Partial Purification of Glycerate Kinase from *Flavobacterium* sp.

By ANDREW WILLETTS

Department of Biological Sciences, University of Exeter, Exeter EX4 4QG

(Received 6 March 1978)

INTRODUCTION

A *Flavobacterium* sp. (NCIB 11171) grown on ethylene glycol oxidized the diol to glyoxylate which was further metabolized to pyruvate by the glycerate pathway (Child & Willetts, 1978). However, it was not established whether the reaction product of glycerate kinase in ethylene glycol-grown NCIB 11171 was 3-phosphoglycerate, as in glycerate-grown *Escherichia coli* operating a restricted Embden–Meyerhof–Parnas pathway (Doughty *et al.*, 1966), or 2-phosphoglycerate, as in methanol-grown *Hyphomicrobium* x (Harder *et al.*, 1973; Hill & Atwood, 1974, 1976a), methanol-grown *Pseudomonas* AM1 (Hill & Attwood, 1974, 1976a) and methyamine-grown *Pseudomonas* MA (Newaz & Hersh, 1975) operating the serine pathway.

This communication describes the partial purification of glycerate kinase from ethylene glycol-grown NCIB 11171 and demonstrates indirectly that the product of the reaction is 2-phosphoglycerate.

METHODS

Micro-organism maintenance and culture. The maintenance and growth of NCIB 11171 in ethylene glycol minimal medium was as previously described (Child & Willetts, 1978).

Preparation of cell extracts. Bacteria were suspended in 0.1 M-potassium phosphate buffer, pH 7.0, and disrupted ultrasonically; the supernatant after centrifugation (0°C, 10000 g, 15 min) was used as the cell extract (Child & Willetts, 1978).

Enzyme assays. Glycerate kinase (EC 2.7.1.31), phosphopyruvate hydratase (EC 4.2.1.11), phosphoglycerate mutase (EC 2.7.5.3) and the conversion of glycerate to phosphoenolpyruvate were assayed as described by Harder *et al.* (1973). 3-Phosphoglycerate kinase (EC 2.7.2.3) was assayed by the method of Roustan *et al.* (1973).

Protein determination. Protein was assayed by a Folin-Ciocalteu method (Lowry *et al.*, 1951) using bovine serum albumin as a standard.

Partial purification. All procedures were carried out at 0°C unless otherwise stated.

Step 1. Ammonium sulphate fractionation. Cell extract from ethylene glycol-grown cells was adjusted to 30% saturation with ammonium sulphate, allowed to stand for 30 min and the precipitated protein was removed by centrifugation (0°C, 15000 g, 15 min). The supernatant was adjusted to 50% saturation with ammonium sulphate, allowed to stand for 40 min and then centrifuged as above. The resultant pellet of precipitated protein was washed twice in 0.1 M-potassium phosphate buffer, pH 7.0, and resuspended in the minimum volume of buffer.

Step 2. Bio-Gel P300 gel filtration. The 50% ammonium sulphate precipitate in buffer (3.5 ml, protein content 10-42 mg ml⁻¹) was applied to a Bio-Gel P300 column (35 x 2.5 cm) and eluted with 0.1 M-potassium phosphate buffer, pH 7.0, by upward-flow gel filtration. The flow rate was 0.15 ml min⁻¹. Fractions (4-7 ml) were collected, monitored at 253.7 nm with an LKB Uvicord I UV spectrophotometer and assayed for glycerate kinase, phosphoglycerate mutase and 3-phosphoglycerate kinase activities. Specific activity measurements of the peak fractions (Fig. 2) showed approximately 100-fold purification of glycerate kinase, 125-fold purification of phosphoglycerate mutase and 160-fold purification of 3-phosphoglycerate kinase relative to crude extract. Active fractions were stored at -20°C if not used immediately.

Indirect determination of reaction product of partially purified glycerate kinase. The NADH-dependent reduction of pyruvate resulting ultimately from the phosphorylation of glycerate (Fig. 1) was assayed spectrophotometrically at 340 nm. Partially purified glycerate kinase (2.0 ml, 4 mg protein), free from phosphoglycerate mutase activity, was incubated for 30 min at 25°C in a reaction mixture (final vol. 4.0 ml) con-
Short communication

Fig. 1. Possible pathways for the metabolism of glycerate.

Glycerate can be metabolized into 2- or 3-phosphoglycerate. 2-Phosphoglycerate is further metabolized into 3-phosphoglycerate via phosphoglycerate mutase. ADP kinase can convert 3-phosphoglycerate into phosphoenolpyruvate, and pyruvate kinase converts phosphoenolpyruvate into pyruvate. Lactate and glyceraldehyde 3-phosphate dehydrogenase convert pyruvate into lactate and glyceraldehyde 3-phosphate, respectively. 2-Phosphoglycerate dehydrogenase converts glyceraldehyde 3-phosphate into 1, 3-Diphosphoglycerate.

RESULTS AND DISCUSSION

Comparison of the specific activities of glycerate kinase [0.010 μmol min⁻¹ (mg protein)⁻¹], phosphoglycerate mutase [0.004 μmol min⁻¹ (mg protein)⁻¹] and phosphopyruvate hydratase [0.021 μmol min⁻¹ (mg protein)⁻¹] in cell extracts of ethylene glycol-grown NCIB 11171 suggests that the conversion of glycerate into phosphoenolpyruvate [0.009 μmol min⁻¹ (mg protein)⁻¹] proceeds via 2-phosphoglycerate but not 3-phosphoglycerate during operation of the glycerate pathway. The equivalent activities in acetate-grown cell extracts of NCIB 11171 were 0, 0.002, 0.014 and 0 μmol min⁻¹ (mg protein)⁻¹, respectively.

Glycerate kinase, phosphoglycerate mutase and 3-phosphoglycerate kinase from ethylene glycol-grown NCIB 11171 appear to be separate single protein moieties as assessed by gel filtration on Bio-Gel P300 (Fig. 2), although the initial fractions of phosphoglycerate mutase activity were eluted together with the later fractions of glycerate kinase activity. The product of purified glycerate kinase (fraction no. 20, Fig. 2) was indirectly confirmed as 2-phosphoglycerate. The failure of the successive addition of lactate dehydrogenase and pyruvate kinase to promote any decrease in absorbance at 340 nm indicated that neither pyruvate nor phosphoenolpyruvate were initially present in the product identification reaction mixture. The presence of 2-phosphoglycerate was confirmed by the rapid decrease in absorbance at 340 nm observed after the subsequent addition of phosphopyruvate hydratase. The failure of the further addition of partially purified phosphoglycerate mutase (fraction no. 26, Fig. 2) to promote any change in the absorbance at 340 nm indicated that no 3-phosphoglycerate, the product of glycerate kinase in glycerol-grown *E. coli* (Doughty et al., 1966), was present.
Fig. 2. Separation and partial purification of enzymes involved in ethylene glycol metabolism by Flavobacterium sp. NCIB 11171. An extract of ethylene glycol-grown cells, after fractionation with (NH₄)₂SO₄, was chromatographed on Bio-Gel P300 and fractions were assayed for glycerate kinase, phosphoglycerate mutase and 3-phosphoglycerate kinase activities as described in Methods. Protein was detected automatically by measuring absorption at 253.7 nm with an LKB Uvicord I UV absorptiometer. Enzyme activities were found only in the fractions shown. ○, Phosphoglycerate mutase activity; ●, glycerate kinase activity; □, 3-phosphoglycerate kinase activity; ---, absorbance at 253.7 nm. All enzyme activities are expressed as μmol min⁻¹ (mg protein)⁻¹.

in the product identification reaction mixture. A decrease in absorbance at 340 nm consequent on the addition of 10 μmol 3-phosphoglycerate established the competence of the product identification reaction mixture to detect endogenous 3-phosphoglycerate and thereby implied that 2-phosphoglycerate was the reaction product of glycerate kinase in ethylene glycol-grown NCIB 11171. The absence of any detectable phosphoglycerate mutase activity from the commercial preparations of lactate dehydrogenase, pyruvate kinase and phosphopyruvate hydratase used in the assays supported the suggestion that 2-phosphoglycerate was the reaction product of glycerate kinase in ethylene glycol-grown NCIB 11171. The absence of 3-phosphoglycerate kinase (fraction no. 15 to 19, Fig. 2) from the partially purified glycerate kinase and phosphoglycerate mutase preparations used in the assays decreased the possibility that the 3-phosphoglycerate kinase plus glyceraldehyde-3-phosphate dehydrogenase-dependent metabolism of 3-phosphoglycerate to glyceraldehyde 3-phosphate via 1,3-diphosphoglycerate interfered with the observed activities as in crude cell-free extracts of Hyphomicrobium x (Hill & Attwood, 1976b). The phosphoglycerate mutase present in ethylene glycol-grown NCIB 11171 may serve as the first enzyme in the pathway of gluconeogenesis operating during growth on the aliphatic glycol: an equivalent role for the enzyme has been suggested in methanol-grown Hyphomicrobium x (Harder et al., 1973).

REFERENCES

NEWAZ, S. S. & HERSH, L. B. (1975). Reduced nico-