and other particles of bacterial size consumed in the formation of one new ciliate, when averaged over the lag and reproductive phases of a culture, declined toward a limiting value of about 1.6×10^4 particles per ciliate as the initial density of such particles was increased.

INTRODUCTION

The feeding of protozoa on bacteria, unicellular algae and other protozoa constitutes predation on a microscopic scale. Such predation is important in wastewater treatment, since the protozoa collect and concentrate particulate matter in the water and also serve to regulate competition between decomposer populations. It is probably also important to the dynamics of aquatic ecosystems, where the protozoa constitute a link in the food webs. Finally, it is important in that it is an example of a basic natural process that can be isolated and studied under controlled laboratory conditions. A number of such studies have been reported, beginning with the classic work of Gause (1934) — for a review, see Fredrickson (1977) and also Taylor (1978).

Some of the foregoing studies have dealt with the effect of prey density on the feeding rate of the predators and the results have been particularly interesting. Thus, Salt (1967) in his study of predation of the large ciliate *Woodruffia metabolica* on *Paramecium aurelia* found that the predators' feeding exhibited a threshold type of response to prey density. When the prey density was above a threshold value *Woodruffia metabolica* fed at a rate that was independent of prey density but when the prey density fell below the threshold value *Woodruffia metabolica* underwent a morphological change and formed non-motile, non-feeding cysts.

Danso & Alexander (1975) observed similar phenomena when they added various protozoa to cultures of non-growing bacteria. The protozoa (*Tetramitus rostratus*, and strains of *Hartmanella*, *Naegleria* and *Vahlkampfia*) would eat the bacteria (*Rhizobium meliloti*) down to a threshold level but no further. Dive (1975) observed that *Colpidium campylum* would not start eating bacteria unless the bacterial density exceeded a threshold level, and Berk *et al.* (1976) made similar observations with *Uronema nigricans* and

† Present address: U.S. Department of Agriculture, Northern Regional Research Laboratory, Peoria, Illinois 61604, U.S.A.

‡ Present address: Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O Okayama, Meguro-ku, Tokyo 152, Japan.
Potomacus pottsi. Cessation of feeding and failure to start feeding are probably different aspects of the same behavioural pattern.

Bader et al. (1976) studied the feeding of the small ciliate Colpoda steinii on growing Anacystis nidulans (a cyanobacterium) in chemostat culture. Colpoda steinii encysted under certain conditions, one of which was reduction of the prey density to a threshold level, and this release of the prey from predation pressure had a strong stabilizing effect on the predator-prey relationship. In particular, Bader et al. (1976) never observed sustained oscillations of predator and prey densities in their chemostat cultures, although they did observe damped oscillations of the densities. In contrast, Drake & Tsuchiya (1976) observed what were probably sustained oscillations when they grew Colpoda steinii and Escherichia coli together in a chemostat under conditions of low energy supply rate and high dilution rate, where Colpoda steinii did not encyst.

Jost et al. (1973) studied the feeding of the small ciliate Tetrahymena pyriformis on Escherichia coli, on Azotobacter vinelandii and on a mixture of these two bacteria, in chemostat culture. Unlike Colpoda steinii, T. pyriformis has not been confirmably reported to form cysts (Corliss, 1970). Nevertheless, experimental evidence (Jost et al., 1973) suggested that the feeding behaviour of this ciliate at low prey densities resembles that of encysting protozoa in that a plot of specific feeding rate (number of prey eaten per unit time per predator cell) versus prey density appeared to approach the origin with zero slope rather than with a finite slope. The evidence for this was indirect, but still strong.

Habte & Alexander (1978) provided direct evidence that the feeding rate of T. pyriformis falls to zero, or at least to immeasurably low values, at finite values of prey density. Thus, they found that addition of the predator to suspensions of Klebsiella pneumoniae in saline solution led to a decrease in the bacterial density, but not to complete consumption of the bacteria. If the initial predator density was very high, feeding of the predators never started. Cessation of feeding, or failure to start feeding, could not be explained by inviability of the protozoa, for Habte & Alexander (1978) showed that viable protozoa, as well as viable bacteria, were present when no feeding was taking place.

Many additional phenomena of interest have been observed in studies of protozoan growth. For example, studies of predation on Paramecium aurelia by Woodruffia metabolica, Amoeba proteus and Didinium nasutum showed that the average number of prey consumed by a predator cell during its life cycle declined as predator density increased, even though the prey were replenished periodically and the reproduction rate did not slow down (Salt, 1967, 1968, 1974). An additional study on predation by Didinium nasutum (Salt, 1975) revealed that the volume of a typical predator cell, at a given stage of the life cycle, increased during culture, even though the amount of food consumed per predator decreased. Salt (1975) advanced a working hypothesis to explain these seemingly contradictory observations, but full proof of the hypothesis has not yet appeared.

In the present paper we report results of experiments which were designed to provide additional information on the kinetics of growth of protozoa. We chose Tetrahymena pyriformis rather than an encysting protozoan as the test organism to avoid the dynamical complications of systems in which encystment occurs.

METHODS

All experiments were started by adding a fixed number of T. pyriformis cells to a suspension of E. coli cells in a chemically defined medium which contained no carbon/energy source for E. coli growth. It is essential in such experiments that the inocula have fixed physiological states, or at least have physiological states that can be controlled. To keep the physiological states of the inocula as constant as possible, bacteria and protozoa were cultivated in chemostats operated under fixed conditions of dilution rate and composition of the feed stream; inocula were taken from these chemostats after they had achieved steady states.

Because one of the initial aims of this research was to study food selectivity by T. pyriformis, the chemostat in which it was cultivated was fed with the overflows from two other chemostats, one containing a pure culture of E.
coli and the other containing a pure culture of Azotobacter vinelandii. The selectivity study was postponed when the phenomena reported below became apparent, but use of two bacterial chemostats to feed the protozoan chemostat was continued. Hence, protozoan inocula taken from the chemostat contained some A. vinelandii cells, as well as some E. coli cells.

Organisms. The organisms used were Escherichia coli B (supplied by Professor J. T. Prince, Department of Microbiology, University of Minnesota), Azotobacter vinelandii (supplied by Professor E. Schmidt, Department of Microbiology, University of Minnesota) and Tetrahymena pyriformis GL (supplied by Professor A. Hooper, Department of Biological Sciences, University of Minnesota). Stock cultures of E. coli B were grown and stored at 9-9 °C on slants containing 5 g tryptone, 1 g glucose, 2.5 g yeast extract and 20 g agar per litre. Stock cultures of A. vinelandii were grown at 25 °C in a medium containing 0.2 g MgSO$_4$.7H$_2$O, 5 mg FeSO$_4$.7H$_2$O, 5 mg Na$_2$MoO$_4$.2H$_2$O, 0.1 g CaCl$_2$, 1.77 g K$_2$HPO$_4$, 0.335 g KH$_2$PO$_4$ and 20 g sucrose per litre. Stock cultures of T. pyriformis GL were grown at 25 °C in a broth containing 20 g proteose peptone and 1 g yeast extract per litre.

The chemostats used in growing inocula were patterned after the design of Novick & Szilard (1950) and had capacities of 100 ml. Temperature was maintained at 25 ± 0.2 °C by constant temperature water jackets. The two chemostats for bacterial growth were operated at a dilution rate of 0.02 h$^{-1}$ and were aerated with humidified air at 2.8 h$^{-1}$. The chemostat for protozoan growth was fed with the overflows from the other two vessels, and thus operated at a dilution rate of 0.04 h$^{-1}$. It was aerated with humidified air at 1.4 h$^{-1}$. The concentration of glucose in the feeds to the two bacterial chemostats was 1 g l$^{-1}$. No glucose was detectable by standard analytical techniques in any of the chemostats. When steady states were achieved under the above conditions, the populations obtained were as follows:

- E. coli in E. coli chemostat: 1.6 x 108 cells ml$^{-1}$ by plate count; 2.2 (± 0.2) x 108 cells ml$^{-1}$ by Coulter count; mean cell volume, 0.27 μm3.
- A. vinelandii in A. vinelandii chemostat: 1.85 x 108 cells ml$^{-1}$ by plate count; 2.6 (± 0.2) x 108 cells ml$^{-1}$ by Coulter count; mean cell volume, 1.4 μm3.
- E. coli in protozoan chemostat: 1.26 x 108 cells ml$^{-1}$ by plate count; the Coulter count was about 30% larger.
- A. vinelandii in protozoan chemostat: 1.93 x 108 cells ml$^{-1}$ by plate count.
- T. pyriformis in protozoan chemostat: 6.9 (± 0.6) x 104 cells ml$^{-1}$ by Coulter count; mean cell volume, 2.8 (± 0.6) x 10$^{-6}$ μm2.

Thus, 11,000 viable E. coli cells and 1300 viable A. vinelandii cells or 15,700 particles of the E. coli size range and 1900 particles of the A. vinelandii size range were consumed, on average, by the formation of one new protozoan cell.

Medium. To prevent irreversible complexing of the medium constituents, they were autoclaved in four separate portions (all concentrations are final concentrations in the medium): (i) 0.335 g KH$_2$PO$_4$ and 1.77 g K$_2$HPO$_4$ per litre; (ii) 1.25 g (NH$_4$)$_2$SO$_4$, 0.1 g MgSO$_4$.7H$_2$O, 0.4 mg Na$_2$EDTA.2H$_2$O, 1 mg Na$_2$MoO$_4$.2H$_2$O and 1 mg FeSO$_4$.7H$_2$O per litre; (iii) 0.02 g CaCl$_2$ and 0.01 g NaCl per litre; (iv) 1 g glucose per litre (not added to the medium for batch culture experiments). Distilled water was distributed among the portions and they were autoclaved separately at 120 °C for 30 to 60 min, except for the glucose solution which was autoclaved for only 15 min. The pH was 7.5 after the cooled solutions were mixed.

Batch culture techniques. Inocula for batch cultures were collected from the E. coli and T. pyriformis chemostats after they had reached steady states. In some preliminary experiments, addition of T. pyriformis to the E. coli culture when the bacterial density was large led to death of the protozoa. Qualitative experiments carried out in test tubes confirmed that the E. coli broth had a toxic effect on the protozoa. Hence, two series of batch experiments were conducted.

In the first series, measured volumes of cultures from the two chemostats were added to a batch growth vessel and diluted with sterile medium containing no glucose; the volumes of the chemostat cultures used were such as to give the required initial densities in the batch culture.

In the second series, the E. coli from the chemostat were washed with 0.85% (w/v) saline solution on a membrane filter (0.45 μm pore size) under sterile conditions. If the bacteria were to be used to begin a batch experiment, they were next resuspended in fresh batch culture medium and counted so that the volume of suspension needed for the inoculation could be calculated. If the bacteria were to be added to the stationary phase of a batch culture, the chemostat organisms were counted, quantitatively delivered to the filter, washed and then resuspended in the stationary phase culture itself. Resuspension was carried out by drawing off a portion of the stationary phase culture medium, adding the filter plus bacteria to the medium, swirling to separate the bacteria from the membrane, and returning all but the membrane to the flask. Thus no dilution of the batch culture occurred when the fresh E. coli were introduced.

Since the physiological state of the T. pyriformis inoculum was found to have a marked effect on the subsequent behaviour of a batch culture, and since washing of T. pyriformis was found to alter this state in an inconsistent way, these organisms were not washed. Because they were not washed, some E. coli metabolites from the protozoan chemostat were thereby introduced into the batch cultures. However, by comparing the results of
experiments with washed and unwashed *E. coli*, it was determined that the *E. coli* metabolites added with the *T. pyriformis* inoculum (about 15 ml) had negligible effects on the batch culture. Batch cultures (265 ml) were propagated in glass vessels maintained at 26 ± 0.5 °C and aerated with humidified air at 111 h⁻¹.

Analytical techniques. To count populations, organisms were suspended in a saline solution (containing 8.5 g NaCl and 0.2 g Na₂EDTA per litre) that had been filtered through a Millipore membrane (0.22 μm pore size). The *E. coli* densities were evaluated using a model Z̄ Coulter counter with a 30 μm aperture. *Tetrahymena pyriformis* was counted and sized on a model B Coulter counter with a 100 μm aperture. Sizing was carried out by varying the lower threshold from 1 to 100, such that an integral curve could be generated. From this curve, a mean cell volume was calculated.

The numbers of viable *E. coli* were determined by plating dilutions on tryptone/glucose/yeast extract agar and incubating at 25 °C for about 1 d.

RESULTS

A series of batch culture experiments were performed in which the initial *E. coli* density was varied and the *T. pyriformis* density was fixed. The lowest initial bacterial density, as indicated by Coulter count, was 0.81 × 10⁸ particles ml⁻¹, and the highest density was 5.8 × 10⁸ particles ml⁻¹; to achieve the latter density required the use of almost all of the cells from the 100 ml *E. coli* chemostat. The initial density of *T. pyriformis* was 4.6 (± 0.6) × 10³ cells ml⁻¹ in all runs. Since the ratio of *A. vinelandii* to *T. pyriformis* in the protozoan chemostat was 2.8 : 1, the initial *A. vinelandii* density in the batch runs was 1.3 × 10⁴ cells ml⁻¹. This is only about 0.02% of the lowest initial *E. coli* density used, and so the presence of *A. vinelandii* is assumed to have no effect on the results reported below.

Experiments using washed *E. coli*

Figure 1 shows the time courses of culture variables measured in two runs made at essentially identical initial conditions. Quantities measured include (1) the density of *T. pyriformis* (*Nₚ*) by Coulter count, (2) the density of viable *E. coli* (*Nₑ*) by plate count, (3) the density of small (of the *E. coli* size range) particles (*Nₛₚ*) by Coulter count and (4) the mean
cell volume of *T. pyriformis* (*v* _T_) by Coulter count. The time course of the density of unidentified small particles (*N* _usp_) is also shown. The quantity *N* _usp_ is simply the difference between *N* _sp_ and *N* _E_ and it represents the density of dead *E. coli* and other non-living particles having the same size range as *E. coli*.

The curves of *N* _T_ and *v* _T_ versus time in Fig. 1 show that no divisions of the protozoa occurred during the first 6 h of culture, but that protozoa fed rapidly during this time and increased their mean cell volume by a factor of about 4. Divisions began after about 6 h, and the population doubled in the next 4 h. This was followed by a second doubling which also required about 4 h for completion.

We have drawn the curve of *N* _T_ versus time in Fig. 1 to show a reduction in the fission rate between 9 and 11 h. Such a reduction, if it is genuine, would indicate that fissions were partly synchronous and occurred in two episodes which overlapped only partially.

The evidence supporting the conclusion that fissions were partly synchronous in experiments in which *T. pyriformis* fed on washed *E. coli* is not solely the *N* _T_ versus time data of Fig. 1. The *v* _T_ versus time data of Fig. 1 show that there was a reduction in the rate of decrease in mean cell volume between 9 and 11 h in both replicate runs, and there is even some suggestion that mean cell volume increased during this period. This is entirely consistent with the notion that the fission rate was reduced in this period. Figure 2 shows *N* _T_ and *v* _T_ versus time data for a different run in which, again, *T. pyriformis* fed on washed *E. coli*, but samples were taken at about 1 h intervals rather than at 2 to 3 h intervals as in Fig. 1. The *N* _T_ versus time data of Fig. 2 show a reduction in the fission rate between 11 and 13 h and this is mirrored by an increase in *v* _T_ during the same period. Finally, the apparent reductions in the fission rate shown in Figs 1 and 2 occur at times when the population density has doubled and this, again, is consistent with the notion that fission was partially synchronized. It is true that the flattening of the *N* _T_ versus time curves during the periods between presumed episodes of fission of *T. pyriformis* is not as pronounced as that which can be obtained by some other techniques of synchronization (see, for example, Zeuthen & Rasmussen, 1972), but we believe that the total evidence available warrants the conclusion that fission was partially synchronous when *T. pyriformis* grew on washed *E. coli*.

Figure 1(b) shows the time courses of the densities of particles which were consumed by the protozoa. Of greatest interest is the levelling-off of all three curves (*N* _E_, *N* _sp_ and *N* _usp_ versus time) after about 20 h. This appears to be the phenomenon found by Habte & Alexander (1978), and additional experiments described below show that such was the case.

A second interesting feature of Fig. 1(b) is the consistently more negative slope of the *N* _E_ versus time curve compared with that of the *N* _usp_ versus time curve. This suggests that *T. pyriformis* might have been feeding selectively and taking up living *E. coli* in preference to other particles of the same size range. For, if there were no selectivity, that is, if *T. pyriformis* took up particles at rates that were in the same ratio as their densities in the culture, and if there were no processes that produced unidentified small particles, then the slopes of the *N* _E_ versus time and the *N* _usp_ versus time curves would be the same when plotted on semi-logarithmic paper. In fact, the derivatives −d(log *N* _E_)/dt and −d(log *N* _usp_)/dt are in the ratio 2:3:1 at 10-4 h, when *N* _E_ = *N* _usp_. The data do not prove that feeding was selective, for the same results could have been produced if unidentified small particles were produced during the course of the experiment. We cannot rule out this possibility.

The time courses of *N* _T_, *N* _sp_ and *v* _T_ for an experiment using washed *E. coli* and a higher initial value of *N* _sp_ (5·80 × 10⁸ particles ml⁻¹) are shown in Fig. 2. Time courses of *N* _E_ and *N* _usp_ are not shown because plate counts of *E. coli* were only made at the beginning and end of this experiment. The maximum *T. pyriformis* density achieved corresponded very closely to three doublings but an apparent interruption in the slope of the *N* _T_ versus time curve only occurred once, after the population had doubled once. Peaks appeared in the curve of *v* _T_ versus time at 7 h, when the first episode of division began, and again at about 11·5 h, when the second episode began. No peak was apparent at 14 to 15 h, when the third episode must
have been starting. Possibly, the second and third episodes overlap almost completely, or perhaps the hourly sampling interval was still too coarse. The asymptotic value of N_E, the $E.\ coli$ density in the stationary phase, as determined by plate count, was 2.3×10^8 cells ml$^{-1}$.

Experiments using unwashed $E.\ coli$

Figure 3 shows the time courses of N_T, N_{sp} and \dot{v}_T for an experiment in which the initial density of small particles was large (5.4×10^8 particles ml$^{-1}$). Of greatest interest here is the initial decrease in $T.\ pyriformis$ density. This must represent lysis as well as death of the protozoa, for the density was determined by Coulter count. The data show that about half of the initial population died and lysed. Comparison of Fig. 3 with Fig. 2, where the initial density of small particles was nearly the same, suggests that the decrease in $T.\ pyriformis$ density shown in Fig. 3 was caused by the presence of $E.\ coli$ metabolites in the medium in which $E.\ coli$ were suspended, although the mechanism involved is not clear. The minimum in the curve of C_T versus time which occurs at 12 to 14 h in Fig. 3 suggests that a reduction in fission rate occurred shortly after 14 h, but no reduction is apparent in the N_T versus time curve.

Figure 4 shows time courses of N_T, N_{sp} and \dot{v}_T for an experiment in which an intermediate initial $E.\ coli$ density (3.2×10^8 particles ml$^{-1}$) was used. No initial decrease in $T.\ pyriformis$ density was evident during this run, nor in one using unwashed $E.\ coli$ at an initial density of 4.3×10^8 particles ml$^{-1}$ (data not shown). In the experiment shown in Fig. 4, the $T.\ pyriformis$ density increased by a factor of about 5 between 9 and 16 h, but there is no clear evidence of reductions in the rate of fission and the rate of decrease in mean cell volume during this period.

Factors of increase of $T.\ pyriformis$

If $N_{T,max}$ and $N_{T,0}$ are the maximum and initial densities of $T.\ pyriformis$ in a run, then the ratio $N_{T,max}/N_{T,0}$ is the factor of increase of $T.\ pyriformis$ during the run and

$$G = \log_2(N_{T,max}/N_{T,0})$$

is the number of generations which intervene between an average cell of the culture at the end of the reproductive phase and its ancestor cell in the inoculum. The quantity G cannot be so interpreted if some of the cells die during the run so we apply equation (1) only to runs in which there was no initial decrease in $T.\ pyriformis$ density.
Fig. 3. Time courses of N_t (■), N_{sp} (●) and v_t (▲) (defined in the legend to Fig. 1) in an experiment using unwashed *E. coli* at high initial density.

Fig. 4. Time courses of N_t (■), N_{sp} (●) and v_t (▲) (defined in the legend to Fig. 1) in an experiment using unwashed *E. coli* at an intermediate initial density.

Fig. 5. Effect of the initial density of small particles ($N_{sp,0}$) on the factor increase of *T. pyriformis* ($N_{T,\text{max}}/N_{T,0}$, where $N_{T,\text{max}}$ is the maximum density of *T. pyriformis* achieved in an experiment and $N_{T,0}$ is the initial density) in experiments with washed (□) and unwashed (■) *E. coli*.

Fig. 6. Effect of $N_{sp,0}$ on $nN_{T,0}$ (where n is defined by equation 2 and $N_{sp,0}$ and $N_{T,0}$ are defined in the legend to Fig. 5) in experiments with washed (□) and unwashed (■) *E. coli*.

Figure 5 shows the effect of change in initial *E. coli* density on the factors of increase for runs using both washed and unwashed *E. coli*. There is no obvious difference between the results of the two kinds of experiments, and the factor of increase can be taken to be dependent only on the size of the initial food supply.

We have drawn a smooth curve having inflection points at initial small particle densities of about 3×10^8 and 5×10^8 ml$^{-1}$ through the data points. This suggests that most *T. pyriformis* cells present at the time of their maximum density arose from one division of their ancestor ($G \approx 1$) if the initial density of small particles was between 1×10^8 and 3×10^8 ml$^{-1}$,
from two such divisions \((G \approx 2)\) if the initial density was between \(3 \times 10^8\) and \(5 \times 10^8\) ml\(^{-1}\), etc. A curve without inflection points could have been drawn through the data points and no doubt some would argue that that is what should have been done. We have made no detailed statistical comparison of the curve shown with a curve lacking inflection points, but it is qualitatively evident that a curve lacking inflection points will produce markedly greater deviations of the points from the curve near \(N_{sp,0} = 3 \times 10^8\) particles ml\(^{-1}\) than at other values of \(N_{sp,0}\). This feature is also present in the curve we have drawn, but to a lesser degree. Since there is no \textit{a priori} reason to suppose that the data points are more scattered near some values of \(N_{sp,0}\) than near others, and also because we want to emphasize that there might be a most interesting and unusual phenomenon here, we have drawn the curve with inflection points.

The data of Fig. 5 can be replotted to show the effect of the initial density of small particles on the number of such particles consumed in the formation of an average protozoan cell during the lag and reproductive phases of the culture. If this number be denoted by \(n\), then

\[
\frac{n}{N_{T,0}T} = \frac{N_{sp,0} - N_{sp,Tm}}{N_{T,max} - N_{T,0}} = \frac{N_{sp,0}}{N_{T,0} \left(\frac{N_{T,max}}{N_{T,0}} - 1 \right)}
\]

where \(N_{sp,Tm}\), the density of small particles at the time when \(N_T = N_{T,max}\), was negligible in comparison with \(N_{sp,0}\) in all runs.

Figure 6 is a plot of \(nN_{T,0}\) versus \(N_{sp,0}\). The ordinate was chosen to be \(nN_{T,0}\) rather than \(n\) so that the units of ordinate and abscissa would both be (small) particles ml\(^{-1}\). A graph of \(n\) versus \(N_{sp,0}\) would simply involve a change of the ordinate scale, since \(N_{T,0}\) was nearly constant at \(4.3 \times 10^3\) cells ml\(^{-1}\) in all runs.

The most evident feature of Fig. 6 is the scatter of the data. Some of this scatter is certainly due to errors in the density measurements used to calculate \(nN_{T,0}\). An uncertainty analysis making what appear to be liberal estimates of uncertainties \((\pm 10\% \text{ in } N_{sp,0} \text{ and } N_{T,0}; \pm 25\% \text{ in } N_{T,max})\) produces estimates of uncertainty in \(nN_{T,0}\) which are in rough agreement with the scatter of the data at \(N_{sp,0}\) values from \(1 \times 10^8\) to \(2 \times 10^8\) particles ml\(^{-1}\) but which are only about one-third as great as the observed scatter at \(N_{sp,0}\) values from \(2 \times 10^8\) to \(5 \times 10^8\) particles ml\(^{-1}\). Hence, the scatter seems to have some origin in addition to errors in density measurement.

A second feature of Fig. 6 is that there are no values of \(nN_{T,0}\) less than about \(7 \times 10^7\) particles ml\(^{-1}\) so that there are no values of \(n\) less than about \(1.6 \times 10^4\) particles per \(T. \ pyriformis\) cell. There is thus a minimum particle requirement for forming a new predator cell and this is about \(1.6 \times 10^4\) particles with the \(E. \ coli\) used.

A third feature of Fig. 6 is that the values of \(nN_{T,0}\) tend to converge towards the minimum value of \(7 \times 10^7\) particles ml\(^{-1}\), so the values of \(n\) tend to converge toward the minimum value of \(1.6 \times 10^4\) particles per \(T. \ pyriformis\) cell, as the initial bacterial density is increased. This appears to be the same phenomenon as observed by Salt (1967, 1968, 1974) in his studies of predation by species of \textit{Woodruffia}, \textit{Amoeba} and \textit{Didinium}; namely, that the number of prey consumed per predator per generation decreases as predator density increases.

\textbf{Cessation of predation}

Some experiments were done to test the reality of the phenomenon reported by Habte & Alexander (1978). A number of batch cultures having the same initial densities of \(T. \ pyriformis\) and \(E. \ coli\) were started, and washed \(E. \ coli\) were added to these at different times after a stationary, low bacterial density had been achieved. Densities of \(T. \ pyriformis\) and viable \(E. \ coli\) were followed throughout the whole course of the batch culture, as before. Addition of \(E. \ coli\) to cultures did not dilute them or add any nutrients (see Methods).

Results of these experiments are shown in Fig. 7. The data points for the run on the control batch to which no \(E. \ coli\) were added after constant bacterial density had been achieved have
been omitted for clarity (however, the control run was one of those whose results are plotted in Fig. 1, and the data points for the early part of the run are given there). The results show that a substantial fraction of the T. pyriformis cells were still viable even after 80 h culture (55 h after cessation of feeding), so that cessation of feeding cannot be explained by loss of protozoan viability. Since no nutrients were introduced with the bacteria, exhaustion of some essential nutrient that the protozoa absorb from the medium cannot explain cessation of feeding. Since no water was added with the bacteria, dilution of some inhibitory substance in the culture did not occur, and the presence of such a substance can also be ruled out as an explanation for cessation of feeding. Hence, these results confirm the validity of the observations made by Habte & Alexander (1978).

Two additional experiments were done in which fresh T. pyriformis and E. coli from the steady state chemostat were added to batch cultures at 46.5 h. Enough T. pyriformis were added to raise their density to 2.3×10^4 ml$^{-1}$; the E. coli added raised their viable count from 1.1×10^5 to 1.8×10^5 ml$^{-1}$. No reproduction of T. pyriformis followed these additions, and feeding was just sufficient to reduce the density of viable E. coli to the initial level of 1.1×10^5 cells ml$^{-1}$ over a period of about 10 h. These results provide additional evidence that cessation of feeding is not due to loss of protozoan viability, and they also show that feeding T. pyriformis quickly adapts to low bacterial density and ceases feeding.

Microscopic observations made on the culture showed that T. pyriformis cells behave differently when they are feeding from when they are not feeding. During the initial stages of a batch culture, before division has commenced, the cells are large and turn frequently but their motion is such that during a given period they do not move very far from their initial location. However, after feeding has stopped, the cells are small and they move rapidly in straight lines, so that during a given period they move quite far from their initial location. These observations are consistent with recent quantitative observations on swimming rates of Didinium nasutum cells made by Salt (1979), in which, under conditions of high Didinium nasutum density, the swimming rate of starved cells was significantly higher than that of well fed cells.

Effects of E. coli metabolites on growth of T. pyriformis

Figure 3 shows the initial decrease in T. pyriformis density that occurred when the ciliates were introduced into a dense suspension of unwashed E. coli. Such decreases occurred in
other experiments only when the *E. coli* were not washed and when the initial density of small particles was at least 5×10^8 ml$^{-1}$. These decreases indicate that some metabolite or metabolites of *E. coli* have toxic effects on *T. pyriformis*. Previously, Curds & Vandyke (1966) reported that *Enterobacter cloacae* and *Escherichia coli* are toxic to *Paramecium caudatum* when presented in high concentrations. The present results make it clear that it is metabolic products of *E. coli*, rather than *E. coli* biomass, that have toxic effects on *T. pyriformis*.

Some qualitative experiments (Fig. 8) shed further light on the effects. In these experiments, *T. pyriformis* and unwashed *E. coli* in various combinations of densities were added to test tubes and the contents of the tubes were examined microscopically after 1 h. Control experiments with washed *E. coli* were also done. Living protozoa were always found in the control experiments after 1 h incubation, but only some combinations of densities (see Fig. 8) yielded living protozoa. These results, as well as those shown in Fig. 3, suggest that the metabolite or group of metabolites responsible for killing *T. pyriformis* is consumed by reaction with some portion of the protozoa. One of the ecological implications of this hypothesis is that only a massive infusion of predators would be able to establish itself in a dense culture of prey.

DISCUSSION

Our results confirm the observation of Habte & Alexander (1978) that non-encysted *T. pyriformis* ceases feeding when the density of prey is still far from zero. This phenomenon must exert a powerful stabilizing influence on the *T. pyriformis*–bacteria predation relationship. Its existence is perhaps the main reason why *T. pyriformis* has never been observed to consume all of its prey in any of the several chemostat studies of the relationship which have been reported. In addition, the tendency of non-feeding *T. pyriformis* to swim faster and turn less frequently than feeding *T. pyriformis* must be an effective means by which the protozoa leave a region where their food supply is nearly exhausted. This is of no importance in chemostat situations, but it would be another stabilizing factor in natural environments not subject to strong stirring actions.

Inhibition of *T. pyriformis* growth by metabolic products of *E. coli* can serve the bacteria as a means of defence against the ciliates. The phenomenon does not seem to have been incorporated into any mathematical models of microbial predator–prey relationships, even though it could be an important aspect.
The tendency of the number of bacteria consumed in the formation of a new ciliate cell to decrease as initial bacterial density is increased appears to be identical with the phenomenon observed by others that the number of prey consumed per predator per generation decreases as the predator density increases. The ecological consequences of this phenomenon (or these phenomena) are not clear.

Our results suggest, although they do not prove beyond reasonable doubt, that reproduction of *T. pyriformis* feeding on washed *E. coli* is partially synchronous, that *T. pyriformis* takes up viable *E. coli* in preference to non-viable *E. coli* and other non-living particles of the *E. coli* size range, and that the curve of the factor of increase of *T. pyriformis* versus initial food availability (Fig. 5) has inflection points. It is well known that fission of *T. pyriformis* can be synchronized (Zeuthen & Rasmussen, 1972), and Dive (1973) has reported that the ciliate *Colpidium campylum* fed selectively on Gram-negative bacteria when presented with a mixture of Gram-negative and Gram-positive bacteria. These observations may render our suggestions that synchrony and food preference were observed in the present experiments somewhat less implausible. However, we know of no other reports of phenomena like that exhibited by the curve in Fig. 5.

This work was supported by the National Science Foundation, grant no. NSF/ENG77-21632.

References

